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Positron scattering from Mg atoms

G.F. Gribakin and W.A. King

Abstract: Scattering of low-energy positrons from Mg atoms is considered using many-body theory methods. For the

first time the contribution of the Ps-formation channel is taken into account in addition to the polarization potential of the
atom. At low energies the virtual Ps formation creates a strong attraction in the positron—-atom channel, which produces
positron—-atom bound states in the s and p waves (0.985 and 0.159 eV are the corresponding binding energies), and a low-
lying d-wave resonance at 1 eV. At higher energies this contribution gives rise to an effective positron—atom repulsion.
On the whole, the inclusion of the Ps-formation contribution drastically changes the behaviour of the phase shifts and the
shape of the partial-wave cross sections below 20 eV. Total and inelastic positron-Mg cross sections have been calculated.
It appears that the present theory can explain the very recent results of the first experiment on positron-Mg scattering.

Résumé : A I'aide de méthodes 2 N-corps, nous étudions la diffusion de positrons de basse énergie sur du Mg atomique.
Pour la premiére fois il est tenu compte du canal de formation de positronium (Ps) en plus de celui de polarisation de
I’atome cible. A basse énergie, la formation de Ps virtuel crée un fort champ attractif entre le positron et 1’atome, donnant

des état liés pour le systeme e*-Mg dans les ondes s et p (a respectivement 0,985 et 0,159 eV) ainsi qu'une résonance
dans I'onde 4 4 1.0 eV. A plus haute énergie, I'effet est répulsif. Globalement, I'inclusion de la formation de Ps affecte
dramatiquement le calcul des déphasages et la forme des sections efficaces partielles sous 20 eV. Nous avons calculé les
sections efficaces inélastique et totale de la réaction e* sur Mg. Notre théorie apparait capable d’expliguer les résultats
récents de la premiére expérience effectuée sur cette réaction.

[Traduit par la rédaction]

1. introduction

The interaction of low-energy positrons with atoms has al-
ways been known to be a very interesting process to study.
Although being different to electron scattering only in the
sign of the projectile charge, positron scattering is physi-
cally richer. Namely, it has a specific rearrangement colli-
sion channel corresponding to the formation of positronium
(Ps) that opens at energy I + E;; ({ is the atomic ionization
potential, and £}, = —6.8 eV is the ground-state Ps energy).
For many atoms, e.g., the alkalies, the ionization potential
is smaller than 6.8 eV, which means that the Ps-formation
channel is open at any positron energy, and hence can by no
means be neglected. For atoms with / > 6.8 eV there is an
energy range between 0 and / + E;; where the rearrangement
channel is closed. However, the process of Ps formation still
takes place virtually, and strongly influences the positron—
atom interaction and the elastic scattering. It creates an ad-
ditional attraction between the positron and the atom. Let us
have a closer look at this interaction.

In the static approximation the charge distribution of a
neutral atom produces a completely repulsive short-range
potential for the positron. The polarization of the atom by
the Coulomb field of the positron (dipole polarization domi-
nates this effect at large positron—-atom distances), gives rise
to an attractive polarization potential. This potential has the
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asymptotic behaviour —ae?/2r* (o is the atomic dipole po-
larizability), and is quite similar to that acting between an
atom and an electron, apart from the lack of exchange effects
for positrons. However, the application of the same approx-
imation, which accounts for the polarization of the target,
to electron and positron scattering shows that in the positron
case this approximation is clearly deficient (see, for example,
ref. 1). There is another mechanism that contributes to the
positron—atom interaction. it is virtual Ps formation. The use
of many-body theory methods allows one to describe the
projectile—atom interaction by means of a nonlocal energy-
dependent correlation potential. This inciudes both the effects
of polarization and Ps formation. In ref. 1 it is shown that the
latter contributes about 30% and 20% of the total positron—
atom correlation potential for H and He, respectively.
Drawing the comparison between electrons and positrons
further we must say that until recently only electrons were
thought to be able to form bound states with neutral atoms
(negative ions). The polarization potential is known to play a
very important role in this binding, and a proper account of
electron correlations is crucial for obtaining correct electron
affinities. Although positions are originally “handicapped” by
the static atomic repulsion, they are favoured by the absence
of the Pauli exclusion principle, and by the additional attrac-
tion due to virtual Ps formation. Therefore, it is not entirely
unphysical, although quite surprising, that bound positron—
atom states could exist [2]. Many-body theory calculations
performed in that work showed that if an atom has a large
dipole polarizability, the positron-atom polarization poten-
tial creates a low-lying virtual s level. This level is turned
into a true bound state when the Ps-formation contribution
is added to the correlation potential. For the four atoms con-
sidered (Mg, Zn, Cd, and Hg) the binding energies of 0.87,
0.23, 0.35, and 0.045 eV, respectively, were obtained. De-

spite the considerable effort towards proving or disproving



450

the existence of positron—atom bound states [3-6], Mg, Zn,
Cd, and Hg have not been tried as candidates for binding.
This is also true for many other atoms which, as estimates
show [2], could have bound states with positrons.

