
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 339–355 PII: S0953-4075(02)29024-0

Convergence of partial-wave expansions for energies,
scattering amplitudes and positron annihilation rates

G F Gribakin and J Ludlow

Department of Applied Mathematics and Theoretical Physics, The Queen’s University of Belfast,
Belfast BT7 1NN, UK

E-mail: g.gribakin@am.qub.ac.uk and j.ludlow@am.qub.ac.uk

Received 18 September 2001
Published 9 January 2002
Online at stacks.iop.org/JPhysB/35/339

Abstract
We use many-body theory to find the asymptotic behaviour of second-order
correlation corrections to the energies and positron annihilation rates in many-
electron systems with respect to the angular momenta l of the single-particle
orbitals included. The energy corrections decrease as 1/(l + 1

2 )
4, in agreement

with the result of Schwartz, whereas the positron annihilation rate has a slower
1/(l+ 1

2 )
2 convergence rate. We illustrate these results by numerical calculations

of the energies of Ne and Kr and by examining results from extensive
configuration-interaction calculations of PsH binding and annihilation.

1. Introduction

Calculations of atomic properties usually begin with a central-field approximation
(e.g. Hartree–Fock), which enables one to generate a set of single-particle orbitals of the
ground and excited atomic states. These orbitals are characterized by their angular momenta
(s, p, d, etc). They can then be used to go beyond the mean-field approximation and include
correlation effects. This can be done in various ways, e.g. through a configuration-interaction
(CI) expansion of the total wavefunction, or by using many-body perturbation theory to evaluate
the second-order and higher corrections to the quantities of interest. In doing so it is important
to achieve convergence with respect to the number of different angular momenta (partial
waves), as well as the number of single-particle orbitals in each partial wave included in the
CI expansion or perturbation-theory sums.

A major difficulty here is to account for the continuous spectrum of the energies. There are
a number of basis sets that replace the continuum by a discrete set of states which is effectively
complete. Some common examples are Laguerre, B-spline and Gaussian bases (see, e.g., Bray
and Stelbovics 1992, Sapirstein and Johnson 1996, Moncrieff and Wilson 1999, respectively).
However, there is still a question of convergence with respect to the angular momentum of
the single-particle orbitals included. This question was first studied in a seminal work by
Schwartz (1962). He showed that the contribution of the electron orbitals with the angular
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momentum l to the second-order correction to the ground state energy of a two-electron atom
drops as �E

(l)
2 � −(45/256)(l + 1

2 )
−4 + O((l + 1

2 )
−6), if one starts from the independent-

electron (hydrogen-like) approximation. The problem was later investigated in a number of
works both analytically and numerically (Byron and Joachain 1967, Carroll and Silverstone
1979, Schmidt and Hirschhausen 1983, Hill 1985, Salomonson and Öster 1989, Kutzelnigg and
Morgan 1992). In particular, they looked at convergence of angular-momentum expansions
for excited two-electron states, and in nonperturbative CI calculations.

In this work we generalize the above result to obtain an analytic expression for the
asymptotic behaviour of the second-order energy correlation correction to the Hartree–Fock
ground state of a closed-shell atom. Using atomic many-body theory we also obtain the
asymptotic formulae for the correlation corrections to the single-particle energies and scattering
amplitudes in many-electron atoms, and investigate the convergence of the positron–atom
annihilation rates. The latter shows a slower (l + 1

2 )
−2 decrease.

We use a B-spline Hartree–Fock basis set to check the validity of our results numerically.
We also use the data of Mitroy et al (2001) to investigate the difference in the convergence
rate of the energy and annihilation rate of a system containing positrons, PsH.

2. Asymptotic formula for the total energy

Our derivation of the asymptotic formula for the second-order correction to the energy of
a many-electron atom is based on the method of Schwartz (1962, 1963). To make this
development more transparent, let us first show how the calculation is done for a He-like
1s2 system.

2.1. Ground state two-electron atoms

For a two-electron atom or ion with nuclear charge Z, one can treat the Coulomb repulsion
between the electrons as a perturbation, and thus obtain the well known expansion for the
ground state energy (e.g. Landau and Lifshitz 1977)

E = −Z2 + 5
8Z + �E2 + · · · , (1)

where

�E2 =
∑
α,β

|〈α, β|V |1s, 1s〉|2
2ε1s − εα − εβ

(2)

is the second-order correction to the energy (we use atomic units). The sum above includes
all excited states and α and β are the hydrogen-like states nlm with energies εα and εβ
(n here describes both discrete and continuous spectrum orbitals). If the Coulomb interaction
V = 1/r12 is expanded in terms of Legendre polynomials

V =
∞∑
l=0

V (l) ≡
∞∑
l=0

Pl(cos θ)
rl<

rl+1
>

, (3)

where r< = min(r1, r2), r> = max(r1, r2), its lth term describes the contribution of the excited
states with orbital angular momentum l to (2), �E

(l)
2 .

