Partial Differential Equations AMA3006

Orthogonal systems of functions.

The *inner product* of two functions, f and g, on the segment [a, b], is defined as

$$(f,g) = \int_{a}^{b} f(x)g(x)dx,$$
(1)

and the *norm* of f is $||f|| = \sqrt{(f, f)}$. Two functions are orthogonal if their inner product is zero. A system of functions, $\varphi_1(x)$, $\varphi_2(x)$, ..., is *orthonormal*, if

$$(\varphi_i, \varphi_j) = \delta_{ij}.$$
 (2)

Given a system of linearly independent functions, $v_1(x)$, $v_2(x)$, ..., an orthonormal system can be constructed by the Gram-Schmidt orthogonalisation process:

$$\begin{split} \varphi_1 &= v_1 / \|v_1\|, \\ \varphi_2 &= \tilde{v}_2 / \|\tilde{v}_2\|, \quad \text{where} \quad \tilde{v}_2 = v_2 - (\varphi_1, v_2)\varphi_1, \\ \varphi_3 &= \tilde{v}_3 / \|\tilde{v}_3\|, \quad \text{where} \quad \tilde{v}_3 = v_3 - (\varphi_1, v_3)\varphi_1 - (\varphi_2, v_3)\varphi_2, \quad \text{etc} \end{split}$$

An expansion in the orthonormal system of functions, $s_n(x) = \sum_{i=1}^n c_i \varphi_i(x)$, gives the best approximation *in the mean* for a function f(x), when the norm of the difference between them, $||f - s_n||$, takes the smallest possible value. This occurs for

$$c_i = (\varphi_i, f). \tag{3}$$

If the system of functions φ_i is *complete*, $\lim_{n\to\infty} ||f - s_n|| = 0$ for any piecewise continuous f.

The notions of orthogonality and norm can be generalised by defining the inner product as

$$(f,g) = \int_{a}^{b} f(x)g(x)\rho(x)dx,$$
(4)

where $\rho(x) \ge 0$ is the *weight* function. In this case, if (f,g) = 0, we say that 'f and g are orthogonal with the weight function ρ .'

Examples

1. Using the Gram-Schmidt process, construct the first three functions of an orthonormal system on [-1, 1] from $v_0 = 1$, $v_1 = x$, $v_2 = x^2$,

Answer:
$$\varphi_0(x) = \frac{1}{\sqrt{2}}, \ \varphi_1(x) = \sqrt{\frac{3}{2}} x, \ \varphi_2(x) = \sqrt{\frac{5}{2}} \frac{3x^2 - 1}{2}.$$

Continuing this process, one obtains a system of orthonormal functions on [-1, 1], $\varphi_n(x) = \sqrt{\frac{2n+1}{2}}P_n(x)$, where $P_n(x)$ are the *Legendre* polynomials (n = 0, 1, ...).

2. Using the Gram-Schmidt process, construct the first three functions of an orthonormal system on $(-\infty, \infty)$ from $v_0 = 1$, $v_1 = x$, $v_2 = x^2$, ..., with the weight function $\rho = e^{-x^2}$. [Useful integral $\int_{-\infty}^{\infty} x^{2n} e^{-x^2} dx = \sqrt{\pi}(2n-1)!!/2^n$, where $(2n-1)!! = 1 \cdot 3 \cdot \ldots \cdot (2n-1)$.] Answer: $\varphi_0(x) = 1/\pi^{1/4}$, $\varphi_1(x) = 2x/\sqrt{2\sqrt{\pi}}$, $\varphi_2(x) = (4x^2 - 2)/\sqrt{8\sqrt{\pi}}$.

Continuing this process, one obtains a system of functions orthonormal on $(-\infty, \infty)$ with weight e^{-x^2} , $\varphi_n(x) = H_n(x)/\sqrt{2^n n! \sqrt{\pi}}$, where $H_n(x)$ are the *Hermite* polynomials,

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n e^{-x^2}}{dx^n}$$

Use integration by parts to prove $\int_{-\infty}^{\infty} x^m e^{-x^2} H_n(x) dx = 0$ for m < n, hence $(H_m, H_n) = 0$.