Of course, due to the extreme importance of correlation
effects the calculation of a bound positron—atom state is a
difficult theoretical problem. Likewise, it is probably not easy
to discover them experimentally (one suggestion would be to
detect electromagnetic quanta with % © > E from the photo-
attachment process in the positron—atom scattering at energy
E). On the other hand, rather accurate measurements of low-
energy positron scattering are feasible (see, for example, ref.
7). Such experiments could indirectly indicate the presence
or absence of positron—atom bound states.

We would like to remind the reader that bound-state and
scattering problems are in no way independent. For example,
Levinson’s theorem relates the value of the phase shift §;(k)
at zero projectile moments k to the number »; of bound states
in a given partial wave for potential scattering (§;(0} = nny,
if §;(c0) = 0). Another example is the relation between the
scattering length a (8y(k) = —ak for small k) and the position
of a virtual or bound s level: if the scattering length is large
compared to the size of the target, then for ¢ < 0 a virtual
level exists at E = #2/2ma?, and for a > 0, there is a bound
state at E = —h % /2ma’.

Very recently a measurement of the total and Ps-formation
cross section has been performed [8]° for Mg at positron en-
ergies above 1 eV. The main purpose of the present work is
to apply the same many-body theory approach used for the
calculation of the positron-Mg bound state [2], to the scat-
tering of positrons by Mg atoms. A comparison of the present
results with the experimental scattering data would then be
a test of the approach on the whole, and thus, may indirectly
support the existence of positron—atom bound states.

The ionization potential of Mg (I = 7.646 eV) is rather
small, and the Ps-formation threshold is just 0.8 eV from
the atomic ground state. Firstly, this makes the effects of
Ps formation of paramount importance. Secondly, above this
energy the inelastic channel opens. For this reason we use
in this work a slightly different numerical technique than in
ref. 2, which enables us to calculate the correlation poten-
tial above the inelastic thresholds (both that of Ps formation
and atomic excitations), where the correlation potential ac-
quires an imaginary part. This technique also provides the
real and imaginary parts of the phase shifts above the in-
elastic threshold, so that the elastic, inelastic, and total cross
sections can be calculated for each of the positron’s partial
waves (s, p, d, f, and g).

2. Theoretical background

2.1. Basic equations

Within atomic many-body theory the problem of the interac-
tion of a ground-state atom with a positron (or an electron)
can be reduced to the single-particle Dyson equation (see,
for example, ref. 9)

Howp(r) + j Sp(r, P)ye@) & = Eyp(r) 0

2 W.E. Kauppila. Private communication.
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where g is the gquasi-particle wave function describing the
motion of the extra particle of energy E, Hy is the single-
particle Hamiltonian (usually, the Hartree-Fock Hamiltonian
of the atom), and Iz is 2 nonlocal energy-dependent poten-
tial, which describes the correlation interaction between the
extra particle and the atom. It is equal to the self-energy
operator of the single-particle Green’s function, and contains
all the necessary information about the many-body dynamics
of the system. For small projectile energies |E| < I the cor-
relation potential has the well-known long-range asymptotic
behaviour

Zg(r, i")~—7 r—r) 03

Solving (1) at E > 0 one can obtain the scattering phase
shifts and calculate the cross sections. If (1) has a negative
eigenvalue £ = ¢y < 0, a positron-atom bound state (or a
stable negative ion) exists.

It is convenient for numerical applications to solve the
Dyson equation using a representation of eigenfunctions @.(r)
of the Hartree—Fock Hamiltonian Hy,

HyQe(r) = e@c(r) 3

rather than in the coordinate representation (1). Due to the
static repulsion produced by the atomic ground state, the
spectrum of (3) is purely continuous for positrons. For atoms
with closed shells Hj is spherically symmetric, and without
any additional approximations ¢.(r) with definite orbital an-
gular momentum ! can be chosen. The latter is also true fer
g (r), since the correlation interaction Zz(r, »’) with a spher-
ically symmetric target does not violate the conservation of
the projectile angular momentum. Equation (1) can be refor-
mulated for bound-state problems as [10]

eCe + / (€lZEle)Cs de = eoCe,  E =g @)
where
Ce= [ etowor) ar )

are the projections of the bound-state wave function wyy(7),
and (e|Zg|¢') is the matrix element of the correlation potential
in a given partial wave:

(e|Zg]e’) = / G PEE(, PYo () dr dF ©)

We should mention that due to the energy dependence of
Zg (4) must be solved by iterations, i.e., using the negative
eigenvalue ¢ as the energy to calculate Xg at, and repeating
this procedure until ¢g = £ is achieved.

The self-energy matrix (e[Zzle’) can also be used to cal-
culate the phase shifts directly. This requires the following
matrix equation [11] to be solved:

” ¥/
<€|2E!f |Z |€ j<e|ZE|€ <€ |ZE|€> de” %)

The phase shift is then obtained as
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Fig. 1. The main contribution to the positron—atom polarization potential {¢/|=8%%|¢). The thick lines describe
positron states, the thin lines are electron and hole states, and the double line corresponds to the electron state v,

calculated in the field of the hole n.

a b C
§1(k) = 8 (k) + AS;(k) (8)
A8;(k) = tan™ [~n(e[Ee]e)] ©)

where SIHF(k) is the Hartree—Fock phases shift, Ag;(k) is the
additional phase shift due to the correlation potential, and
e = k?/2 is the projectile energy (atomic units are used
throughout). If the correlation potential Zz(r, #) is not strong,
the additional phase shift is small and can be found by pertur-
bations as A8;(k) ~ —n{e|Z|e) (in this case £ ~ %z, which
corresponds to the distorted-wave Born approximation ap-
plied to Zg(r, ¥), when the second term on the right-hand
side of (7) can be neglected). It becomes especially trans-
parent in this limit that if the diagonal matrix element of
the correlation potential is negative, the correlation potential
increases the phase shift, which means effective attraction,
and if (e/Zc|e) > O, the correlation potential is effectively
repulsive.