The second-order correction �E2 can also be expressed in the form

�E2 = 〈ψ0|V |ψ1〉, (4)

where

|ψ1〉 =
∑
α,β

|α, β〉〈α, β|V |1s, 1s〉
E0 − εα − εβ

, (5)
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|ψ0〉 ≡ |1s, 1s〉, and E0 ≡ 2ε1s. In the coordinate representation ψ1 satisfies the equation

(E0 − H0)ψ1 = (1/r12 − E1)ψ0, (6)

where

H0 = −1

2
�1 − 1

2
�2 − Z

r1
− Z

r2
(7)

is the first-order correction to the ground state wavefunction, ψ0 = R1s(r1)R1s(r2)/4π is the
1s2 wavefunction in coordinate form and E1 = 〈ψ0|V |ψ0〉 = 5Z/8.

Deriving an asymptotic formula for

�E
(l)
2 = 〈ψ0|V (l)|ψ1〉 (8)

we are interested in the behaviour of ψ1 in the limit of high l. As seen from equation (3), for
large l the Coulomb interaction is strongly peaked at r1 ≈ r2. Therefore, we need to evaluate
ψ1 in the region of space where r1 ≈ r2. This region is dominated by the singularity of the
1/r12 term on the right-hand side of equation (6), and the only significant terms in (6) are
those that depend on the inter-electron distance r12. It is therefore natural to change to the
centre-of-mass and relative coordinates defined by

R = (r1 + r2)/2, r12 = r1 − r2. (9)

Transforming equation (6) to the new coordinates and keeping only those terms that depend
on r12 we obtain

1

2µ
�12ψ1 � ψ0

r12
, (10)

where µ = 1/2 is the reduced mass of the two electrons. This equation may be integrated
easily using the spherical polar form of the Laplacian1 to yield

ψ1 = (r12/2)ψ0. (11)

To calculate �E
(l)
2 , ψ1 may be expanded in partial waves by using the expansion of r12

(Varshalovich et al 1988)

r12 =
∞∑
l=0

r
(l)
12 =

∞∑
l=0

Pl(cos θ)
rl<

rl+1
>

(
r2
<

2l + 3
− r2

>

2l − 1

)
. (12)

To calculate the integral over r1 and r2 in equation (8), it is convenient to introduce new
variables r and σ ,

r1 = r(1 − σ), r2 = r(1 + σ), (13)

r< = r(1 − |σ |), r> = r(1 + |σ |). (14)

Since r1 ≈ r2 gives the dominant contribution to the integral, it can be assumed that σ is small,
|σ | � 1. Using the Jacobian∣∣∣∣ ∂r1/∂r ∂r1/∂σ

∂r2/∂r ∂r2/∂σ

∣∣∣∣ = 2r (15)

we obtain for the integration volume element

r2
1 dr1 r

2
2 dr2 d�1 d�2 = 2r5(1 − σ 2)2 dr dσ d�1 d�2, (16)

where the term in σ 2 can be neglected (see below).

1 For small r12 the function ψ0 can be regarded as constant.
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The leading term of the lth spherical component of r12 in powers of l + 1
2 is

rl<

rl+1
>

(
r2
<

2l + 3
− r2

>

2l − 1

)
= −r

(1 − |σ |)l
(1 + |σ |)l+1

1 + 2|σ |(l + 1
2 )

(l + 1
2 )

2
[1 + O(l−2)], (17)

and the lth component of the Coulomb potential is

rl<

rl+1
>

= 1

r

(1 − |σ |)l
(1 + |σ |)l+1

. (18)

Integration over σ can be simplified by using the expansion(
1 − x

1 + x

)l

= exp[−2lx(1 + x2/3 + x4/5 + · · ·)] = e−2lx[1 + O(lx3)], (19)

leading to

(1 − |σ |)l
(1 + |σ |)l+1

� e−2(l+1/2)|σ |[1 + O(l−2)]. (20)

The form of the exponent shows that |σ | ∼ l−1 � 1 will dominate the integral. We have used
this fact above to estimate the error term. Accordingly, the ground state wavefunction can be
expanded about r1 = r2

ψ0(r1, r2) = R1s(r)R1s(r)/(4π) + O(σ 2). (21)

Equations (16)–(18), (20) and (21) can be used to write equation (8) as

�E
(l)
2 � −

∫
R4

1s(r)

