Orthogonal systems of functions.

The inner product of two functions, f and g, on the segment $[a, b]$, is defined as

$$
\begin{equation*}
(f, g)=\int_{a}^{b} f(x) g(x) d x \tag{1}
\end{equation*}
$$

and the norm of f is $\|f\|=\sqrt{(f, f)}$. Two functions are orthogonal if their inner product is zero. A system of functions, $\varphi_{1}(x), \varphi_{2}(x), \ldots$, is orthonormal, if

$$
\begin{equation*}
\left(\varphi_{i}, \varphi_{j}\right)=\delta_{i j} \tag{2}
\end{equation*}
$$

Given a system of linearly independent functions, $v_{1}(x), v_{2}(x), \ldots$, an orthonormal system can be constructed by the Gram-Schmidt orthogonalisation process:

$$
\begin{aligned}
& \varphi_{1}=v_{1} /\left\|v_{1}\right\|, \\
& \varphi_{2}=\tilde{v}_{2} /\left\|\tilde{v}_{2}\right\|, \quad \text { where } \quad \tilde{v}_{2}=v_{2}-\left(\varphi_{1}, v_{2}\right) \varphi_{1}, \\
& \varphi_{3}=\tilde{v}_{3} /\left\|\tilde{v}_{3}\right\|, \quad \text { where } \quad \tilde{v}_{3}=v_{3}-\left(\varphi_{1}, v_{3}\right) \varphi_{1}-\left(\varphi_{2}, v_{3}\right) \varphi_{2}, \quad \text { etc. }
\end{aligned}
$$

An expansion in the orthonormal system of functions, $s_{n}(x)=\sum_{i=1}^{n} c_{i} \varphi_{i}(x)$, gives the best approximation in the mean for a function $f(x)$, when the norm of the difference between them, $\left\|f-s_{n}\right\|$, takes the smallest possible value. This occurs for

$$
\begin{equation*}
c_{i}=\left(\varphi_{i}, f\right) \tag{3}
\end{equation*}
$$

If the system of functions φ_{i} is complete, $\lim _{n \rightarrow \infty}\left\|f-s_{n}\right\|=0$ for any piecewise continuous f. The notions of orthogonality and norm can be generalised by defining the inner product as

$$
\begin{equation*}
(f, g)=\int_{a}^{b} f(x) g(x) \rho(x) d x \tag{4}
\end{equation*}
$$

where $\rho(x) \geq 0$ is the weight function. In this case, if $(f, g)=0$, we say that ' f and g are orthogonal with the weight function ρ.'

Examples

1. Using the Gram-Schmidt process, construct the first three functions of an orthonormal system on $[-1,1]$ from $v_{0}=1, v_{1}=x, v_{2}=x^{2}, \ldots$.
Answer: $\varphi_{0}(x)=\frac{1}{\sqrt{2}}, \varphi_{1}(x)=\sqrt{\frac{3}{2}} x, \varphi_{2}(x)=\sqrt{\frac{5}{2}} \frac{3 x^{2}-1}{2}$.
Continuing this process, one obtains a system of orthonormal functions on $[-1,1], \varphi_{n}(x)=$ $\sqrt{\frac{2 n+1}{2}} P_{n}(x)$, where $P_{n}(x)$ are the Legendre polynomials $(n=0,1, \ldots)$.
2. Using the Gram-Schmidt process, construct the first three functions of an orthonormal system on $(-\infty, \infty)$ from $v_{0}=1, v_{1}=x, v_{2}=x^{2}, \ldots$, with the weight function $\rho=e^{-x^{2}}$. [Useful integral $\int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} d x=\sqrt{\pi}(2 n-1)!!/ 2^{n}$, where $(2 n-1)!!=1 \cdot 3 \cdot \ldots \cdot(2 n-1)$.] Answer: $\varphi_{0}(x)=1 / \pi^{1 / 4}, \varphi_{1}(x)=2 x / \sqrt{2 \sqrt{\pi}}, \varphi_{2}(x)=\left(4 x^{2}-2\right) / \sqrt{8 \sqrt{\pi}}$.
Continuing this process, one obtains a system of functions orthonormal on $(-\infty, \infty)$ with weight $e^{-x^{2}}, \varphi_{n}(x)=H_{n}(x) / \sqrt{2^{n} n!\sqrt{\pi}}$, where $H_{n}(x)$ are the Hermite polynomials,

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}}
$$

Use integration by parts to prove $\int_{-\infty}^{\infty} x^{m} e^{-x^{2}} H_{n}(x) d x=0$ for $m<n$, hence $\left(H_{m}, H_{n}\right)=0$.

