
Partial Differential Equations AMA3006 Problem sheet 6

Laplace transform and its application to ODE and PDE.

The Laplace transform of a piecewise smooth function f(t) (f(t) = 0 for t < 0) is

F (p) ≡ L[f ] =

∫

∞

0

f(t)e−ptdt. (1)

Its inverse is an integral in the complex p plane along the line parallel to the imaginary axis,

f(t) = L−1[F ] =
1

2πi

∫ σ+i∞

σ−i∞

F (p)eptdp, (2)

where the integration path is chosen so that F (p) is regular for Re p > σ.
In many cases there is no need to perform the inverse, as one can determine the original f(t) by
recognising its F (p). In particular, this can be done with the help of the convolution theorem:

L

[
∫ t

0

f(τ)g(t− τ)dτ

]

= F (p)G(p), (3)

where G(p) = L[g], and the quantity in brackets is the convolution of functions f and g.

Examples

1. Show that:

(a) For a function y(t), L[y′′] = p2Y (p)− py(0)− y′(0),

(b) L[eαt] =
1

p− α
,

(c) L[teαt] =
1

(p− α)2
,

(d) L[cos ωt] =
p

p2 + ω2
.

(e) L[sin ωt] =
ω

p2 + ω2
,

(f) L[θ(t− s)] =
e−ps

p
(s ≥ 0), where θ(t) is the Heaviside step function:

θ(x) =

{

0, x < 0,

1, x ≥ 0.

2. Use the Laplace transform to solve for y(t):

(a) y′′ + y = sin 2t, y(0) = 0, y′(0) = 0,

(b) y′′ + y = sin t, y(0) = 0, y′(0) = 0.

3. Consider the wave equation for u(x, t) for a semi-infinite string, 0 ≤ x <∞,

utt − c2uxx = 0,

with the initial and boundary conditions u(x, 0) = ut(x, 0) = 0, ut(0, t) = g(t).

Using the Laplace transform with respect to t, show that

u(x, t) =

{

∫ t−x/c

0
g(τ)dτ, x ≤ ct,

0, x > ct.
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Homework problems

1. By using the definition (1), prove the shift theorems for f(t) and F (p) = L[f ]:

(a) L[eαtf(t)] = F (p− α),

(b) L[f(t− a)] = e−paF (p).

2. Show that for a function y(t), L[y′] = pY (p)− y(0).

3. Use Laplace transform to find y(t) that satisfies

y′′ − 3y′ + 2y = 0, y(0) = 1, y′(0) = −1.

Hint: present Y (p) in the form A
p−2

+ B
p−1

with suitable A and B.

Answer: y(t) = −2e2t + 3et.

4. Use the Laplace transform to solve y′′ + 2y′ = e−t, subject to y(0) = y′(0) = 0.

Hint: Use partial fractions to show that Y (p) = 1
2p
− 1

p+1
+ 1

2(p+2)
.

5. (a) Show that the Laplace transform of the solution y(t) of the equation

y′′ + ω2y = f(t), (4)

is given by Y (p) =
F (p) + y′(0) + py(0)

p2 + ω2
.

(b) Hence, show that a particular solution of (4) for which y(0) = y ′(0) = 0, is

y(t) =
1

ω

∫ t

0

f(τ) sin ω(t− τ) dτ.

Hint: Use the convolution theorem.

6. Using the Laplace transform, solve the coupled equations for y(t) and z(t),

y′ = 4y − 2z, z′ = 5y + 2z, subject to y(0) = 2, z(0) = −2.

Hints: Show that Y (p) = 2p
p2
−6p+18

, Z(p) = −2p+18
p2
−6p+18

, and re-write these as

Y (p) = 2(p−3)
(p−3)2+9

+ 6
(p−3)2+9

, Z(p) = −2(p−3)
(p−3)2+9

+ 12
(p−3)2+9

.

Then use examples 1(d) and 1(e) and the first shift theorem to find y(t) and z(t).

7. Consider the wave equation for a semi-infinite string, 0 ≤ x <∞,

utt − c2uxx = 0, (5)

with initial conditions u(x, 0) = 0, ut(x, 0) = 0, and boundary condition u(0, t) = f(t).

Using the Laplace transform with respect to t, U(x, p) = L[u], and applying it to (5), show
that

U(x, p) = F (p)e−px/c, where F (p) = L[f ].

Hence, by using the second shift theorem, prove that

u(x, t) =

{

f(t− x/c), x ≤ ct,

0, x > ct.

Comment: The above answer shows that the displacement at point x lags behind that at
the origin by x/c, the time it takes the wave to reach point x. The points at x > ct remain
stationary, as they have not been reached by the wave yet.
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