When the energy E is greater than the lowest of the
inelastic thresholds (either the Ps-formation threshold 7 —
6.8 eV, or the atomic excitation threshold), the correlation
potential £z acquires an imaginary part, and the phase shifts
obtained from (7)—(9) become complex: §; = & +i&] (& > 0,
as follows from the unitarity condition). The elastic, inelastic,
and total scattering cross sections are obtained by summing
over the partial waves:

0
oy = g 3@+ 1) e (sin® 8 + sink® &) (10)
=0
T >, —46"
Sin = 13 Do QI+ D1 —e %) (11)
=0

(o ¢
Gtot = Ol + Oip = i—? Z Q@I+ D - e 2% cos 28) 12)
1=0

If the Ps-formation threshold is lower than the atomic ex-
citation threshold (for Mg they are 0.843 and 4.35 eV, re-
spectively), the inelastic cross section for positron energies
between the thresholds (in the Ore gap) is equal to the Ps-
formation cross section. At higher energies the present for-
malism cannot distinguish between different inelastic chan-
nels, and o;, is the reaction cross section.

Provided the correlation potential is known exactly, the ap-
proach outlined above is exact. Atomic properties that can be
calculated include the binding energies, positions of atomic
thresholds, cross sections, etc. Thus, all the complexity of
the many-body dynamics of the system is incorporated in
%r. However, in practice one has to use some approxima-
tions to calculate the correlation interaction. We address this
question in the next section.

2.2. Correlation potential

Obviously, the most important point in applying many-body
theory is the calculation of {(¢/|Zg|e). Theoretically, the self-
energy can be presented as an infinite perturbation theory se-
ries in powers of the residual electron—electron and positron—
electron Coulomb interaction. The easiest way of describing
the items of this series is by using many-body theory dia-
grams (see, for example, refs. 9 or 12, for atomic applica-
tions).

Numerous calculations show (see, e.g., an early work by
Kelly [13], or a recent paper {14} and references therein)
that even the lowest order terms of the series (second-order
diagrams) give a reasonable approximation for the correla-
tion potential Lz, at least in the electron—atom case (Fig.
1b is the only second-order diagram for positron—atom in-
teraction). This approximation yields the correct asymptotic
behaviour (2), although a is different from the true atomic
polarizability. A much more accurate approximation for Zg
is achieved by summing certain subseries of higher order
diagrams [12, 15, 16]. These diagrams are still of second
order with respect to the projectile-target interaction; how-
ever, they include a large amount of electron correlations
inside the target (Figs. 1¢, 14, and Fig. 2).

For example, the sum of the diagrams in the right-hand side
of the diagrammatic equation (Fig. 1) can be included within
the second-order diagram Fig. 1a by calculating the wave
function of the excited electron v, in the field of the hole in
the orbital n coupled into a certain total angular momentum
L [12]. In this case L is equal to the angular momentum
transferred through the Coulomb interaction. Analytically, the
contribution of this diagram to (¢/|Zg|e) is given by

(ell):%‘k) - Z <€EinIV|V2V1><V1V2|V|n5> a3

iy, E—evi —evy +e,+18
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Fig. 2. Third-order corrections to the positron—atom polarization potential.

ST

Fig. 3. The diagrams contributing to the Ps-formation potential (¢'|ZE5|e)

. The shaded rect-

angle on the right-hand side of the diagrammatic equation describes the propagation of the

correlated electron—positron pair.

£ L - g’
E % E + i % % E + .=
n n

where V is the Coulomb interaction, the summation is car-
ried over the intermediate positron, excited electron, and hole
states, vi, vz, and n, respectively, and i3 in the denominator
defines the integration path when the integral has a pole (this
pole emerges in (13), if the projectile energy E is above the
first excitation threshold of the target).

There are other important higher order diagrams (Fig. 2)
that can be taken into account either approximately [16],
as factors to multiply (13), or exactly [15], by using the
Feynman diagram technique to calculate the renormalized
polarization operator. On the whole, this approach provides
accurate results for electron—atom scattering 11, 12, 14],
negative-ion bound states [10, 14], and atomic energy levels
[15]. For example, the calculated energy of the low-lying p-
wave resonance in electron scattering from Mg?: 0.16 eV, is
in good agreement with experimental values: 0.15 eV [17],
and 0.16 + 0.03 eV [18].