(4π)2

1 + 2|σ |(l + 1
2 )

(l + 1
2 )

2
e−4(l+1/2)|σ |P 2

l (cos θ)r5 dr dσ d�1 d�2. (22)

In this form we have neglected all higher-order terms, like O(σ 2) and O(l−2) and beyond.
The angular part of the above integral gives∫

P 2
l (cosθ) d�1 d�2 = 16π2

2l + 1
. (23)

The integration over σ can be formally extended from −∞ to +∞, because for large l the
integrand decreases exponentially beyond |σ | ∼ l−1, which yields∫ +∞

−∞
e−4(l+1/2)|σ |[1 + 2|σ |(l + 1/2)] dσ = 3

8

1

(l + 1
2 )

. (24)

Finally, the asymptotic form of the second-order correction to the ground state energy of the
two-electron atom for large angular momenta l of the single-particle orbitals included is

�E
(l)
2 = −3

8

1

(l + 1
2 )

4

∫ ∞

0
R4

1s(r)r
5 dr + O

(
1

(l + 1
2 )

6

)
. (25)

The l−6 dependence of the error is due to the fact that only terms with additional factors of
order σ 2 or l−2 and higher have been neglected.

For the hydrogen-like zeroth approximation, R1s = 2Z3/2e−Zr , the integral over r can be
evaluated analytically, and we get

�E
(l)
2 � − 45

256(l + 1
2 )

4
+ O

(
1

(l + 1
2 )

6

)
(26)

in exact agreement with Schwartz’s result. Note, however, that equation (25) enables
one to find the constant C in the asymptotic behaviour of the second-order correction,
�E

(l)
2 � −C/(l + 1

2 )
4, numerically in other cases, e.g. when one starts from the Hartree–

Fock approximation.
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Figure 1. Diagrammatic representation of the second-order perturbation theory correction to the
ground state energy of a closed-shell atom. The indices l and l′ represent the angular momentum
transferred through the Coulomb interaction.

2.2. Extension to closed-shell atoms

The formalism developed to treat two-electron atoms can be simply extended to treat more
complex closed-shell atoms. Instead of a hydrogen-like model the calculation of a many-
electron atom usually starts with the Hartree–Fock approximation. In this case each electron
moves independently in a self-consistent central field created by the nucleus and the other
electrons. Hence, there is no first-order correction to the ground state energy due to the
interelectron Coulomb interaction. Otherwise, the situation is very similar to that treated
above. The second-order perturbation theory correction can be represented by the diagrams in
figure 1.

Analytically, it corresponds to the following sum of the direct and exchange contributions
(see, e.g., Lindgren and Morrison 1982):

�E2 = 1

2

∑
α,β

ν1,ν2

(
4|〈α, β|V |ν1, ν2〉|2
εν1 + εν2 − εα − εβ

− 2〈ν2, ν1|V |α, β〉〈α, β|V |ν1, ν2〉
εν1 + εν2 − εα − εβ

)
(27)

where the sum over ν1 ≡ n1l1m1 and ν2 ≡ n2l2m2 includes all occupied single-electron states
(‘holes’), and that over α and β runs over all excited states (‘particles’). Together they form
a complete set of eigenstates of the Hartree–Fock Hamiltonian of the ground state atom. The
factors 4 and 2 in the brackets appear as a result of summation over the electron spins.

For fixed ν1 and ν2 the first term in equation (27) is similar to the second-order
correction (2). Hence, it can be treated in a way similar to that outlined in equations (4)–(11),
provided we use

ψ0 = Rn1l1(r1)Rn2l2(r2)Yl1m1(r̂1)Yl2m2(r̂2) (28)

and replace H0 with the Hartree–Fock Hamiltonian of 2 electrons 1 and 2. We also apply the
same procedure to the exchange term in equation (27).

As a result, the contribution of the angular momentum l to the second-order energy
correction can be written as

�E
(l)
2 =

∑
ν1,ν2

(
2〈ψ0|V (l)|ψ(l)

1 〉 −
∑
l′

〈ψ̃0|V (l′)|ψ(l)
1 〉

)
, (29)

2 In this case the V1ψ0 term on the right-hand side of equation (6) is replaced by a sum over all occupied states∑
ν3,ν4

|ν3, ν4〉〈ν3, ν4|V |ν1, ν2〉. However, this term is nonsingular at r12 → 0 and equation (10) remains valid.
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where ψ
(l)
1 = 1

2 r
(l)
12 ψ0 and ψ̃0 is the function (28) with the coordinates of the first and second

electrons switched. The sum runs over all ground state subshells n1l1, n2l2, as well as the
magnetic quantum numbers m1 and m2 within each subshell.

