Fourier series.

For a function $f(x)$, which is piecewise smooth in the interval $-\pi \leq x \leq \pi$,

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \tag{2}\\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \tag{3}
\end{align*}
$$

holds for all x where $f(x)$ is continuous. If $f(x)$ is discontinuous at x, then the Fourier series on the right-hand side of Eq. (1) converges to $\frac{1}{2}[f(x-0)+f(x+0)]$.

Examples

1. Expand in the Fourier series the following functions $f(x)$ defined in the interval $(-\pi, \pi)$:
(a) $f(x)=\left\{\begin{array}{rr}-\frac{\pi}{4}, & -\pi<x<0, \\ \frac{\pi}{4}, & 0<x<\pi,\end{array}\right.$
(b) $f(x)=\left\{\begin{array}{lr}0, & -\pi<x<0, \\ 1, & 0<x<\pi,\end{array}\right.$
(c) $f(x)=|x|,|x| \leq \pi$.

In part (c), examine the answer for $x=0$.
2. (a) Assuming that α is not an integer, find the Fourier series on $-\pi \leq x \leq \pi$ of the function $f(x)=\cos \alpha x$.
(b) By setting $x=0$ in the answer to part (a) show that for nonintegral α

$$
\frac{\pi}{\sin \pi \alpha}=\frac{1}{\alpha}+\sum_{m=1}^{\infty}(-1)^{m}\left(\frac{1}{\alpha+m}+\frac{1}{\alpha-m}\right) .
$$

(c) By setting $x=\pi$ in the answer to part (a) show that for nonintegral α

$$
\pi \cot \pi \alpha=\frac{1}{\alpha}+\sum_{m=1}^{\infty}\left(\frac{1}{\alpha+m}+\frac{1}{\alpha-m}\right) .
$$

Using this formula for a particular value of α, find an expression for π.

Homework problems

1. Expand in the Fourier series the following functions $f(x)$ defined in the interval $(-\pi, \pi)$:
(a) $f(x)=x,-\pi<x<\pi$,
(b) $f(x)=x^{2},-\pi \leq x \leq \pi$,
(c) $f(x)=\sin \alpha x$ for $-\pi<x<\pi$, assuming that α is not an integer.
2. Using the answer to question 1(b) for $x=0$ and $x=\pi$, find the sums

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \quad \text { and } \quad 1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots
$$

3. Show that the Fourier series for the function $f(x)=|\sin x|$ on $-\pi \leq x \leq \pi$ is

$$
\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n x}{4 n^{2}-1}
$$

Using this result for a particular value of x, deduce the value of

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}
$$

4. Obtain the Fourier series for the function

$$
f(x)=\left\{\begin{array}{lr}
0, & -\pi \leq x \leq 0 \\
\sin x, & 0 \leq x \leq \pi
\end{array}\right.
$$

Hence, deduce the value of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n^{2}-1}
$$

5. Obtain the half-range Fourier sine series of the function $f(x)=x(\pi-x)$ on $0 \leq x \leq \pi$.
[This is equivalent to assuming that $f(x)$ extends to $-\pi \leq x \leq 0$ as an odd function, i.e., $f(x)=x(\pi+x)$ here.]
To what value does the series converge for $x=\pi / 2$? Deduce the value of the sum

$$
\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)^{3}}
$$

