Variable separation method.

Examples

1. Using variable separation, solve Laplace's equation $\nabla^{2} u=0$ in two dimensions using plane polar coordinates,

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}=0
$$

and show that a solution of this equation can be constructed as

$$
u(r, \varphi)=C \ln r+D+\sum_{n=1}^{\infty}\left(A_{n} \cos n \varphi+B_{n} \sin n \varphi\right)\left(E_{n} r^{n}+F_{n} r^{-n}\right)
$$

where $C, D, A_{n}, B_{n}, E_{n}$ and F_{n} are arbitrary constants.
2. Prove that

$$
\left.\begin{array}{rl}
\int_{0}^{l} \sin \frac{n \pi x}{l} \sin \frac{m \pi x}{l} d x & = \begin{cases}0 & n=m=0 \\
\frac{1}{2} l \delta_{n m} & \text { otherwise }\end{cases} \\
\int_{-l}^{l} \sin \frac{n \pi x}{l} \cos \frac{m \pi x}{l} d x & =0 \\
\text { (note the limits) }
\end{array}\right\} \begin{array}{ll}
l & n=m=0 \tag{3}\\
\int_{0}^{l} \cos \frac{n \pi x}{l} \cos \frac{m \pi x}{l} d x & = \begin{cases}\frac{1}{2} l \delta_{n m} & \text { otherwise }\end{cases}
\end{array}
$$

for integer $n, m \geq 0$, where $\delta_{n m}=1$ for $n=m, 0$ for $n \neq m$, is the Kronecker delta symbol.

Homework problems

1. Using the form $u(x, t)=v(x) q(t)$, solve the one-dimensional wave equation,

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

for the string of length $l(0 \leq x \leq l)$ with boundary conditions $u(0, t)=0, u_{x}(l, t)=0$ (i.e., fixed end at $x=0$ and "free" end at $x=l$).

Hence, show that the string can execute harmonic vibrations described by

$$
u(x, t)=A \sin \left[\pi\left(n+\frac{1}{2}\right) x / l\right] \cos \left(\omega_{n} t+\phi\right),
$$

with frequencies $\omega_{n}=\pi c\left(n+\frac{1}{2}\right) / l, n=0,1, \ldots$, and arbitrary amplitude A and phase ϕ.
2. A rope of length l and linear mass density ρ hangs freely along the x axis under gravity (acceleration g). The bottom end of the string lies at $x=0$ and the top at $x=l$.
(a) Using the approach used for the string, show that the dis-
 placement $u(x, t)$ of the rope satisfies the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-g \frac{\partial}{\partial x}\left(x \frac{\partial u}{\partial x}\right)=0 . \tag{4}
\end{equation*}
$$

[Hint: at point x the tension force in the rope is $T=g \rho x$.]
(b) Seeking solution of Eq. (4) in the form $u(x, t)=v(x) q(t)$, find $q(t)$ and show that $v(x)$ satisfies the equation

$$
\begin{equation*}
x \frac{d^{2} v}{d x}+\frac{d v}{d x}+\frac{\omega^{2}}{g} v=0 \tag{5}
\end{equation*}
$$

where $-\omega^{2}$ is the separation constant.
(c) Introduce a new independent variable $\xi=\alpha \sqrt{x}$, i.e., $x=\xi^{2} / \alpha^{2}$, where α is a constant, and show that Eq. (5) takes the form

$$
\begin{equation*}
\frac{d^{2} v}{d \xi^{2}}+\frac{1}{\xi} \frac{d v}{d \xi}+v=0 \tag{6}
\end{equation*}
$$

if one chooses $\alpha=2 \omega / \sqrt{g} .{ }^{1}$
(d) Equation (6) is the Bessel equation for $m=0$, whose regular solution is $J_{0}(\xi)$. Hence, show that the solutions $v(x)$ of Eq. (5) such that $v(0)$ is finite and $v(l)=0$, are

$$
\begin{equation*}
v(x)=A J_{0}\left(z_{0, n} \sqrt{\frac{x}{l}}\right), \quad n=1,2, \ldots, \tag{7}
\end{equation*}
$$

where A is an arbitrary constant, $z_{0, n}$ is the nth root of $J_{0}(z)$, and $\omega \equiv \omega_{n}=\frac{z_{0, n}}{2} \sqrt{\frac{g}{l}}$.
(e) Combining the results from (a)-(d), show that the hanging rope executing harmonic motion with frequency ω_{n}, is described by

$$
u(x, t)=A J_{0}\left(z_{0, n} \sqrt{\frac{x}{l}}\right) \cos \left(\omega_{n} t+\phi\right),
$$

where ϕ is an arbitrary initial phase.
3. Consider the one-dimensional heat equation for $0 \leq x \leq l($ rod of length $l)$,

$$
\begin{equation*}
u_{t}-K u_{x x}=0 . \tag{8}
\end{equation*}
$$

(a) Show that when the rod is in thermal equilibrium (i.e., the temperature does not change with time, $\partial u / \partial t=0$), the time-independent (or stationary) solution of Eq. (8), $u_{s}(x)$, which satisfies the boundary conditions $u_{s}(0)=T_{1}, u_{s}(l)=T_{2}$, is

$$
\begin{equation*}
u_{s}(x)=T_{1}+\left(T_{2}-T_{1}\right) x / l . \tag{9}
\end{equation*}
$$

(b) Show that if $u_{0}(x, t)$ is a solution of Eq. (8) with $u_{0}(0, t)=u_{0}(l, t)=0$, then $u(x, t)=$ $u_{0}(x, t)+u_{s}(x)$ satisfies Eq. (8) with boundary conditions $u(0, t)=T_{1}, u(l, t)=T_{2}$.
(c) Using

$$
\begin{equation*}
u_{0}(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{l} e^{-\left(n^{2} \pi^{2} / l^{2}\right) K t} \tag{10}
\end{equation*}
$$

show that the solution which satisfies $u(0, t)=T_{1}, u(l, t)=T_{2}$ and the initial condition $u(x, 0)=f(x)$, is

$$
\begin{equation*}
u(x, t)=T_{1}+\left(T_{2}-T_{1}\right) x / l+\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{l} e^{-\left(n^{2} \pi^{2} / l^{2}\right) K t} \tag{11}
\end{equation*}
$$

where $B_{n}=\frac{2}{l} \int_{0}^{l} \sin \frac{n \pi x}{l}\left[f(x)-T_{1}-\left(T_{2}-T_{1}\right) x / l\right] d x$.
4. Using the method of separation of variables, solve the two-dimensional wave equation in Cartesian coordinates for a rectangular membrane ($0 \leq x \leq a, 0 \leq y \leq b$) with fixed edges, $u(0, y, t)=u(a, y, t)=u(x, 0, t)=u(x, b, t)$, and show that the membrane executes harmonic motion with frequencies $\omega_{n m}=\pi c\left(n^{2} / a^{2}+m^{2} / b^{2}\right)^{1 / 2}$, where $n, m=0,1,2, \ldots$, and described by $u(x, y, t)=A \sin (n \pi x / a) \sin (m \pi y / b) \cos \left(\omega_{n m} t+\phi\right)$.
${ }^{1}$ Hint: use chain rule to transform the derivatives, $\frac{d v}{d x}=\frac{d v}{d \xi} \frac{d \xi}{d x}, \quad \frac{d^{2} v}{d x^{2}}=\frac{d^{2} v}{d \xi^{2}}\left(\frac{d \xi}{d x}\right)^{2}+\frac{d v}{d \xi} \frac{d^{2} \xi}{d x^{2}}$.