When applied to positron—atom scattering, the approxima-
tion described above for g (we will call it the polarization
potential 3B, since it essentially accounts for the interaction
due to the polarization of the target by the projectile) proved
to be insufficient [19]. There it was shown that the possibility
of Ps formation influences the positron—atom interaction even
if the positron energy is below the Ps-formation threshold
(virtual Ps formation). From the diagrammatic point of view
this means that there is a certain sequence of diagrams (Fig.
3) that gives a sizeable contribution to Xy in the positron—
atom case [1, 19]. Indeed, it is easy to verify that all diagrams
on the left-hand side of the diagrammatic equation (Fig. 3)
have the same sign, whereas in the electron—atom case this
series is sign-alternating and apparently gives a small total.
We call this contribution the Ps-formation potential, ZES. The
total positron—atom correlation potential is then calculated as
the sum

3 A.A. Gribakina and G.F. Gribakin. Unpublished.

2 2

n

g =20 + 2B (14)

In ref. 1 we suggested an approximate way to calculate ng:

' (€n| V¥ ) <‘*’1s x|VIne) &K
gl =3 [ ¢ (15)
Z E+e,— Els ) +id (2m)?

where V = —1/|r — ry| is the electron—positron Coulomb
interaction, Wi g = @15(r —r1) eX® is the wave function of
the Ps atom in the ground state, moving with momentum K,
Eis + K%/2M is the energy of this state, M is the mass of
the Ps atom, n is the hole state, and ¢, is its energy in the
Hartree—Fock approximation. The tilde above ¥  indicates
that this wave function is orthogonal to the single-electron
states of the atomic ground state:

|\i‘1s,K) =(1 _En|n><n|)[\}£155K>

This is necessary since the shaded block in the right-hand
side of the diagrammatic equation in Fig. 3 is constructed
from the excited electron states. This shaded block describes
the propagation of the correlated electron—positron pair (Ps).
Obviously, approximation (15) neglects (virtual) Ps formation
into excited states. Simple physical .arguments and compar-
ison with other numerical calculations show that this approxi-
mation can be justified for small- and medium-radius targets
f1]. In accordance with that reasoning, the close-coupling
caiculations of Hewitt et al. [20] show a progressive increase
of the excited Ps formation in the alkali atoms, Li, Na, and
K, with the increase of atomic radius. Furthermore, since
the radius of Mg is smaller than that of Li, the excited Ps
formation should be of less importance.

By examining (15) one can get a clear insight into the
role of Ps formation in positron—atom scattering. The matrix
element (¥ g|V|ne) is the lowest order amplitude of the
formation of Ps(1s) by a positron of energy e and an elec-
tron from the atomic orbital n. Since low-energy positrons
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do not penetrate far into the atom, this amplitude is max-
imal if » is the valence orbital. The outer valence orbital also
gives the smallest energy difference Ej; —e, ~ I — 6.8 eV
in the denominator (the binding energy of the outer electron
len| is the Hartree-Fock value of the ionization potential).
Thus, the sum over n is dominated by the valence orbital.
It is evident that for E < —¢, + Ey; ~ I — 6.8 eV the diag-
onal matrix element (¢|£5¥e) is negative. This means that the
Ps-formation contribution in (14) corresponds to additional
attraction. For £ > I — 6.8 eV the integral over X in (15) has
a pole, and the integrand is positive for small K, and neg-
ative for large K. In this case the Ps-formation contribution
to Lz may become positive, thus acting as repulsion in the
positron—-atom channel. This situation is probably realized in
positron collisions with alkali atoms (I < 6.8 eV). Indeed,
the close-coupling calculation of Hewitt et al. [20] shows
that the coupling to the Ps-formation channels reduces the ns
— np excitation cross sections for Li, Na, and K by almost
50% at their maxima, suppresses the elastic cross section for
K below 7 eV, and even reduces the total scattering cross
section for K. These effects are also emphasized by compar-
ison with experimental results [21]. It is worth noting that
the presence of the pole in the integration over K in (15)
gives rise to the imaginary part:

Im (|Z}le) o [(F15,V |me)l?

If £ is taken into account to first order (distorted wave Born
approximation), this imaginary part is proportional to the Ps-
formation cross section (the optical theorem).

Using (14) together with approximation (15) we calcu-
lated positron scattering from H and He [1], and obtained
good agreement with the precise phase shifts from varia-
tional calculations for H, and with experimental data for He.
It was also shown that the inclusion of X radically improves
the agreement with experimental data for positron—noble-gas-
atom scattering and annihilation.*

The calculations of low-energy positron scattering from
Ne, Ar, Kr, and Xe* produced the scattering lengths of —0.43,
-3.9, -9.1, and ~ —100 au, respectively. This indicates that
for Ar, Kr, and Xe the positron—atom correlation potential
creates virtual s levels at 1, 0.16, and 0.001 eV. Thus, it
looked quite natural that when we considered the interaction
of positrons with some other atoms that had larger dipole
polarizabilities and smaller ionization potentials (Mg, Zn, Cd,
and Hg), s-wave bound states were obtained {2]. In all cases
the atomic ionization potentials are greater than 6.8 eV, and
the attractive contribution of X to the correlation potential
is very large.

