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State of the art and motivations

Atomic physics aims to probe the fundamental nature of universe through high-precision exper-
iment, and develop new technologies through exquisite control of atoms and molecules. Atoms
and molecules involve many constituent nuclei and electrons that interact in complicated ways
under the laws of quantum mechanics. The theoretical description of such atomic many-body
systems is extremely challenging. For example, when low-energy positrons (the antiparticles of
electrons and the simplest form of antimatter) interact with normal matter, such as atoms, they
pull strongly on the electrons and may even cause one of the electrons to ‘dance’ around the
positron, forming so-called positronium (as the positron and electron may annihilate, this may
ultimately be a ‘dance to the death’). These so called correlations have a very strong affect on
positron-atom interactions. In particular, they can enhance the rate of positron annihilation by
many orders of magnitude. Accurate calculations of positron scattering, binding and annihilation
in atoms, crucial for development of fundamental antimatter experiments, positron-based ma-
terials diagnostic techniques and PET (Positron Emission Tomography) medical imaging, must
fully account for the correlations. Moreover, precise calculations require numerical approaches
that push scientific computing to its limits.

A powerful method of describing atomic many-body systems, which allows for the study and
inclusion of interactions in a natural, transparent and systematic way, is diagrammatic many-body
theory (see, e.g., [1–3] and the footnote1). In this method, instead of computing the complicated
many-particle wavefunction, amplitudes for processes of interest — e.g., positron annihilation
with an atomic electron — are represented by a series of relatively simple and intuitive diagrams
that describe the most physically important contributions to the quantum amplitude of the
process [see Fig 1]. The diagrams are constructed systematically according to a strict set of rules
governed by the fundamental nature of the underlying interactions. By applying a ‘dictionary’
to the resulting diagrams, corresponding analytic expressions can be readily generated.

Mathematically, the diagram expansion for an amplitude Q (e.g., positron annihilation with
atomic electron) takes the form of a series of integrals over diagrams D with an ever increasing

1The diagrammatic approach to the quantum many-body problem was pioneered by Richard Feynman in 1949
in his famous paper “The theory of positrons” [4]. Feynman later shared the 1965 Nobel Prize for his work in the
field. Since then, they have “have revolutionised nearly every aspect of theoretical physics” [5].
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Fig. 1: Left: Positrons annihilate with atomic electrons producing Doppler-shifted γ-rays. Centre:
(i) Amplitude for annihilation of a positron (labelled ε) with an electron in atomic level n, showing
independent-particle approximation, first-order and virtual-positronium corrections. Straight lines de-
note electron or positron Green’s functions. The number of wavy lines, which denote two-body Coulomb
interactions, specifies the diagram order ; (ii) Dyson equation for the ‘dressed ’ Green’s functions G, in
terms of the non-interacting ones G(0) obtained from atomic structure calculations and the correla-
tion potential Σ, which can also be expressed diagrammatically; (iii) Integral equation for the screened
Coulomb interaction χ. The ‘Γ’ (virtual positronium) and ‘Π’ (polarisation) blocks represent infinite se-
ries of electron-positron and electron-electron interactions, respectively. Right: In diagrammatic Monte
Carlo, any quantity Q that can be written as a sum of diagrams D(ζn;x1 · · ·xn) is calculated to high-
precision by stochastically sampling the abstract space of diagram order n, topology ζn (i.e., different
diagrams of the same order) and configurations (x1, . . . , xn) (i.e., the coordinates of vertices).

number of integration variables

Q(y) =

∞∑

m=0

∑

ζm

∫
D (ζm, y;x1, . . . , xm)︸ ︷︷ ︸

“diagram”

dx1 · · · dxm. (1)

Here, y is a set of variables on which Q depends, m is the diagram order (the number of Coulomb
interactions), ζm labels the topology of the diagram (describing differently shaped diagrams of
the same order), and {x1, . . . , xm} the configurations (location of vertices).

The current record number of diagrams calculated for a many-electron atom problem is
∼ 2000 (to fourth order in the Coulomb interaction: m = 4) [6]. Iterating to higher orders
via brute-force is, however, unfeasible, due to the exponentially increasing number of diagrams
and integrations that must be computed in Eqn (1). To perform high-precision calculations for
general atomic systems, an alternative means of calculating high-order diagrams is required.

Objectives & Methodology

We have had considerable success developing and applying many-body theory of positron inter-
actions with atoms, most notably providing a complete description of the positron interactions
with noble-gas atoms [2,3,7–9], and very recently the first-accurate calculations for positronium
(an atom consisting of a bound electron-positron pair) interactions with atoms [10]. Those works
developed the many-body theory in the bare (undressed) positron-electron Coulomb interaction,
i.e., ignoring the modification of the Coulomb interaction caused by the ability of the atomic
electrons to respond to presence of the positron, effectively screening it.

This project will revisit the positron-atom problem, with the focus on developing an improved
computational implementation of the many-body theory that can provide increased precision for
that problem, and also enable the efficient calculation of more general properties and processes
involving structured atomic and molecular systems. The first task will be to develop the many-
body theory in the screened Coulomb interaction, calculating the diagrams in the Feynman
formalism [11] as opposed to the basis representation we previously used. We will focus on
positron interactions with noble-gas atoms, but can also consider positron interactions with a
system of electrons in a harmonic potential, which provides an approximation to the positron

2



electron-gas [12]. Following this, we will implement Markov Chain Monte Carlo integration
routines for the diagram evaluation. We will then focus on developing and implementing the
Diagrammatic Monte Carlo approach [13, 14], in which, rather than performing explicit inte-
grations, the diagrammatic series is summed to convergence by stochastically sampling the full
set of diagrams over the abstract space of diagram order, topology and configuration space (see
Fig. 1 right). For condensed matter lattice systems, the method has been used to successfully
sum millions of diagrams, yielding spectacular agreement with experiment [15]. We will use the
positron-atom system as the testbed for the application of this technique to structured atomic
and molecular systems. Implementing diagrammatic Monte Carlo may be essential to enable ac-
curate calculations of positron interactions with more complicated systems, including molecules
and condensed matter (e.g., by providing a way to calculate the electron-positron ladder series).

Collaborations

We have internationally leading expertise in positron and many-body theory. There is scope to
collaborate with the leaders in diagrammatic Monte Carlo in the UK, Germany and USA.

Required skills

The candidate is expected to have good working knowledge of and interest in Quantum Me-
chanics. It would advantageous (though not essential) to have experience of quantum-field
theory/QED/many-body theory (in the context of atomic, nuclear or particle physics). He/she
will be expected to learn and master many-body theory methods and their application to many-
electron systems. Running, modifying and developing computer codes is an integral and sub-
stantial part of the project, but there will be a judicious mix of analytical and numerical work.

Further information

The student will contribute to a vibrant team that is expected to consist of at least two post-
doctoral researchers and multiple PhD students delivering the objectives of the European Re-
search Council project ANTI-ATOM: “Many-body theory of antimatter interactions with atoms,
molecules and condensed matter” led by Dr Green. One postdoctoral researcher is expected to
be working on the topic, with whom the student can closely interact.

The project will equip the student with a versatile, broad and transferrable skill set. In
particular, the many-body theory methods possess great universality and are used (in slightly
different form) in areas ranging from elementary particle theories to condensed matter physics.
The experience of handling and writing computer codes, that will be acquired through the work
on the project, will be useful in a wide range of future careers.

For further information, please contact d.green@qub.ac.uk
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