As before we transform the radial coordinates r1 and r2 to r and σ and apply
equations (17)–(20). The function ψ0 is then expanded as (cf (21))

ψ0(r1, r2) = Rn1l1(r)Rn2l2(r)Yl1m1(r̂1)Yl2m2(r̂2) + O(σ ). (30)

The radial integrals over r and σ in the direct and exchange matrix elements in equation (29)
are identical and can be factored out of the sum over m1 and m2. They give

− 3

8(l + 1
2 )

3

∫ ∞

0
R2

n1l1
(r)R2

n2l2
(r)r5 dr

[
1 + O

(
1

(l + 1
2 )

2

)]
. (31)

Note unlike (21), expansion (30) contains terms linear in σ . However, they do not give rise
to 1/(l + 1/2) corrections. Their contribution to the integral is zero because the rest of the
integrand is an even function of σ .

The angular part of the direct term in (29) is

∑
m1,m2

∫
Y ∗
l1m1

(r̂1)Y
∗
l2m2

(r̂2)P
2
l (cos θ)Yl1m1(r̂1)Yl2m2(r̂2) d�1 d�2 = (2l1 + 1)(2l2 + 1)

2(l + 1
2 )

, (32)

where we use
∑

m1
Y ∗
l1m1

(r̂1)Yl1m1(r̂1) = (2l1 + 1)/4π (Varshalovich et al 1988). The angular
integral of the exchange contribution is of the form

∑
l′

∑
m1,m2

∫
Y ∗
l1m1

(r̂2)Y
∗
l2m2

(r̂1)Pl(cos θ)Pl′(cos θ)Yl1m1(r̂1)Yl2m2(r̂2) d�1 d�2. (33)

This sum is reduced to an integral involving four spherical harmonics, which is calculated in
a standard way (Varshalovich et al 1988) and gives

(2l1 + 1)(2l2 + 1)
∑
l′,L

(2L + 1)

(
L l l′

0 0 0

)2 (
l1 l2 L

0 0 0

)2

, (34)

where L is an auxiliary summation variable. Its range is limited by the triangular condition
|l1 − l2| � L � l1 + l2. Since l1 and l2 are the angular momenta of some ground state orbitals
(s, p, d or at most f), their values are small, l1,2 ∼ 1, hence L ∼ 1. Therefore, in the large-l
limit only l′ ≈ l give a nonzero contribution to the sum over l′ in (34). Asymptotically, we
have

∑
l′

(
L l l′

0 0 0

)2

�
∑
l′

2l′ + 1

2l + 1

(
L l l′

0 0 0

)2

= 1

2l + 1
(l � 1), (35)

the relative error in this formula being of order l−2 (Kutzelnigg and Morgan 1992).
Equation (34) thus becomes

(2l1 + 1)(2l2 + 1)

2l + 1

∑
L

(2L + 1)

(
l1 l2 L

0 0 0

)2

= (2l1 + 1)(2l2 + 1)

2(l + 1
2 )

, (36)

which is exactly the same as equation (32). The direct contribution in equation (29) comes
with an extra spin factor of 2. We therefore see that in the limit of high l the exchange term
cancels exactly half of the direct term.
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Combining equations (31), (32) and (36), we obtain the asymptotic contribution of the
ground state orbitals n1l1, n2l2 at high transferred angular momenta l as

�E
(l)
2 (n1l1, n2l2) = −Cn1l1n2l2

(l + 1
2 )

4
+ O

(
1

(l + 1
2 )

6

)
, (37)

where

Cn1l1n2l2 = 3
8 (2l1 + 1)(2l2 + 1)

∫ ∞

0
R2

n1l1
(r)R2

n2l2
(r)r5 dr. (38)

Its size is proportional to a specific overlap integral of the densities, and to the numbers of
electrons in these orbitals, as given by the (2l1 + 1)(2l2 + 1) factor. For n1l1 = n2l2 = 1s we
recover the original result (25).

