Electromagnetic Theory AMA3001 Problem sheet 10
Electromagnetic radiation.
Homework

1. It can be shown that the following electric and magnetic fields,
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written in spherical polar coordinates (r,0,1), with w/k = 1/,/gop0, satisfy Maxwell’s
equations in free space in the absence of charges and currents.

(a) Consider an oscillating electric dipole of moment Pe™!, taking P along the z-axis.
Show by considering the near-field (kr < 1) limit that the fields due to the oscil-
lating electric dipole can be obtained by multiplying the above solution of Maxwell’s
equations by
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(b) Obtain an expression valid in the far-field (kr > 1) limit for the time-averaged Poynt-
ing vector due to such an oscillating electric dipole at the origin and show that the
total flux of radiation outward through a sphere is given by

Lto+/Eoftow” P?
127 ’

[Exam 2003 Question 7|

2. (a) By making a suitable expansion of the differentials d[(b - r)r| and b x (r X dr), or
otherwise, prove that
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C is a closed curve, and b is a constant vector. If C' is a plane curve, show that the
magnitude of M is equal to the area enclosed by C', and that the direction of M is
perpendicular to the plane of C, and related to the right-hand screw to the direction
in which the curve is traversed.

where

(b) A circular loop of wire of radius a carries an alternating current I = I, coswt, where
Iy and w are constants and wa < ¢, ¢ being the velocity of light. The loop lies in
the z-y plane and is centred upon the origin. Show that, correct to first-order in 1/r,
where 7 is the distance from the origin, the (complex) vector potential is given by
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where £ = w/c and (r,0,1) are the polar coordinates of r. Hence, determine the

magnetic field H and the electric field E, correct to first order in 1/r, and the corre-
sponding Poynting vector S.
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3. (a) Show, from Maxwell’s equations, how the B and F fields may be parameterised in
terms of a vector potential A and a scalar potential ¢.

(b) In Lorenz gauge (i.e., V - A 4 gouodp/0t = 0), the vector potential A at a large
distance r from a finite system of charges is approximately
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where P(t) is the dipole moment of the system, ¢ = 1/,/gofio and P(t) = dP/dt.

For ‘
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where Py and w are constants, show that, correct to first order in 1/r, the correspond-
ing magnetic and electric fields are
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where k = w/c and 7 is a unit vector in the direction of r.

Hint: in deriving the result, the following vector idenities may be of use:

V x (fa) = f(V x a) + Vf x a,
V-(fa)=f(V-a)+Vf-a,
V(fg) = fVg+gVf.
(c) A rigid electric dipole p is centred on the origin and lies in the z-y plane. The dipole

rotates anticlockwise with constant angular velocity w, and is along the = axis at t = 0.
Show that, correct to first order in 1/r, the B and E fields created by the dipole are:
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E = ok [sin(wt — kr — ) ¢ + cos(wt — kr — ) cos 0 6],
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where (7, 6,1) are spherical polar coordinates.

Find the corresponding Poynting vector.
Further Examples

1. (a) A set of point charges is in motion in a finite region surrounding the origin. If the
speeds of the charges are much smaller than the velocity of light ¢, show that at large
distance r from the origin the vector potential A is given by

A~ ﬂP(t —r/c),

4mr
where P(t) is the dipole moment of the system at time t.

(b) For P(t) = Pye™*, where Py and w are constants, find, correct to first order in 1/7,
the corresponding electric and magnetic fields at large r.
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