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Variable separation method.

Examples

1. Using variable separation, solve Laplace’s equation ∇2u = 0 in two dimensions using plane
polar coordinates,
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∂2u

∂ϕ2
= 0,

and show that a solution of this equation can be constructed as

u(r, ϕ) = C ln r + D +

∞
∑

n=1

(An cos nϕ + Bn sin nϕ)(Enrn + Fnr−n),

where C, D, An, Bn, En and Fn are arbitrary constants.

2. Prove that
∫ l
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(3)

for integer n, m ≥ 0, where δnm = 1 for n = m, 0 for n 6= m, is the Kronecker delta symbol.

Homework problems

1. Using the form u(x, t) = v(x)q(t), solve the one-dimensional wave equation,

∂2u

∂t2
− c2∂2u

∂x2
= 0,

for the string of length l (0 ≤ x ≤ l) with boundary conditions u(0, t) = 0, ux(l, t) = 0
(i.e., fixed end at x = 0 and “free” end at x = l).

Hence, show that the string can execute harmonic vibrations described by

u(x, t) = A sin
[

π(n + 1
2
)x/l

]

cos(ωnt + φ),

with frequencies ωn = πc(n + 1
2
)/l, n = 0, 1, . . . , and arbitrary amplitude A and phase φ.

2. A rope of length l and linear mass density ρ hangs freely along the x axis under gravity
(acceleration g). The bottom end of the string lies at x = 0 and the top at x = l.

x = l

(    )

0x = 

u  x,t

(a) Using the approach used for the string, show that the dis-
placement u(x, t) of the rope satisfies the equation

∂2u

∂t2
− g

∂

∂x

(

x
∂u

∂x

)

= 0. (4)

[Hint: at point x the tension force in the rope is T = gρx.]

(b) Seeking solution of Eq. (4) in the form u(x, t) = v(x)q(t),
find q(t) and show that v(x) satisfies the equation

x
d2v

dx
+

dv

dx
+

ω2

g
v = 0, (5)

where −ω2 is the separation constant.
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(c) Introduce a new independent variable ξ = α
√

x, i.e., x = ξ2/α2, where α is a constant,
and show that Eq. (5) takes the form

d2v

dξ2
+

1

ξ

dv

dξ
+ v = 0, (6)

if one chooses α = 2ω/
√

g.1

(d) Equation (6) is the Bessel equation for m = 0, whose regular solution is J0(ξ). Hence,
show that the solutions v(x) of Eq. (5) such that v(0) is finite and v(l) = 0, are

v(x) = AJ0

(

z0,n

√

x

l

)

, n = 1, 2, . . . , (7)

where A is an arbitrary constant, z0,n is the nth root of J0(z), and ω ≡ ωn =
z0,n

2

√

g

l
.

(e) Combining the results from (a)–(d), show that the hanging rope executing harmonic
motion with frequency ωn, is described by

u(x, t) = AJ0

(

z0,n

√

x

l

)

cos(ωnt + φ),

where φ is an arbitrary initial phase.

3. Consider the one-dimensional heat equation for 0 ≤ x ≤ l (rod of length l),

ut − Kuxx = 0. (8)

(a) Show that when the rod is in thermal equilibrium (i.e., the temperature does not
change with time, ∂u/∂t = 0), the time-independent (or stationary) solution of Eq. (8),
us(x), which satisfies the boundary conditions us(0) = T1, us(l) = T2, is

us(x) = T1 + (T2 − T1)x/l. (9)

(b) Show that if u0(x, t) is a solution of Eq. (8) with u0(0, t) = u0(l, t) = 0, then u(x, t) =
u0(x, t) + us(x) satisfies Eq. (8) with boundary conditions u(0, t) = T1, u(l, t) = T2.

(c) Using

u0(x, t) =

∞
∑

n=1

Bn sin
nπx

l
e−(n2π2/l2)Kt, (10)

show that the solution which satisfies u(0, t) = T1, u(l, t) = T2 and the initial condition
u(x, 0) = f(x), is

u(x, t) = T1 + (T2 − T1)x/l +

∞
∑

n=1

Bn sin
nπx

l
e−(n2π2/l2)Kt, (11)

where Bn =
2

l

∫ l

0

sin
nπx

l
[f(x) − T1 − (T2 − T1)x/l]dx.

4. Using the method of separation of variables, solve the two-dimensional wave equation in
Cartesian coordinates for a rectangular membrane (0 ≤ x ≤ a, 0 ≤ y ≤ b) with fixed
edges, u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t), and show that the membrane executes
harmonic motion with frequencies ωnm = πc(n2/a2 + m2/b2)1/2, where n, m = 0, 1, 2, . . .,
and described by u(x, y, t) = A sin(nπx/a) sin(mπy/b) cos(ωnmt + φ).
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