Partial Differential Equations AMA3006 Problem sheet 6
Laplace transform and its application to ODE and PDE.

The Laplace transform of a piecewise smooth function f(¢) (f(t) = 0 for ¢ < 0) is
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Its inverse is an integral in the complex p plane along the line parallel to the imaginary axis,
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where the integration path is chosen so that F'(p) is regular for Rep > o.
In many cases there is no need to perform the inverse, as one can determine the original f(¢) by
recognising its F'(p). In particular, this can be done with the help of the convolution theorem:
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where G(p) = L[g], and the quantity in brackets is the convolution of functions f and g.
Examples
1. Show that:
(a) For a function y(t), L[y"] = p*Y(p) — py(0) — ¥/'(0),
(0) L] =
1
(0 Lte] =
(d) Llcoswt] = ]ﬁ.
(e) Llsinwt] = ]ﬁ,
(f) L[O(t —s)] = e;ps (s > 0), where 0(t) is the Heaviside step function:
R

2. Use the Laplace transform to solve for y(t):
(a) ¥ +y=sin2t, y(0)=0, y'(0) =0,
(b) y" +y =sint, y(0)=0, ¢'(0)=0.
3. Consider the wave equation for u(x,t) for a semi-infinite string, 0 < x < oo,

2
Upp — C Ugy = 0,

with the initial and boundary conditions u(z,0) = us(x,0) = 0, u(0,t) = g(¢).
Using the Laplace transform with respect to ¢, show that

t—x/c
u(w,t) = 40 g(7)dr, x < ct,
0, T > ct.



Homework problems

1.

w

6.

By using the definition (1), prove the shift theorems for f(¢) and F(p) = L[f]:
(a) Lle*f(1)] = F(p— o),
(b) LIf(t —a)] = e F(p).
Show that for a function y(t), L[y'] = pY (p) — y(0).
Use Laplace transform to find y(¢) that satisfies
y' =3y +29 =0 y(0)=1, y(0)=—1.

ot : A B . .
Hint: present Y (p) in the form %5 + ~Z with suitable A and B.
Answer:  y(t) = —2e* + 3¢’

Use the Laplace transform to solve y” + 2y’ = e™*, subject to y(0) = ¢'(0) = 0.

Hint: Use partial fractions to show that Y (p) = 2Lp — zﬁ + m.

(a) Show that the Laplace transform of the solution y(¢) of the equation
Yy +wly = f(1), (4)

F(p) +4'(0) + py(0)
p2 +w2 ’
(b) Hence, show that a particular solution of (4) for which y(0) = ¢’(0) =0, is

is given by Y(p) =

y(t) = %/0 f(r)sinw(t —7)dr.

Hint: Use the convolution theorem.
Using the Laplace transform, solve the coupled equations for y(t) and z(t),

v =4y —2z, 2 =5y+2z subject to y(0)=2, z(0)=-2.

Hints: Show that Y (p) = zﬁiﬂéﬁ Z(p) = p;_zgﬁig, and re-write these as

— _2(-3) 6 — —2(p—3) 12
Yip)= (p—li)’»)2+9 T oo Z(p) = (p—1f)2+9 T 970

Then use examples 1(d) and 1(e) and the first shift theorem to find y(¢) and z(t).

Consider the wave equation for a semi-infinite string, 0 < z < oo,

Ut — gy = 0, (5)

with initial conditions u(x,0) = 0, u;(x,0) = 0, and boundary condition u(0,t) = f(t).

Using the Laplace transform with respect to ¢, U(x,p) = L[u], and applying it to (5), show
that
U(z,p) = F(p)e /¢, where F(p) = L[f].

Hence, by using the second shift theorem, prove that

u(z,t) = {f(t—x/cL xr < ct,

0, T > ct.

Comment: The above answer shows that the displacement at point x lags behind that at
the origin by x/c, the time it takes the wave to reach point x. The points at x > ¢t remain
stationary, as they have not been reached by the wave yet.



