A second-order linear or quasi-linear ${ }^{1}$ equation in two variables, $x$ and $y$,

$$
\begin{equation*}
a u_{x x}+2 b u_{x y}+c u_{y y}+g\left(x, y, u, u_{x}, u_{y}\right)=0 \tag{1}
\end{equation*}
$$

where $a, b$ and $c$ are functions or $x$ and $y$, can be transformed to new independent variables,

$$
\begin{equation*}
\xi=\phi(x, y), \quad \eta=\psi(x, y) \tag{2}
\end{equation*}
$$

using the following expressions for the derivatives,

$$
\begin{align*}
u_{x} & =u_{\xi} \phi_{x}+u_{\eta} \psi_{x}, \quad u_{y}=u_{\xi} \phi_{y}+u_{\eta} \psi_{y},  \tag{3}\\
u_{x x} & =u_{\xi \xi} \phi_{x}^{2}+2 u_{\xi \eta} \phi_{x} \psi_{x}+u_{\eta \eta} \psi_{x}^{2}+u_{\xi} \phi_{x x}+u_{\eta} \psi_{x x}  \tag{4}\\
u_{x y} & =u_{\xi \xi} \phi_{x} \phi_{y}+u_{\xi \eta}\left(\phi_{x} \psi_{y}+\phi_{y} \psi_{x}\right)+u_{\eta \eta} \psi_{x} \psi_{y}+u_{\xi} \phi_{x y}+u_{\eta} \psi_{x y}  \tag{5}\\
u_{y y} & =u_{\xi \xi} \phi_{y}^{2}+2 u_{\xi \eta} \phi_{y} \psi_{y}+u_{\eta \eta} \psi_{y}^{2}+u_{\xi} \phi_{y y}+u_{\eta} \psi_{y y} . \tag{6}
\end{align*}
$$

Equation (1) thus assumes the form

$$
\begin{equation*}
\alpha u_{\xi \xi}+2 \beta u_{\xi \eta}+\gamma u_{\eta \eta}+\tilde{g}\left(\xi, \eta, u, u_{\xi}, u_{\eta}\right)=0 \tag{7}
\end{equation*}
$$

where the new coefficients are

$$
\begin{align*}
& \alpha=a \phi_{x}^{2}+2 b \phi_{x} \phi_{y}+c \phi_{y}^{2},  \tag{8}\\
& \beta=a \phi_{x} \psi_{x}+b\left(\phi_{x} \psi_{y}+\phi_{y} \psi_{x}\right)+c \phi_{y} \psi_{y},  \tag{9}\\
& \gamma=a \psi_{x}^{2}+2 b \psi_{x} \psi_{y}+c \psi_{y}^{2} . \tag{10}
\end{align*}
$$

They obey the following relation (verify!)

$$
\begin{equation*}
\beta^{2}-\alpha \gamma=\left(b^{2}-a c\right)\left(\phi_{x} \psi_{y}-\phi_{y} \psi_{x}\right)^{2} . \tag{11}
\end{equation*}
$$

Consider an auxiliary quadratic equation,

$$
\begin{equation*}
a \lambda^{2}+2 b \lambda+c=0, \tag{12}
\end{equation*}
$$

with discriminant $\Delta=b^{2}-a c$ and roots $\lambda_{1,2}=\frac{1}{a}(-b \pm \sqrt{\Delta})$. Depending on $\Delta$, the PDE is:

- Hyperbolic, $\Delta>0$. For the normal form we require $\alpha=\gamma=0 ; \xi$ and $\eta$ are found by solving

$$
\begin{equation*}
\phi_{x}-\lambda_{1} \phi_{y}=0, \quad \psi_{x}-\lambda_{2} \psi_{y}=0 \tag{13}
\end{equation*}
$$

and the PDE is written in the normal form as $u_{\xi \eta}+\cdots=0 .{ }^{2}$

- Parabolic, $\Delta=0$. For the normal form we require $\alpha=\beta=0$; the variable $\xi$ is found from

$$
a \phi_{x}+b \phi_{y}=0
$$

and $\eta$ is arbitrary, such that $\gamma \neq 0$ (e.g., $\eta=x$ ). The normal form reads $u_{\eta \eta}+\cdots=0$.

- Elliptic, $\Delta<0$. Equation (12) has complex conjugate roots. Solving the first of equations (13) we find a complex $\xi$, and set $\eta=\xi^{*}$. Regarding these variables as independent, we obtain the PDE in the complex normal form $u_{\xi \eta}+\cdots=0$.
Introducing real variables, $\rho=\frac{\xi+\eta}{2}$ and $\sigma=\frac{\xi-\eta}{2 i}$, we obtain $4 u_{\xi \eta}=u_{\rho \rho}+u_{\sigma \sigma}$, and arrive at the elliptic PDE in the real normal form, $u_{\rho \rho}+u_{\sigma \sigma}+\cdots=0$.

Examples of the hyperbolic, parabolic and elliptic PDE are, respectively, the wave equation, $u_{t t}-c^{2} u_{x x}=0$, the heat equation, $u_{t}-K u_{x x}=0$, and the Laplace equation, $u_{x x}+u_{y y}=0$.