Homework problems

1. Prove that the infinite system of functions,

$$
\frac{1}{\sqrt{2 \pi}}, \quad \frac{\cos x}{\sqrt{\pi}}, \quad \frac{\sin x}{\sqrt{\pi}}, \quad \frac{\cos 2 x}{\sqrt{\pi}}, \quad \frac{\sin 2 x}{\sqrt{\pi}}, \ldots,
$$

is orthonormal on the interval $[0,2 \pi]$ (with the weight function $\rho=1$).
[Verify that these functions are mutually orthogonal, and their norms are equal to unity.]
2. It can be shown that the Legendre polynomials $P_{n}(x)$ from example 1 are given by Rodrigues' formula, as the nth derivative of $\left(x^{2}-1\right)^{n}$,

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}} \tag{5}
\end{equation*}
$$

[Note: $\left(x^{2}-1\right)^{n}$ is a polynomial of degree $2 n$, and its nth derivative is a polynomial of degree n. The coefficient in equation (5) is chosen so that $P_{n}(1)=1$.]
(a) Using Rodrigues' formula, verify the expressions for $\varphi_{1}(x)$ and $\varphi_{2}(x)$ obtained in example 1 , and show that $\varphi_{3}(x)=\sqrt{\frac{7}{2}}\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right)$.
(b) The function $\left(x^{2}-1\right)^{n}$ and its first $n-1$ derivatives, $\left[\left(x^{2}-1\right)^{n}\right]^{(k)}(k=1,2, \ldots, n-1)$, vanish at $x=1$ and -1 . Using this property, and repeatedly integrating by parts, show that $P_{n}(x)$ is orthogonal to x^{m} for $m<n$, i.e.,

$$
\int_{-1}^{1} x^{m} P_{n}(x) d x=\frac{1}{2^{n} n!} \int_{-1}^{1} x^{m}\left[\left(x^{2}-1\right)^{n}\right]^{(n)} d x=0
$$

(c) Hence, prove the orthogonality of the Legendre polynomials for $m<n$,

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 .
$$

3. (a) Show that the Chebyshev polynomials, $T_{n}(x)=\cos (n \arccos x)(n=0,1,2, \ldots)$ are mutually orthogonal on $-1 \leq x \leq 1$ with the weight function $\rho(x)=1 / \sqrt{1-x^{2}}$, and determine their norm $\left\|T_{n}\right\|$.
[Hint: use variable substitution $x=\cos \theta$, i.e., $\theta=\arccos x$.]
(b) Show that $T_{n}(\cos \theta)$ is indeed a polynomial in $\cos \theta$ of degree n.
[Hints: use $\cos (n \theta)=\operatorname{Re} e^{i n \theta}$, together with the Euler formula for $e^{i \theta}$, and binomial expansion.]
4. (a) Using the Gram-Schmidt process, construct the first three functions of an orthonormal system on $[0, \infty)$ from $v_{0}=1, v_{1}=x, v_{2}=x^{2}, \ldots$, with the weight function $\rho=e^{-x}$. [Make use of the integral $\int_{0}^{\infty} x^{n} e^{-x} d x=n!$!]
Answer: $\varphi_{0}(x)=1, \varphi_{1}(x)=x-1, \varphi_{2}(x)=\frac{1}{2}\left(x^{2}-4 x+2\right)$.
(b) Continuing this process, one obtains a system of functions orthonormal on $[0, \infty)$ with weight $e^{-x}, \varphi_{n}(x)=(-1)^{n} L_{n}(x) / n$!, where $L_{n}(x)$ are the Laguerre polynomials,

$$
\begin{equation*}
L_{n}(x)=e^{x} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right) \tag{6}
\end{equation*}
$$

Using repeated integration by parts, show that for $m<n$,

$$
\left(x^{m}, L_{n}\right)=\int_{0}^{\infty} x^{m} e^{-x} L_{n}(x) d x=0, \quad \text { and } \quad\left\|L_{n}\right\|^{2}=\int_{0}^{\infty} e^{-x} L_{n}^{2}(x) d x=(n!)^{2}
$$

[The first relation in fact proves that $\left(L_{m}, L_{n}\right)=0$ for $m<n$. To derive the second relation, present one L_{n} using (6), and use $L_{n}(x)=(-1)^{n} x^{n}+\ldots$ for the other.]