Homework problems

1. Prove that the infinite system of functions,

$$\frac{1}{\sqrt{2\pi}}, \quad \frac{\cos x}{\sqrt{\pi}}, \quad \frac{\sin x}{\sqrt{\pi}}, \quad \frac{\cos 2x}{\sqrt{\pi}}, \quad \frac{\sin 2x}{\sqrt{\pi}}, \dots,$$

is orthonormal on the interval $[0, 2\pi]$ (with the weight function $\rho = 1$).

[Verify that these functions are mutually orthogonal, and their norms are equal to unity.]

2. It can be shown that the Legendre polynomials $P_n(x)$ from example 1 are given by Rodrigues' formula, as the *n*th derivative of $(x^2 - 1)^n$,

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n}.$$
(5)

[Note: $(x^2 - 1)^n$ is a polynomial of degree 2n, and its *n*th derivative is a polynomial of degree *n*. The coefficient in equation (5) is chosen so that $P_n(1) = 1$.]

- (a) Using Rodrigues' formula, verify the expressions for $\varphi_1(x)$ and $\varphi_2(x)$ obtained in example 1, and show that $\varphi_3(x) = \sqrt{\frac{7}{2}} \left(\frac{5}{2}x^3 \frac{3}{2}x\right)$.
- (b) The function $(x^2-1)^n$ and its first n-1 derivatives, $[(x^2-1)^n]^{(k)}$ (k = 1, 2, ..., n-1), vanish at x = 1 and -1. Using this property, and repeatedly integrating by parts, show that $P_n(x)$ is orthogonal to x^m for m < n, i.e.,

$$\int_{-1}^{1} x^m P_n(x) dx = \frac{1}{2^n n!} \int_{-1}^{1} x^m [(x^2 - 1)^n]^{(n)} dx = 0.$$

(c) Hence, prove the orthogonality of the Legendre polynomials for m < n,

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0.$$

3. (a) Show that the *Chebyshev* polynomials, $T_n(x) = \cos(n \arccos x)$ (n = 0, 1, 2, ...) are mutually orthogonal on $-1 \le x \le 1$ with the weight function $\rho(x) = 1/\sqrt{1-x^2}$, and determine their norm $||T_n||$.

[Hint: use variable substitution $x = \cos \theta$, i.e., $\theta = \arccos x$.]

- (b) Show that $T_n(\cos \theta)$ is indeed a polynomial in $\cos \theta$ of degree n. [Hints: use $\cos(n\theta) = \operatorname{Re} e^{in\theta}$, together with the Euler formula for $e^{i\theta}$, and binomial expansion.]
- 4. (a) Using the Gram-Schmidt process, construct the first three functions of an orthonormal system on $[0, \infty)$ from $v_0 = 1$, $v_1 = x$, $v_2 = x^2$, ..., with the weight function $\rho = e^{-x}$. [Make use of the integral $\int_0^\infty x^n e^{-x} dx = n!$.] Answer: $\varphi_0(x) = 1$, $\varphi_1(x) = x - 1$, $\varphi_2(x) = \frac{1}{2}(x^2 - 4x + 2)$.
 - (b) Continuing this process, one obtains a system of functions orthonormal on $[0, \infty)$ with weight e^{-x} , $\varphi_n(x) = (-1)^n L_n(x)/n!$, where $L_n(x)$ are the Laguerre polynomials,

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}).$$
(6)

Using repeated integration by parts, show that for m < n,

$$(x^m, L_n) = \int_0^\infty x^m e^{-x} L_n(x) dx = 0$$
, and $||L_n||^2 = \int_0^\infty e^{-x} L_n^2(x) dx = (n!)^2$.

[The first relation in fact proves that $(L_m, L_n) = 0$ for m < n. To derive the second relation, present one L_n using (6), and use $L_n(x) = (-1)^n x^n + \ldots$ for the other.]