Fourier's method for PDE.

A piecewise smooth function $f(x)$ defined in the interval $0 \leq x \leq l$, can be expanded in the Fourier cosine or Fourier sine series,

$$
\begin{array}{ll}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}, & a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x, \\
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}, & b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x . \tag{2}
\end{array}
$$

Examples

1. A string of length l fixed at the ends and initially at rest, is struck at its mid-point, so that momentum P is imparted to it. Determine the motion of the string.
Hint: solve the one-dimensional wave equation with the initial conditions

$$
u(x, 0)=0, \quad u_{t}(x, 0)= \begin{cases}0, & 0<x<\frac{l}{2}-\delta \tag{3}\\ v_{0}, & \frac{l}{2}-\delta<x<\frac{l}{2}+\delta \\ 0, & \frac{l}{2}+\delta<x<l\end{cases}
$$

where $v_{0}=P /(2 \delta \rho)$ is the initial velocity over a small interval 2δ near $x=\frac{l}{2}$, and ρ is the linear mass density. Then take the limit $\delta \rightarrow 0$.
2. Find the temperature $u(x, t)$ of the rod of length l, whose ends are insulated [i.e., no heat flux, $u_{x}(0, t)=u_{x}(l, t)$], given the initial temperature distribution $u(x, 0)=f(x)$.
3. Determine the vibrations of a string with fixed ends, initially at rest, produced by a load with constant density q applied at $t=0$ over the whole length of the string.
[Hint: seek solution in the form $u(x, t)=\tilde{u}(x, t)+u_{s}(x)$, where $u_{s}(x)$ is the stationary solution of the wave equation with the load, $u_{t t}-c^{2} u_{x x}=q / \rho$.]

Homework problems

1. Find the temperature of the rod $u(x, t)$, whose ends are kept at zero temperature, given that its initial temperature is T, by solving the heat equation

$$
\begin{equation*}
u_{t}-K u_{x x}=0, \tag{4}
\end{equation*}
$$

with boundary conditions $u(0, t)=u(l, 0)=0$ and initial condition $u(x, 0)=T$.
Answer: $\quad u(x, t)=\frac{4 T}{\pi} \sum_{m=0}^{\infty} \frac{\sin \frac{(2 m+1) \pi x}{l}}{2 m+1} e^{-\left[(2 m+1)^{2} \pi^{2} / l^{2}\right] K t}$.
2. Solve the same problem for the parabolic initial temperature distribution,

$$
u(x, 0)=\frac{4 T}{l^{2}} x(l-x)
$$

Answer: $\quad u(x, t)=\frac{32 T}{\pi^{3}} \sum_{m=0}^{\infty} \frac{\sin \frac{(2 m+1) \pi x}{l}}{(2 m+1)^{3}} e^{-\left[(2 m+1)^{2} \pi^{2} / l^{2}\right] K t}$.
3. Solve the heat equation for the rod with insulating ends, $u_{x}(0, t)=u_{x}(l, t)$, and initial temperature distribution

$$
u(x, 0)=\frac{4 T}{l^{2}} x(l-x)
$$

Answer:

$$
u(x, t)=\frac{2 T}{3}-\frac{16 T}{\pi^{2}} \sum_{m=0}^{\infty} \frac{\cos \frac{2 m \pi x}{l}}{4 m^{2}} e^{-\left[4 m^{2} \pi^{2} / l^{2}\right] K t}
$$

[Note that unlike Questions 1 and 2, the temperature here does not tend to zero for $t \rightarrow \infty$, since the heat energy cannot escape the rod.]
4. Determine the displacement of the string, $u(x, t)$, with fixed ends, $u(0, t)=u(l, t)=0$, given that it is initially at rest and has a parabolic shape with maximum displacement h,

$$
u(x, 0)=\frac{4 h}{l^{2}} x(l-x), \quad u_{t}(x, 0)=0 .
$$

Answer: $\quad u(x, t)=\frac{32 h}{\pi^{3}} \sum_{m=0}^{\infty} \frac{\sin \frac{(2 m+1) \pi x}{l}}{(2 m+1)^{3}} \cos \frac{(2 m+1) \pi c}{l} t$.
5. A rectangular membrane of sides $2 a$ and $2 b$, whose edge is fixed, is acted upon by a uniformly distributed load q. The equilibrium shape of the membrane, $u(x, y)$, obeys the equation

$$
\begin{equation*}
u_{x x}+u_{y y}=-\frac{q}{T} \tag{5}
\end{equation*}
$$

where T is the tension per unit length in the membrane, $-a \leq x \leq a,-b \leq y \leq b$, and

$$
\begin{equation*}
u(-a, y)=u(a, y)=u(x,-b)=u(x, b)=0 . \tag{6}
\end{equation*}
$$

(a) Seek solution of Eq. (5) in the form $u_{1}(x)$ with boundary conditions $u_{1}(-a)=0$, $u_{1}(a)=0$, and show that

$$
\begin{equation*}
u_{1}(x)=\frac{q}{2 T}\left(a^{2}-x^{2}\right) . \tag{7}
\end{equation*}
$$

(b) Let $u(x, y)=\tilde{u}(x, y)+u_{1}(x)$. By substitution into equation (5) and conditions (6), show that $\tilde{u}(x, y)$ satisfies the homogeneous equation

$$
\begin{equation*}
\tilde{u}_{x x}+\tilde{u}_{y y}=0 \tag{8}
\end{equation*}
$$

with boundary conditions $\tilde{u}(-a, y)=\tilde{u}(a, y)=0, \tilde{u}(x,-b)=\tilde{u}(x, b)=-u_{1}(x)$.
(c) Seek solution of (8) as $\tilde{u}(x, y)=X(x) Y(y)$, with $X(-a)=X(a)=0$, and show that

$$
\begin{equation*}
\tilde{u}(x, y)=A_{n} \cosh \frac{\left(n+\frac{1}{2}\right) \pi y}{a} \cos \frac{\left(n+\frac{1}{2}\right) \pi x}{a}, \tag{9}
\end{equation*}
$$

where A_{n} is an arbitrary constant, and $n=0,1,2, \ldots$.
(d) Using the superposition principle, construct a more general $\tilde{u}(x, y)$ as a sum of (9). By subjecting it to the remaining boundary conditions, $\tilde{u}(x,-b)=\tilde{u}(x, b)=-u_{1}(x)$, find A_{n}, and show that

$$
u(x, y)=\frac{q a^{2}}{2 T}\left[1-\frac{x^{2}}{a^{2}}+\frac{32}{\pi^{3}} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)^{3}} \frac{\cosh \frac{(2 n+1) \pi y}{2 a}}{\cosh \frac{(2 n+1) \pi b}{2 a}} \cos \frac{(2 n+1) \pi x}{2 a}\right] .
$$