Accordingly, the total second-order correction

�E
(l)
2 = − C

(l + 1
2 )

4
+ O

(
1

(l + 1
2 )

6

)
(39)

is determined by the sum over all ground state orbitals n1l1, n2l2,

C =
∑

n1l1,n2l2

Cn1l1n2l2 . (40)

There is an important distinction between this result and that obtained for a He-like 1s2 atom.
Here l is the angular momentum transferred along the Coulomb interaction, which may be
different from the angular momentum of the excited single-particle orbitals included in the
perturbation-theory sum. For ground state orbitals l1,2 �= 0, the angular momenta of the
excited states α and β obey the triangular condition, e.g. |l − l1| � lα � l + l1, which means
that asymptotically, for l � 1, one has lα,β ≈ l. Therefore, if one examines the behaviour of
�E2 as a function of lmax = max(lα, lβ), rather than l, the contributions of successively larger
lmax will drop as (lmax + 1

2 )
−4. However, the next term may now be of order (lmax + 1

2 )
−5, rather

than (l + 1
2 )

−6, as in equation (39).
In nonperturbative CI calculations the contribution of configurations which include high-

angular-momentum orbitals is always small, and thus perturbative. Therefore, it is natural that
asymptotically the increments of the total energy due to the inclusion of such states drop as
(l + 1

2 )
−4, the next term being of order (l + 1

2 )
−5. The asymptotic constant C no longer has the

form of (38), but depends on the total wavefunction, e.g. for a He-like ground state

C = 6π2
∫

|#(r, r)|2r5 dr, (41)

where #(r1, r2) is the exact wavefunction (Hill 1985).

3. Numerical calculations

In this section we compare the results of a direct numerical calculation of the perturbation
theory sums (27) for a range of transferred angular momenta l with the asymptotic behaviour
of the second-order energy correction, equations (37)–(40). The purpose of this comparison
is twofold. Firstly, it tests the asymptotic formulae numerically and shows how quickly �E

(l)
2

converges to them. Secondly, it tests the effective completeness of our single-electron basis
set for a wide range of angular momenta.

We started from a standard Hartree–Fock calculation of the atomic ground state, and
then solved the Hartree–Fock equations for excited orbitals using B-splines (De Boor 1978,
Sapirstein and Johnson 1996). In this work n = 90 B-splines of order k = 10 are used with a
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cavity radius of R = 20 au. The radial knot set {ti} was chosen so as to match the exponential
behaviour of the atomic wavefunctions

t1 = t2 = · · · = tk = 0, (42)

tn+1 = tn+2 = · · · = tn+k = R, (43)

ti = r0[eβ(i−k) − 1] (i = k + 1, . . . , n), (44)

where

β = ln(R/r0 + 1)

(n + 1 − k)
, (45)

and r0 = 10−3 was chosen. This knot sequence ensured that we had enough splines to describe
the rapid variation of the wavefunctions at small distances and large energies3.

By expanding the Hartree–Fock wavefunctions in terms of theB-splines, the Hartree–Fock
equations were reduced to a generalized eigenvalue problem solved using standard routines
(Sapirstein and Johnson 1996). This provided a set of single-particle orbitals with angular
momenta between 0 and 30, which we used to calculate the contributions of various pairs of
hole states and transferred angular momenta l to (27).

To test the validity of the asymptotic formula, a number of noble gas atoms were examined.
Figure 2 shows the asymptotic convergence of the second-order energy with respect to l, for
various pairs of ground state orbitals in Ne.

The graphs show that in agreement with equation (37) the quantities −�E
(l)
2 (n1l1, n2l2)

(l + 1
2 )

4 do converge towards their asymptotic values Cn1l1n2l2 . However, all the graphs show a
loss of accuracy at high values of l � 15 due to numerical difficulties in dealing with the cusp
in the inter-electron Coulomb interaction. Therefore, for high angular momenta the effective
‘completeness’ of our excited-state basis set deteriorates, as far as the calculation of �E

(l)
2 is

concerned.
This feature is easy to understand. As we have seen in section 2, at high l the function ψ

(l)
1

has a very narrow cusp at r1 = r2, which gives a leading contribution to �E
(l)
2 . Equations (14)

and (20) show that its width is �r ∼ r/ l. In the direct calculation of the perturbation-theory
sum this cusp is implicitly constructed from the excited-state orbitals (cf equation (5)) based
on the B-spline knot sequence (44). Therefore, the ‘completeness’ holds only as long as the
knot sequence interval �r � βr is smaller than the width of the cusp, which is equivalent to

l � 1/β. (46)

Numerically this gives l � 10 for the set of splines defined above (β = 0.109).
Condition (46) means that the quality of the excited state basis is uniform for all radii.

Narrowing of the Coulomb cusps at small r is matched by the smaller intervals of the B-spline
radial knot sequence (44). This property is a consequence of the exponential knot sequence,
and can serve as an argument in favour of such choice. It is illustrated by figure 2, where
the loss of accuracy is similar for the inner 1s and outer 2p orbitals, although they have very
different radii.