3. Numerical calculations and resuits

The numerical calculations were performed using original
codes and those based on ref. 22 in the following way.
e Calculation of the Mg ground state in the Hartree—Fock
approximation.
e Calculation of the sets of positron states ¢ (/ = 0—4) and
v; (I = 0-5) in the static field of the ground-state atom,

4 V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, and W.A. King.
Manuscript in preparation.
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and excited electron states v, ({ = 0, 1, 2} in the HF
potential of Mg* 3s (only excitations from the valence
3s subshell of Mg have been taken into account).

e Calculation of the Coulomb matrix elements (v;v,|V |ne)
and (¥, x|V |ne).

e The self-energy matrix (¢[Xz|€¢’), calculated by summa-
tion over the intermediate states at different £ ((13)-
(15)) is used to solve the bound-state problem (4), and
to calculate the phase shifts from (7)—(9). ‘

e Using the phase shifts the cross sections are obtained
from (10)-(12).

We should note that to calculate =8 from (13) and to
solve (4) and (7) the positron and electron continuous spectra
were discretized, and all integrations over the continua were
replaced by summation over sets of states equidistant in mo-
mentum k. The following grids were used to ensure smooth
variation of the integrands and convergence of sums. Positron
states ¢: Ak = 0.03, 59 points; v;: 25 points with Ak = 0.02
or 0.03, spanning small-energy region, and 25 states with
Ak = 0.1 at higher energies. Electron excited states v,: four
discrete nf excitations, and 25 continuous spectrum states
with Ak =0.1.

If approximation (13) is used for B, the asymptotic be-
haviour (2) corresponds to the Hartree—Fock dipole polariz-
ability of the atom. For Mg the latter is oy ~ 100 au?, which
considerably overestimates the accepted polarizability of Mg,
o = 72 au [23]. The accuracy of the polarization potential
(13) can be improved by including the third-order diagrams
(Fig. 2), thus taking double-electron excitations into account.
The latter are especially important for the dipole excitations
of the atom, which give a dominant contribution to }3291 (see
Table 1). In this work we included the diagrams in Fig. 2
into ):%"‘ by multiplying the dipole contribution in (13) by
the factor

1 - 1 Gs3plVII3s3p) | 803 (16)
3 €3p — €35

where (3s3p||{V|{|3s3p) is the reduced dipole Coulomb matrix
element of the 352 — 3p? excitation. This approximation for
the third-order diagrams is in fact quite accurate because the
3s — 3p dipole excitation gives about 90% of the dipole
polarizability of Mg. The corrected polarizability o ~ 82 au
is close to the value 81.16 au obtained in the polarized orbital
approximation [24].

The calculation of (‘i‘ls’K|V|ne) and (¢[z2(¢) from (15)
was done by expanding the Ps wave function ¥, x in terms
of spherical harmonics with respect to the nucleus. Angular
momenta ! < 7 were included. Integration over the angular
variables was performed analytically, and that over radii and
K, numerically, the continuous spectrum of K represented by
63 points with AK = 0.05. We used the experimental energy
€35 = —I in (15) to describe the position of the Ps-formation
threshold correctly. This is essential for the calculation of
(e|zBs|¢’) in Mg since the difference e3; — Ejs = —0.843 eV
is the denominator in quite small.

5 This approximation is equivalent to the RPA description of the
excited atom, which corresponds to the summation of diagrams
with electron—-hole interactions (Figs lc, 1d, and Fig. 2, etc.).
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Table 1. Contributions of various diagrams to the self-energy matrix.
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(elZe)
Monopole Dipole Quadrupole (elzlle)

l kK Re Em Re Im Re Im Re Im

0 0.2 —-0.0061 0.0000 -0.2095 0.0000 ~0.0336 0.0000 -1.2628 0.0000
0 0.8 -0.0335 -0.0198 -0.1795 -0.0185 -0.0293 -0.0005 -0.0028 -0.0439
1 0.2 -0.0008 0.0000 -0.0928 0.0000 -0.0114 0.0000 -0.2322 0.0000
1 0.8 =-0.0201 -0.0099 -0.1688 -0.0717 -0.0352 -0.0014 0.2368 -0.0691
2 0.2 -3 x 107° 0.0000 -0.0272 0.0000 -0.0019 0.0000 -0.0153 0.6000
2 0.8 -0.0070 -0.0027 -0.1290 -0.0836 -0.0363 -0.0098 0.2072 -0.1601
3 0.2 -5 x 107 0.0000 -0.0098 0.0000 -0.0003 0.0000 -0.0007 0.6000
3 0.8 -0.0020 -0.0005 -0.0956 -0.0593 -0.0225 -0.0094 0.1067 -0.1261
4 0.2 Not calc. Not calc. -0.0045 0.0000 Not calc. Not calc. -3 x 1¢7° 0.0000
4 0.8 Not calc. Not calc. -0.0678 -0.0300 Not calc. Not cale. 0.0417 -0.0661

“The values of the positron momentum k = 0.2, 0.8 correspond to the positron energies of 0.544 and 8.708 eV, respectively.

The results of our calculations are presented in Figs. 4—
6 and Tables 1 and 2. To get a better understanding of the
role of correlation effects, and to appreciate the effect of Ps
formation on positron-Mg scattering, we take into account
the polarization potential alone first, and then add the Ps-
formation potential.

