Partial Differential Equations AMA3006 Problem sheet 3
Fourier series.

For a function f(z), which is piecewise smooth in the interval —7 < z <,
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a, = —/ f(z) cosnxdzx, (2)
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b, = —/ f(z) sinnzdz, (3)
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holds for all x where f(x) is continuous. If f(x) is discontinuous at x, then the Fourier series on
the right-hand side of Eq. (1) converges to 3[f(z — 0) + f(z + 0)].

Examples

1. Expand in the Fourier series the following functions f(x) defined in the interval (—m, 7):

—r<x<O0, 0, —m<xz<0,
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In part (c¢), examine the answer for z = 0.

2. (a) Assuming that « is not an integer, find the Fourier series on —m < x < 7 of the
function f(z) = cos azx.

(b) By setting z = 0 in the answer to part (a) show that for nonintegral o
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(c) By setting # = 7 in the answer to part (a) show that for nonintegral «
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Using this formula for a particular value of «, find an expression for .

Homework problems

1. Expand in the Fourier series the following functions f(x) defined in the interval (—m, 7):

(a) f(z)=a, —m <z <m,
(b) flz)=2% —r<z<m,

(¢) f(x) =sinax for —m < x < 7, assuming that « is not an integer.

2. Using the answer to question 1(b) for z = 0 and = =, find the sums



3. Show that the Fourier series for the function f(x) = |sinz| on —7 <z < 7 is

2 4icos2nx
L et 4n2? — 1’

Using this result for a particular value of z, deduce the value of
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4. Obtain the Fourier series for the function

0, —7m<z<0,
sinz, 0<z<m.
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Hence, deduce the value of
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5. Obtain the half-range Fourier sine series of the function f(z) = z(m —x) on 0 <z < .

[This is equivalent to assuming that f(z) extends to —m < x < 0 as an odd function, i.e.,
f(z) = (7 + x) here.]
To what value does the series converge for x = /27 Deduce the value of the sum
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