To further illustrate condition (46) we have performed another calculation of the second-
order energies of Ne, using a smaller set of n = 40 B-splines of order k = 6 and a larger radius
R = 40 au. The corresponding β = 0.303 means that the excited state sets are complete
for l � 3. Indeed, the error in the numerical values of �E

(l)
2 grows rapidly for l > 5, see

figures 1(a) and (d).

3 An exponential knot sequence in coordinate space generates a set of quasicontinuum orbitals with exponentially
increasing energies, εn ∼ ε0eγ n, which is in some sense optimal for spanning the continuum.



Convergence of partial-wave expansions 347

0 10 20 30 40
l+1/2

0

0.05

0.1

0.15

0.2

−∆
E

(l
) (l

+
1/

2)
4 Ne  1s−1s

(a)

0 4 8 12 16 20 24 28 32
l+1/2

0

0.005

0.01

0.015

−∆
E

(l
) (l

+
1/

2)
4

Ne  1s−2s

(b)

0 4 8 12 16 20 24 28 32
l+1/2

0

0.025

0.05

−∆
E

(l
) (l

+
1/

2)
4

Ne  1s−2p

(c)

0 10 20 30 40
l+1/2

0

0.5

1

1.5

2

−∆
E

(l
) (l

+
1/

2)
4 Ne  2p−2p

(d)

Figure 2. Test of the convergence of the second-order energies for various pairs of ground state
orbitals in Ne to their asymptotic form. Solid curves are the contributions of particular pairs of hole
states to the second-order correction, �E

(l)
2 (n1l1, n2l2) times (l + 1

2 )
4. Horizontal dashed curves

show the asymptotic constants Cn1l1n2 l2 , as given by equation (38): (a) 1s–1s, C1s1s = 0.173 114;
(b) 1s–2s, C1s2s = 0.009 682; (c) 1s–2p, C1s2p = 0.045 933; (d) 2p–2p, C2p2p = 1.684 838. Chain
curves in (a) and (d) show the second-order energy calculated with n = 40 B-splines of order
k = 6, using R = 40 au.

Table 1. Contributions of different orbitals to the second-order correction to the ground state energy
of Ne obtained using n = 90 splines of order k = 10, R = 20 au.

Pair �E2
a (au) Cn1l1n2 l2

b �E2
c (au) �E2

d (au)

1s–1s −0.040 213 0.173 114 −0.040 256 −0.040 255
1s–2s −0.005 553 0.009 682 −0.005 558 −0.005 557
2s–2s −0.011 981 0.235 741 −0.012 040 −0.012 037
1s–2p −0.022 071 0.045 933 −0.022 094 −0.022 094
2s–2p −0.086 895 0.617 663 −0.087 203 −0.087 188
2p–2p −0.220 578 1.684 838 −0.220 998 −0.220 973

a Summed up to l = 10.
b Asymptotic constants, equation (38).
c Obtained by extrapolating l > 10 values using equation (37).
d Extrapolated results by Flores (1992).

Therefore, it may be more accurate to truncate the partial wave expansion of the second-
order energy at a lower value of l and then correct the result using the asymptotic formula.
Table 1 shows the values of �E

(l)
2 for different pairs of orbitals of Ne obtained by truncating

the partial wave expansions at l = 10 and then using equation (37) to extrapolate the results.
As can be seen the results agree closely with those of Flores (1992).
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Figure 4. Test of the asymptotic formula for the second-
order correction to the 2p–3d energy in Kr: ——,
numerical; — — —, asymptotic valueC2p3d = 0.630 29.

It is of interest to ascertain whether the exchange contribution does cancel half of the direct
contribution in the limit of high l as theory predicts. Figure 3 shows that the ratio beteen the
direct and exchange terms does indeed tend to −2, in agreement with theory.

An interesting feature of �E
(l)
2 is its nonmonotonic approach to the limit value. Some of

the graphs in figure 2 show a strong dip at low values of l. This feature is even stronger in
other cases, for example for the second-order 2p–3d energy correction in Kr, figure 4.

This is due to a large contribution from the exchange diagram. In general, Coulomb matrix
elements are smaller for larger values of the transferred angular momentum. For holes with
nonzero angular momentum the value of l′ in the exchange diagram (figure 1) can be lower
than l. If l is not high, the Coulomb matrix element of V (l′) can be considerably greater than
that of V (l), which favours the exchange contribution. For example, for the 2p and 3d ground
state orbitals in Kr and l = 4, which corresponds to the dip in figure 4, the value of l′ in the
exchange diagram can be as low as 1. Of course, as l increases, the condition l′ ≈ l (see
equations (34), (35)) removes this anomaly and the asymptotic regime takes over.