Table 1 allows one to compare the contributions of dif-
ferent atomic excitations to the polarization potential for dif-
ferent projectile orbital momental /. The two values of the
positron momenta are chosen so that for the first one (k = 0.2)
elastic scattering is the only open channel (ImEZg = 0),
whereas the second value (k = 0.8) lies above both the
Ps-formation and the atomic excitation and (or) ionization
thresholds (Imzfs, ImzB! # 0). It is clear that the dipole
atomic excitations dominate in B!, For example, they give
84% of Z%"‘ for I = 0, k = 0.2, while the monopole and
guadrupole excitations account for about 2 and 14% of the
polarization potential. We estimate that the neglect of higher
angular momentum excitations of the atom corresponds to a
few per cent accuracy of 2. In higher positron partial waves
the dominance of the dipole contribution in B becomes
even more prominent at small energies. It is well known that
the presence of the long-range —a,/2r* potential changes the
low-energy expansion of the scattering phase shifts [25]:

mxk2

8o(k) = —ak — —— (17)

2
ok I>1 (18)

8(k) = QI=DRI+ D2 +3) =

The anomalous quadratic term can be obtained in the Born
approximation. Therefore, the polarization potential ma-
trix element has the low-energy behaviour: (e[ZPe) ~
—ak? /{21 — 1)(21 + 1)(2[ + 3)], [ > 1. The range of validity
of (18) increases with /, e.g., for the f-wave phase shift pro-

duced by 25 (18) holds up to k ~ 0.6 with o ~ 80 (see Fig.
4). Thus, we can check the accuracy of the numerically calcu-
lated polarization potential in the asymptotic region without
actually probing the behaviour of the nonlocal radial poten-
tial (2).

Above the first atomic excitation threshold (k > 0.55) an
imaginary part emerges in ):%01. On the whole, it is also domi-
nated by the dipole excitations. On the other hand, the relative
importance of the quadrupole contribution in )J,}"l increases at
larger energies, which is more noticeable for higher positron
angular momenta.

The momentum dependence of the phase shifts obtained
from 2B* (Fig. 4, open symbols) shows that the positron-Mg
polarization potential alone is quite strong, since the phase
shifts are very different from those produced by the static
atomic potential. Gradually, as the energy increases, they tend
to follow the static phase shifts, although even at the right-
most boundary (£ = 39 eV) the effect of the polarization
potential on the phase shifts is quite prominent.

The s phase shift varies very rapidly near the origin, and
this does not allow a precise determination of the scattering
length. Its estimated value a ~ —60 (the same scattering
length was obtained for T8 in ref. 2) corresponds to a vir-
tual level at 4 meV. Just as in our previous calculation the
polarization potential is not strong enough to form a bound
positron—atom state. This is in disagreement with the results
of Szmytkowsky [26] who obtained positron-Mg binding of
0.02 eV by calculating the positron—atom potential using the
polarized orbital approximation. The polarized-orbital poten-
tial can be obtained from our X}, if the adiabatic approxi-
mation for the projectile is used. The latter essentially cor-
responds to the neglect of E and ey, in the denominator
of (13) and analogous approximations in the diagrams of
Fig. 2. This approximation makes the polarization potential
local and energy-independent, and clearly overestimates g
at small E, since the absolute values of the energy denomi-
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Fig. 4. The positron-Mg s, p, d, and f scattering phase shifts. Open symbols, only the polarization potential
taken into account: X = Z%"] {(inelastic threshold at £ = 0.55). Solid symbols, with the Ps-formation contri-
bution added to the correlation potential: £ = 2%"1 + zgs (inelastic threshold at & = 0.25). Squares, Re §;;
triangles, Im §,; and broken-line curve, Hartree—Fock phase shifts.
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nators are underestimated by the neglect of the intermediate
positron energies (for example, ey, in (13)).

Above k = (.55 the phase shifts acquire quite a substantial
imaginary part: Im A8; ~ Re A§; at k ~ 1, which means large
atomic excitation and (or) ionization probabilities (Fig. 4,
open triangles). These processes produce a clear onset in the
total scattering cross section (Fig. 6a). Otherwise, the cross
section is monotonically decreasing, in qualitative agreement
with the polarized-orbital calculation [26]. One can see from
Fig. 6a that five partial waves ({ = 0—4) are by no means
enough to get convergence of the cross section at k> 1.
However, the addition of the higher partial waves would not

0.5 1 1.5

momentum (au)

change the overall shape of the cross section. Instead, it will
smoothly lift the high-energy tail of oy above the one shown
in Fig. 6a.

The addition of the Ps-formation potential :f* produces
drastic changes in the whole picture of positron-Mg scat-
tering. These changes are caused by the large magnitude of
£ (see Table 1). Apparently, for small positron energies the
additional attraction due to Xf¥ is comparable in magnitude
with 2Bl The strength of the nonlocal potential Xz can be
better characterized by the quantity —Tr(GX), which enters

the necessary condition for a nonlocal potential to create a
bound state [14]:
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Fig. 5. The wave functions of the bound positron-Mg states.
Continuous line, s state (ep = —0.985 eV); broken line, p state
(e = —0.159 eV).
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where G = (E — Hg)™! is the Green function of the projectile
in the static field of the target, and both G and X in (19) are
taken at zero energy. The polarization and Ps formation con-
tribute additively to Xz and to the left-hand side of criterion
(19). For the s wave these contributions are 1.16 and 3.02,
respectively. These values reveal several things. First, X!
alone satisfies (19). However, this is only a necessary con-
dition, and we know that there is no binding in 3%, yet this
contribution produces an “almost bound” state: a low-lying
virtual level. Second, the strength of ):gs at E = 0 for the s
wave is even greater than that of 3g°. Third, the large total
value —Tr(GX) = 4.18 makes the existence of the s bound
state almost certain. Indeed, (4) solved with Xz from (14)
yields g = —0.985 eV. The corresponding positron wave
function is shown in Fig. 5. The above value of ¢; is rather
close to the one we obtained earlier [2]: ¢ = —0.87 eV.
This difference is mainly due to the different methods of
calculating X3,

