The Laplace transform of a piecewise smooth function $f(t)(f(t)=0$ for $t<0)$ is

$$
\begin{equation*}
F(p) \equiv \mathcal{L}[f]=\int_{0}^{\infty} f(t) e^{-p t} d t \tag{1}
\end{equation*}
$$

Its inverse is an integral in the complex p plane along the line parallel to the imaginary axis,

$$
\begin{equation*}
f(t)=\mathcal{L}^{-1}[F]=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(p) e^{p t} d p \tag{2}
\end{equation*}
$$

where the integration path is chosen so that $F(p)$ is regular for $\operatorname{Re} p>\sigma$.
In many cases there is no need to perform the inverse, as one can determine the original $f(t)$ by recognising its $F(p)$. In particular, this can be done with the help of the convolution theorem:

$$
\begin{equation*}
\mathcal{L}\left[\int_{0}^{t} f(\tau) g(t-\tau) d \tau\right]=F(p) G(p) \tag{3}
\end{equation*}
$$

where $G(p)=\mathcal{L}[g]$, and the quantity in brackets is the convolution of functions f and g.

Examples

1. Show that:
(a) For a function $y(t), \mathcal{L}\left[y^{\prime \prime}\right]=p^{2} Y(p)-p y(0)-y^{\prime}(0)$,
(b) $\mathcal{L}\left[e^{\alpha t}\right]=\frac{1}{p-\alpha}$,
(c) $\mathcal{L}\left[t e^{\alpha t}\right]=\frac{1}{(p-\alpha)^{2}}$,
(d) $\mathcal{L}[\cos \omega t]=\frac{p}{p^{2}+\omega^{2}}$.
(e) $\mathcal{L}[\sin \omega t]=\frac{\omega}{p^{2}+\omega^{2}}$,
(f) $\mathcal{L}[\theta(t-s)]=\frac{e^{-p s}}{p}(s \geq 0)$, where $\theta(t)$ is the Heaviside step function:

$$
\theta(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

2. Use the Laplace transform to solve for $y(t)$:
(a) $y^{\prime \prime}+y=\sin 2 t, \quad y(0)=0, y^{\prime}(0)=0$,
(b) $y^{\prime \prime}+y=\sin t, \quad y(0)=0, y^{\prime}(0)=0$.
3. Consider the wave equation for $u(x, t)$ for a semi-infinite string, $0 \leq x<\infty$,

$$
u_{t t}-c^{2} u_{x x}=0,
$$

with the initial and boundary conditions $u(x, 0)=u_{t}(x, 0)=0, u_{t}(0, t)=g(t)$.
Using the Laplace transform with respect to t, show that

$$
u(x, t)= \begin{cases}\int_{0}^{t-x / c} g(\tau) d \tau, & x \leq c t \\ 0, & x>c t\end{cases}
$$

Homework problems

1. By using the definition (1), prove the shift theorems for $f(t)$ and $F(p)=\mathcal{L}[f]$:
(a) $\mathcal{L}\left[e^{\alpha t} f(t)\right]=F(p-\alpha)$,
(b) $\mathcal{L}[f(t-a)]=e^{-p a} F(p)$.
2. Show that for a function $y(t), \mathcal{L}\left[y^{\prime}\right]=p Y(p)-y(0)$.
3. Use Laplace transform to find $y(t)$ that satisfies

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

Hint: present $Y(p)$ in the form $\frac{A}{p-2}+\frac{B}{p-1}$ with suitable A and B.
Answer: $\quad y(t)=-2 e^{2 t}+3 e^{t}$.
4. Use the Laplace transform to solve $y^{\prime \prime}+2 y^{\prime}=e^{-t}$, subject to $y(0)=y^{\prime}(0)=0$.

Hint: Use partial fractions to show that $Y(p)=\frac{1}{2 p}-\frac{1}{p+1}+\frac{1}{2(p+2)}$.
5. (a) Show that the Laplace transform of the solution $y(t)$ of the equation

$$
\begin{gather*}
y^{\prime \prime}+\omega^{2} y=f(t) \tag{4}\\
\text { is given by } \quad Y(p)=\frac{F(p)+y^{\prime}(0)+p y(0)}{p^{2}+\omega^{2}}
\end{gather*}
$$

(b) Hence, show that a particular solution of (4) for which $y(0)=y^{\prime}(0)=0$, is

$$
y(t)=\frac{1}{\omega} \int_{0}^{t} f(\tau) \sin \omega(t-\tau) d \tau
$$

Hint: Use the convolution theorem.
6. Using the Laplace transform, solve the coupled equations for $y(t)$ and $z(t)$,

$$
y^{\prime}=4 y-2 z, \quad z^{\prime}=5 y+2 z, \quad \text { subject to } \quad y(0)=2, \quad z(0)=-2 .
$$

Hints: Show that $Y(p)=\frac{2 p}{p^{2}-6 p+18}, Z(p)=\frac{-2 p+18}{p^{2}-6 p+18}$, and re-write these as

$$
Y(p)=\frac{2(p-3)}{(p-3)^{2}+9}+\frac{6}{(p-3)^{2}+9}, \quad Z(p)=\frac{-2(p-3)}{(p-3)^{2}+9}+\frac{12}{(p-3)^{2}+9} .
$$

Then use examples $1(\mathrm{~d})$ and $1(\mathrm{e})$ and the first shift theorem to find $y(t)$ and $z(t)$.
7. Consider the wave equation for a semi-infinite string, $0 \leq x<\infty$,

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0, \tag{5}
\end{equation*}
$$

with initial conditions $u(x, 0)=0, u_{t}(x, 0)=0$, and boundary condition $u(0, t)=f(t)$.
Using the Laplace transform with respect to $t, U(x, p)=\mathcal{L}[u]$, and applying it to (5), show that

$$
U(x, p)=F(p) e^{-p x / c}, \quad \text { where } \quad F(p)=\mathcal{L}[f] .
$$

Hence, by using the second shift theorem, prove that

$$
u(x, t)= \begin{cases}f(t-x / c), & x \leq c t \\ 0, & x>c t\end{cases}
$$

Comment: The above answer shows that the displacement at point x lags behind that at the origin by x / c, the time it takes the wave to reach point x. The points at $x>c t$ remain stationary, as they have not been reached by the wave yet.