Figures 2 and 4 also make it obvious that the (l + 1
2 )

−4 behaviour sets in relatively late.
Therefore, one should be cautious in applying equation (39) to extract the asymptotic constant
C from numerical calculations at low l. Thus, when Moncrieff and Wilson (1999) do this at
l = 6, they obtain a value of C = 4.799 which is 1.4 times greater than the true one, C = 3.440
(see table 1).

4. Corrections to the single-particle energy and positron annihilation rate

4.1. Single-particle energy

The second-order correction to the single-particle energy εn2l2 of an electron added to a closed-
shell atomic or ionic core can be represented by the diagrams in figure 5 (see, e.g., Amusia and
Cherepkov 1975). There are two other second-order diagrams, which contain two holes rather
than two particles in the intermediate state. For the present purpose they can be neglected
because in these diagrams the angular momentum transferred by the Coulomb interaction is
restricted by the angular momenta of the holes, and the diagrams do not contribute to the
l → ∞ limit.

Using the same approach as in section 2 it can be shown that the asymptotic expression
for the second-order correction to the single-particle energy now takes the form
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�ε
(l)
n2l2

= − 3

16(l + 1
2 )

4

∑
n1l1

(2l1 + 1)
∫ ∞

0
R2

n1l1
(r)R2

n2l2
(r)r5 dr + O

(
1

(l + 1
2 )

6

)
, (47)

where the sum includes all core orbitals (cf equations (37)–(39)). The (l + 1
2 )

−4 convergence
pattern is not surprising, since the single-particle energy corresponds to a difference between
the total energies of the N + 1 and N -electron systems.

Note that, as in the total energy, the exchange diagram in the limit of large l equals minus
one-half of the direct diagram. If one considers a bound state of a positron with an atomic
system (see, e.g., Dzuba et al 1995), the upper line in figure 5 will represent the positron and
the exchange diagram will be absent. The right-hand side of the asymptotic formula (47) will
therefore contain an extra factor of 2.

The diagrams in figure 5 can also represent the second-order correction to the electron
or positron scattering amplitude from an atom, if we replace the n2l2 state with a continuous
spectrum wavefunction4. With this modification equation (47) gives the contribution of high
transferred angular momenta l to the scattering amplitude. This means that the convergence
of scattering calculations obeys the same (l + 1

2 )
−4 law.

4.2. Positron annihilation

The methods used in this paper can be applied to various quantities. One useful application is
a determination of the asymptotic l-dependence of the positron annihilation rate.

The annihilation rate λ, of a positron in a gas of density n is usually expressed in terms of
the effective number of electrons (Zeff ) of the atom (Fraser 1968) as

λ = πr2
0 cnZeff , (48)

where r0 is the classical radius of the electron and c is the speed of light. Equation (48) defines
Zeff as the ratio of the positron annihilation cross section of the atom to the annihilation cross
section of a free electron in the Born approximation. Zeff can therefore be written as

Zeff =
N∑
i=1

∫ ∣∣#(r1, r2, . . . , rN, rp)
∣∣2
δ(ri − rp) dr1 dr2 . . . drN drp, (49)

where #(r1, r2, . . . , rN, rp) is the full (N + 1)-particle wavefunction of the N electron
coordinates ri and positron coordinate rp. The wavefunction is normalized to a positron
plane wave at large positron–atom separations,

#(r1, r2, . . . , rN, rp) � ,0(r1, r2, . . . , rN) exp(ik · rp), (50)

4 Multiplied by −π , these diagrams will give a correction to the scattering phaseshift �δl2 , for small �δl2 , if the
continuous spectrum wavefunctions are normalized to a δ-function of energy in Ryd (Amusia and Cherepkov 1975).
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to the annihilation vertex (b).

where ,0(r1, r2, . . . , rN) is the atomic ground state wavefunction, and k is the incident
positron momentum.

In the Hartree–Fock approximation #(r1, r2, . . . , rN, rp) is simply the product of the
positron wavefunctionψk(rp), which is calculated in the static field of the atom, and the atomic
wavefunction ,0(r1, r2, . . . , rN), which is an antisymmetrized product of the single-electron
wavefunctions ψν1(ri ). In the Hartree–Fock approximation equation (49) becomes

Zeff =
∑
ν1

∫ ∣∣ψν1(re)
∣∣2 ∣∣ψk(rp)

∣∣2
δ(re − rp) dr1 drp

=
∑
n1l1,l2

2(2l1 + 1)(2l2 + 1)
∫

R2
n1l1

(r)R2
kl2
(r)r2 dr, (51)

where in the last equation the sum runs over all occupied orbitals n1l1, as well as the
positron partial waves l2, and the positron radial wavefunction is normalized by Rkl2(r) �
sin(kr − π

2 l2 + δl2)/kr . Equation (51) is represented diagrammatically in figure 6(a). It is easy
to check that besides the usual diagrammatic rules, in calculating the contribution of a given
positron partial wave l2 to Zeff we must use [4π(2l2 + 1)]1/2Rkl2(r)Yl2m2(r̂) ≡ ψkl2(r) and its
complex conjugate for the initial and final positron lines, respectively.

