Sturm-Liouville problem.

Any second-order linear differential expression, $\tilde{p} u^{\prime \prime}+\tilde{r} u^{\prime}-\tilde{q} u$, can be transformed into the self-adjoint form, $L[u]=\left(p u^{\prime}\right)^{\prime}-q u$, by multiplying it by

$$
\begin{equation*}
R(x)=e^{\int\left[\left(\tilde{r}-\tilde{p}^{\prime}\right) / \tilde{p}\right] d x} \tag{1}
\end{equation*}
$$

Green's formula for the self-adjoint operator L :

$$
\begin{equation*}
\int_{a}^{b}(v L[u]-u L[v]) d x=\left.p\left(u^{\prime} v-v^{\prime} u\right)\right|_{a} ^{b} \tag{2}
\end{equation*}
$$

Sturm-Liouville eigenvalue problem: determine the values of λ, for which the equation,

$$
\begin{equation*}
\left(p u^{\prime}\right)^{\prime}-q u+\lambda \rho u=0 \tag{3}
\end{equation*}
$$

with $p(x)>0$ and $\rho(x) \geq 0$ on $[a, b]$, has nontrivial solutions u which satisfy one of the following homogeneous boundary conditions:

1. $u(a)=u(b)=0$,
2. $u^{\prime}(a)=u^{\prime}(b)=0$,
3. $\alpha_{a} u(a)+\beta_{a} u^{\prime}(a)=0, \quad \alpha_{b} u(b)+\beta_{b} u^{\prime}(b)=0$,
4. $u(a)=u(b), \quad p(a) u^{\prime}(a)=p(b) u^{\prime}(b) \quad[p(a)=p(b)$ gives periodic boundary conditions $]$.

If $p(a)=0$ (or $p(b)=0$) the Sturm-Liouville problem is singular, and we require that u is bounded at $x=a$ (or $x=b$), or its growth is restricted.

Examples

1. Transform the following equations into the self-adjoint form, $L[u]+\lambda \rho u=0$:

$$
\begin{gather*}
\left(1-x^{2}\right) u^{\prime \prime}-2 x u^{\prime}+\lambda u=0, \tag{4}\\
x u^{\prime \prime}+(1-x) u^{\prime}+\lambda u=0, \tag{5}
\end{gather*}
$$

and find the corresponding weight functions ρ.
2. (a) Seek the solution of (4) in the form $u(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, and show that

$$
\begin{equation*}
a_{k+2}=-\frac{\lambda-k(k+1)}{(k+1)(k+2)} a_{k} . \tag{6}
\end{equation*}
$$

(b) Hence, show that the solution is a polynomial if $\lambda=n(n+1)$, where $n=0,1, \ldots$.
(c) Prove that $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}}$ satisfies equation (4) with $\lambda=n(n+1)$.
[Consider $v=\left(x^{2}-1\right)^{n}$, show that $\left(x^{2}-1\right) v^{\prime}=2 n x v$, and differentiate it $(n+1)$ times.]
3. (a) Seek the solution of (5) in the form $u(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, and show that

$$
\begin{equation*}
a_{k+1}=-\frac{\lambda-k}{(k+1)^{2}} a_{k} . \tag{7}
\end{equation*}
$$

(b) Hence, show that the solution is a polynomial if $\lambda=n$, where $n=0,1, \ldots$.

Note: Legendre polynomials $P_{n}(x)$ solve the Sturm-Liouville problem (4) on $[-1,1]$, and the polynomial solutions of (5) on $[0, \infty)$ orthogonal with e^{-x}, are the Laguerre polynomials $L_{n}(x)$.

Homework problems

1. Find the function $R(x)$ which makes the differential operator

$$
x(1-x) \frac{d^{2}}{d x^{2}}+[q-(p+1) x] \frac{d}{d x}
$$

self-adjoint.
Answer: $R(x)=x^{q-1}(1-x)^{p-q}$.
[Solutions of the Sturm-Liouville problem $x(1-x) u^{\prime \prime}+[q-(p+1) x] u^{\prime}+\lambda u=0$ on $[0,1]$ are the Jacobi polynomials; they are orthogonal with the weight function $x^{q-1}(1-x)^{p-q}$.]
2. (a) Transform the differential equation

$$
\begin{equation*}
u^{\prime \prime}-2 x u^{\prime}+\lambda u=0 . \tag{8}
\end{equation*}
$$

into the self-adjoint form and show that $\rho=e^{-x^{2}}$.
(b) Seek the solution of (8) in the form $u(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, and show that

$$
\begin{equation*}
a_{k+2}=-\frac{\lambda-2 k}{(k+1)(k+2)} a_{k} . \tag{9}
\end{equation*}
$$

Hence, show that the solution is a polynomial if $\lambda=2 n$, where $n=0,1, \ldots$.
These solutions of the Sturm-Liouville problem on $(-\infty, \infty)$, are the Hermite polynomials; they are orthogonal with the weight function $e^{-x^{2}}$.
3. (a) Show that the equation

$$
\left(1-x^{2}\right) u^{\prime \prime}-x u^{\prime}+\lambda u=0,
$$

written in the self-adjoint form, takes the form

$$
\begin{equation*}
\left(\sqrt{1-x^{2}} u^{\prime}\right)^{\prime}+\frac{\lambda}{\sqrt{1-x^{2}}} u=0 \tag{10}
\end{equation*}
$$

(b) Consider the Sturm-Liouville problem for equation (10) on $-1 \leq x \leq 1$, with the boundary conditions that $u(x)$ is finite at $x= \pm 1$. Show that $u=T_{n}(x)=\cos (n \arccos x)$ is an eigenfunction of this problem, and find the corresponding eigenvalue λ.

Note: By the Sturm-Liouville theory, the Chebyshev polynomials, $T_{n}(x)$, are orthogonal with the weight function $\left(1-x^{2}\right)^{-1 / 2}$, as we have already seen in Problem sheet 7 .
4. Find all the eigenvalues and normalised eigenfunctions of the Sturm-Liouville problem:

$$
y^{\prime \prime}+\lambda y=0, \quad 0 \leq x \leq \pi / 2, \quad y(0)=0, \quad y^{\prime}(\pi / 2)=0
$$

Answer: $\lambda=(2 n+1)^{2}, y_{n}=\frac{2}{\sqrt{\pi}} \sin (2 n+1) x, n=0,1, \ldots$.
[Hints: consider three cases, $\lambda=k^{2}>0, \lambda=0$, and $\lambda=-k^{2}$; to normalise a solution, e.g., $y=A \sin k x$, choose A so that $\int_{0}^{\pi / 2} y^{2} d x=1$.]
5. Find all the eigenvalues and normalised eigenfunctions of the Sturm-Liouville problem:

$$
y^{\prime \prime}+\lambda y=0, \quad 0 \leq x \leq \pi, \quad y(0)+y^{\prime}(0)=0, \quad y(\pi)+y^{\prime}(\pi)=0
$$

Answer: $\lambda=-1, y_{-1}=\sqrt{\frac{2}{1-e^{-2 \pi}}} e^{-x} ; \lambda=n^{2}, y_{n}=\sqrt{\frac{2}{\pi\left(n^{2}+1\right)}}(n \cos n x-\sin n x), n=$ $1,2, \ldots$.
[Hint: again, consider three cases, $\lambda=k^{2}>0, \lambda=0$, and $\lambda=-k^{2}$.]