When applied to the p-wave correlation potential, the
values of —Tr(GZ) = 0.54 and 1.02 for 2 and I are ob-
tained, respectively. Hence, there is certainly no p binding
if only the polarization potential is included. For the total
correlation potential (—Tr(GZ) = 1.56) (4) yields a negative
value ¢g = —0.159 eV (see the positron radial wave function
in Fig. 5). The p binding energy was not calculated in ref. 2,
although it has been checked, the approximation used there
also produces p binding. Of course, the smaller magnitude
of the p binding energy makes our prediction less reliable.

The phase shifts produced by the total correlation poten-
tial 22%' + 3¢ are shown in Fig. 4 by solid symbols. Despite
a considerable difference between the s, p, d, and f phase
shifts, they all have a common feature: as the positton mo-
mentum increases above some value (k ~ 1) the phase shifts
produced by the total correlation potential become close to
those given by the polarization potential alone. Note that this

Can. J. Phys. Vol. 74, 1996

is true for both the real and the imaginary parts of §;(k). This
means that at larger energies the Ps-formation potential be-
comes small in comparison with the polarization potential
(the larger the orbital angular momentum, the larger is the
k value where this happens). In fact, we used this property
when plotting the phase shifts to overcome the usual mod =
ambiguity. Examining the deviation of Re §,(k) produced by
3pol + 3B from that due to ZP° towards smaller values of k,
one can see that in that energy range X}* acts as a repulsion,
since its inclusion into the correlation potential brings the
real parts of the phase shifts closer to the HF values.

At even smaller energies (k < 0.5) the behaviour of the s
and p phase shifts, the d phase shift, and the f phase shift
are very different. This difference reflects the diversity of
physical effects produced by the now strong attractive Ps-
formation potential (it is easy to check that below the Ps-
formation threshold, at k < 0.25, the diagonal matrix element
of 2 from (15) is strictly negative, which means attraction).
The way the s- and p-wave phase shifts approach zero reflects
the existence of bound states. Thus, the positive scattering
length of a & 4.2 gives the following estimate of the s binding
energy: |eg| ~ £2/2ma’ ~ 0.8 eV, which is close to that ob-
tained from (4) (|ep| = 0.985 eV). The positron-atom attrac-
tion in the d wave is not strong enough to form a bound
state. However, it produces a resonance at £ ~ 0.27, where
the phase shift passes through —= /2. For higher partial waves
(f, g) the effect of the Ps-formation potential on the real part
of the phase shift is probably not as dramatic as for [ = 0,
1, and 2. On the other hand, Zf¥ produces very large imagi-
nary phase shifts. Thus, its maximal value for the f wave is
Imé; = 0.9 at k = 0.53, and for the g wave, Imé4 = 0.35 at
k=09.

We would like to mention that the observed behaviour of
the s, p, and d phase shift clearly contradicts Levinson’s the-
orem. If the theorem had been fulfilled, the s and p phase
shifts would have reached = values, and the d phase shift
would have gone to zero at & = 0. This violation should not
be considered as a worry, since the theorem itself has been
proven for potential scattering by an energy-independent po-
tential. Nevertheless, in the electron—atom problems where
negative-ion bound states are present, Levinson’s theorem
always seemed to be fulfilled [10, 16], probably because the
energy dependence of X2 is much weaker than that of 5.
Apart from the very strong energy dependence of £, which
is attractive at small energies and repulsive at higher energy,
the existence of the Ps bound state itself is an additional
complication of the standard conditions for Levinson’s the-
orem.

Another effect due to the Ps-formation channel is related
to the behaviour of the phase shifts in the vicinity of the
atomic excitation threshold (k = 0.55). It appears that for
the s and p waves the increase of Im§; corresponding to
the atomic excitation processes becomes somewhat greater
when the Ps-formation potential is included. In the d wave,
the corresponding onset has about the same magnitude as
that obtained from E%"‘, whereas for the f (and g) wave the
behaviour of Imd; above k = 0.55 hardly reveals any channel-
opening effects at all. The latter means that the inclusion of
the Ps-formation channel in the calculation suppresses the
atomic excitation cross section near the threshold. Accord-
ingly, there is no visible feature in the total cross section
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Fig. 6. The positron-Mg total scattering cross sections: (@) when only the polarization potential is taken into
account; (b) when the Ps-formation contribution is added. The partial cross sections: s, thin continuous line; p,
broken line; d, dot-dash curve; f, long dash — short dash; and g, dotted-line curve. The thick continuous line is

the total cross section.
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at k = 0.55 when the Ps formation is taken into account
(Fig. 6b), contrary to the results from bare 22 (Fig. 65). A
suppression of atomic excitation due to Ps channels was ob-
served for ns — np excitations of Li, Na, and K by positrons
in the calculations of Hewitt et al. [21].