[^0]
## Examples

1. Determine the types of the equations and reduce them to normal forms:

$$
\begin{gathered}
2 u_{x x}+3 u_{x y}+u_{y y}+7 u_{x}+4 u_{y}-2 u=0 \\
x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}-2 y u_{x}+y e^{y / x}=0 .
\end{gathered}
$$

2. Transform the equation into the normal form in each domain where its type is preserved:

$$
u_{x x}+x u_{y y}=0 .
$$

3. Reduce to the normal form and solve subject to the boundary conditions:

$$
y\left(x-y^{2}\right)\left(4 y^{2} u_{x x}-u_{y y}\right)=8 y^{3} u_{x}+\left(5 y^{2}-x\right) u_{y}, \quad u(0, y)=-y^{2}, u_{x}(0, y)=1
$$

## Homework problems

1. Determine the types of the following equations and reduce them to normal forms:
(a) $u_{x x}-2 u_{x y}+u_{y y}+9 u_{x}+9 u_{y}-9 u=0$

Answer: parabolic, $u_{\eta \eta}+18 u_{\xi}+9 u_{\eta}-9 u=0, \quad \xi=x+y, \eta=x$.
(b) $u_{x x}+u_{x y}-2 u_{y y}-3 u_{x}-15 u_{y}+27 x=0$

Answer: hyperbolic, $u_{\xi \eta}-2 u_{\xi}+u_{\eta}+\xi+\eta=0, \quad \xi=x+y, \eta=2 x-y$.
(c) $u_{x x}+2 u_{x y}+5 u_{y y}-32 u=0$

Answer: elliptic, complex $u_{\xi \eta}-2 u=0, \quad \xi=y-(1-2 i) x, \eta=y-(1+2 i) x$; real $u_{\rho \rho}+u_{\sigma \sigma}-8 u=0, \rho=y-x, \sigma=2 x$.
2. Transform the equation into the normal form in each domain where its type is preserved:

$$
u_{x x}+y u_{y y}=0 .
$$

Answers:
$y<0$, hyperbolic, $\xi=x+2 \sqrt{-y}, \eta=x-2 \sqrt{-y}, u_{x x}+y u_{y y}=4 u_{\xi \eta}+\frac{2}{\xi-\eta}\left(u_{\xi}-u_{\eta}\right)=0 ;$ $y>0$, elliptic, $\xi=x+2 i \sqrt{y}, \eta=x-2 i \sqrt{-y}$, and $\rho=x, \sigma=2 \sqrt{y}, u_{\rho \rho}+u_{\sigma \sigma}-\frac{1}{\sigma} u_{\sigma}=0$.
3. Show that $u_{x x}+2 x u_{x y}+x^{2} u_{y y}=0$ is parabolic, and reduces to the normal form:

$$
4(\eta-\xi) u_{\eta \eta}+u_{\eta}-u_{\xi}=0
$$

where $\xi$ is chosen appropriately and $\eta=y+x^{2} / 2$.
4. Reduce $u_{x x}-u_{y y}=16 x y$ to normal form. [Answer: $u_{\xi \eta}=\eta^{2}-\xi^{2}, \xi=y+x, \eta=y-x$.] Show that its general solution is $u=\frac{1}{3} \xi \eta\left(\eta^{2}-\xi^{2}\right)+g(\xi)+h(\eta)$, with arbitrary $g$ and $h$. Find the solution $u(x, y)$ which satisfies $u(0, y)=2 y^{2}, u_{x}(0, y)=0$. [Answer: $u=\frac{8}{3} x^{3} y+2 y^{2}+2 x^{2}$.]
5. Find the general solution of the equation $u_{x x}+4 u_{y y}=8 x y$. Find also the particular solution for which $u(0, y)=y^{2}, u_{x}(0, y)=0$. [Answer: $u=\frac{4}{3} x^{3} y+y^{2}-4 x^{2}$.]
6. Reduce the equation

$$
y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}=\frac{y^{2}}{x} u_{x}+\frac{x^{2}}{y} u_{y}
$$

to the normal form, and hence solve it.
7. Determine the type of the PDE and reduce it to the normal form:

$$
u_{x x}+2 \sin x u_{x y}-\left(\cos ^{2} x-\sin ^{2} x\right) u_{y y}+\cos x u_{y}=0
$$

[Answer: PDE is hyperbolic for $x \neq \pi\left(n+\frac{1}{2}\right), n \in \mathbb{Z}, \quad u_{\xi \eta}+\frac{\xi-\eta}{2\left[4-(\xi-\eta)^{2}\right]}\left(u_{\xi}-u_{\eta}\right)=0$, where $\xi=y+\cos x+\sin x, \eta=y+\cos x-\sin x$.]


[^0]:    ${ }^{1}$ Quasi-linear means that the equation is linear with respect to the 2 nd-order derivatives.
    ${ }^{2}$ To solve equation of the form $\frac{\partial \phi}{\partial x}+p(x, y) \frac{\partial \phi}{\partial y}=0$, write the solution of $\frac{d y}{d x}=p(x, y)$ as $\phi(x, y)=$ const.