On the whole, the total cross section obtained from
2o + 2P has very little in commeon with that from just the
polarization potential (Fig. 6, Table 2). The former has much
greater magnitude, except in the low-energy limit, where the

small scattering length a ~ 4.2 from 2B + =F* produces
6 = 4na? ~ 220 au. The inclusion of Ps formation produces
a broad cross section maximum that is dominated by the s,
D, d, and f partial waves, and has a sharper peak due to the
d-wave resonance. Despite the very different centrifugal po-
tential acting in these partial waves, the corresponding cross
sections look relatively similar. This may be explained by
the fact that the Ps-formation potential is probably strongest
at r ~ ry + rps ~ 5, where ry ~ 3 [23] and rps ~ 2 are the
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Table 2. Total and inelastic cross sections for positron scattering from Mg atoms.

k (au) Energy (V) 6, (10 cm® 6, (107¢ cm®)

G, (107 cm?)

0.05 0.034 1335.0 96.5
0.08 0.087 471.6 127.1
0.11 0.165 230.1 153.7
0.14 0.267 141.2 169.6
0.17 0.363 1604 176.3
0.20 0.544 78.0 184.2
0.23 0.719 63.8 216.6
0.26 0.919 53.0 304.6
0.29 1.144 44.7 304.4
0.32 1.393 38.6 248.0
0.35 1.666 ) 343 2214
0.38 1.964 30.6 208.8
0.41 2.286 27.7 196.7
0.44 2.633 25.7 183.0
0.47 3.004 243 167.3
0.50 3.400 230 151.3
0.53 3.820 21.7 134.6
0.56 4.265 21.6 116.7
0.59 4734 23.0 102.4
0.62 5.229 24.6 91.4
0.65 5.746 26.0 82.0
0.68 6.289 26.6 73.5
0.71 6.856 26.6 66.2
0.74 7.447 26.6 59.0
0.77 8.063 26.0 54.3
0.80 8.704 25.7 48.9
0.83 9.369 253 44.9
0.86 10.059 24.7 40.9
0.89 10.773 233 372

0.0°
0.0
0.0
0.0
0.0
0.0
0.0
2.1
25.6
32.0
359
40.8
44.9
46.3
45.9
44.8
432
42.2
410
39.2
373
353
33.1
30.9
28.8
26.8
25.0
233
21.6

“Only the polarization potential £ taken into account.
"With the Ps-formation potential IF* added to T}

“The Ps-formation threshold is at 0.843 eV, and the next (3s — 3p 'P atomic excitation)
threshold is at 4.19 eV (this Hartree—Fock value is close to the experimental 4.35 eV).

radii of Mg and Ps, respectively. Thus, the centrifugal bar-
rier does not prevent the positron—atom interaction via the
Ps-formation potential at k ~ [/r ~ 0.2, 0.4, 0.6 for { = 1,
2, 3. Indeed, these k values roughly correspond to those at
which the corresponding partial cross sections peak (Fig. 6b).
Of course, the polarization potential still dominates the long-
range asymptotic behaviour and determines the low-energy
expansion of the phase shifts (18). However, its magnitude
at r ~ 5 (0/2r* ~ 0.07 au is probably just comparable to that
of . It is clear from Fig. 6b that the sum over the partial
waves for k = 0.7 is by no means saturated by the first five
I. The contributions of ! > 4 are important to get the correct
magnitude of the cross section, although they will not change
the character of the cross section.

Also given in Table 2 is the reaction cross section Gj,.
Below E = 4.19 eV it is the Ps-formation cross section. It
peaks around E = 3 ¢V, and at E = 3.82 ¢V is built of 3, 21,
49, and 27% of the p, d, f, and g partial wave contributions
(the s wave gives only about 0.04% of the total). The reac-
tion cross section does not show any distinct features around
the atomic excitation threshold, and towards larger energies

(above 14 eV) becomes smaller than the excitation + ioniza-
tion cross section obtained from 8. This again demonstrates
the suppression of atomic excitations produced by the open
Ps-formation channel.

4. Summary and conclusions

Low-energy positron scattering from Mg atoms has been cal-
culated using many-body theory methods. This approach al-
lowed us to calculate the effective interaction due to the po-
larization of the atom and due to the Ps formation separately,
and to study the effect of Ps formation on the positron—atom
interaction. We believe that for magnesium Ps formation is
by far the largest, completely changing the character of the
low-energy scattering cross sections. Qualitative agreement
with the experimental data [8]? seem to support this conclu-
sion. This may be viewed as an indirect indication of the
reality of positron—atom bound states obtained in the many-
body calculations of Dzuba et al. [2].

The present calculation technique can be routinely ex-
tended to study the effect of Ps formation on positron scat-
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tering from noble-gas atoms, where accurate experimental
data for both the total and the Ps-formation cross sections
exists. We also believe that Ps formation must have a large
effect on positron scattering from other atoms of the second
column of the periodic system (Zn, Cd, Hg), which are sup-
posed to form bound states with positrons.
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