This approximation is not sufficient to accurately describe positron annihilation. A
better positron wavefunction must be used, which accounts for the positron–atom correlation
potential. However, it is also necessary to include corrections to the positron annihilation
vertex (Dzuba et al 1993, 1996). Figure 6(b) shows the two first-order corrections to the
vertex. They are of equal value, and their sum can be be written as

�Zeff = 2
∑

α,β,n1l1

2〈n1l1, kl2|δ(re − r)|α, β〉〈α, β|V |n1l1, kl2〉
ε − εα − εβ + εn1l1

, (52)

where ε = k2/2 is the positron energy, α and β are excited electron and positron states,
respectively, the sum over the ground state electron orbitals n1l1 also implies summation over
m1 = −l1, . . . , m1, and an extra factor 2 accounts for the electron spins.

The asymptotic behaviour of the contribution of high-angular-momentum states α and β,
i.e. large l, is considered in the same way as earlier in the paper. We first expand the delta
function as

δ(re − rp) =
∞∑
l=0

δ(l)ep =
∞∑
l=0

1

r2
e

δ(re − rp)
2l + 1

4π
Pl(cos θ). (53)

In a similar manner to equation (29), the contribution of the transferred angular momentum l

to �Zeff is

�Z
(l)

eff = 4
∑
n1l1m1

〈ψ0|δ(l)ep (−r(l)ep /2)|ψ0〉, (54)
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where ψ0 = [4π(2l2 + 1)]1/2Rkl2(rp)Yl2m2(r̂p)Rn1l1(re)Yl1m1(r̂e), and the minus sign is a
consequence of the electron–positron Coulomb interaction being attractive. As in section 2,
we can replace re by r(1 + σ) and rp by r(1 − σ), and use

δ(l)ep = 1

2r3
δ(σ )

2l + 1

4π
Pl(cos θ) (55)

together with equations (16) and (17), to calculate the matrix element in equation (54). This
gives the asymptotic form of the first-order correction to Zeff in a given positron partial wave
l2,

�Z
(l)

eff � 2l2 + 1

(l + 1
2 )

2

∑
n1l1

2(2l1 + 1)
∫ ∞

0
R2

n1l1
(r)R2

kl2
(r)r3 dr. (56)

Therefore, in calculations based on partial-wave expansions about a single centre the
annihilation rate Zeff converges much more slowly than the energy. Equation (56) shows
also that inclusion of ever higher angular momenta increases the value of Zeff , since �Z

(l)

eff

are positive. The coefficient in the asymptotic form of �Z
(l)

eff depends on the overlap of the
electron and positron densities. A similar integral determines the coefficient in the (l + 1

2 )
−2

drop of the contribution of the relativistic Breit interaction to the correlation energy of He-like
ions (Ottschofski and Kutzelnigg (1997), equation (5.7)).

The positron annihilation rate in a bound state, - is given by an integral identical to that in
equation (49) times πr2

0 c. In this case # is the total wavefunction of the positron–atom bound
state. As follows from the above analysis, convergence of the annihilation vertex corrections
to - is of the form

�-(l) � C-

(l + 1
2 )

2
, (57)

where

C- = πr2
0 c

4π

∑
n1l1

2(2l1 + 1)
∫ ∞

0
R2

n1l1
(r)R2

p(r)r
3 dr, (58)

and Rp(r) is the radial wavefunction of the bound positron.
Mathematically, the difference between the (l + 1

2 )
−4 asymptotic behaviour of the

correlation corrections to the energy and (l + 1
2 )

−2 drop of the annihilation rate is a result
of replacing the second Coulomb interaction in the diagrams of figure 5 with a δ-function.
Comparison of equations (3) and (53) shows that the latter has an extra 2l + 1 factor, while the
presence of δ(σ ) eliminates l + 1

2 in the denominator, cf equation (24).
Just as for the energy corrections, the asymptotic (l + 1

2 )
−2 decrease of the high-l

contributions to the annihilation rate established by means of perturbation theory must hold
in nonperturbative calculations. Qualitatively, very slow convergence of the annihilation rates
with respect to the maximal orbital angular momentum lmax in CI calculations of systems
containing positrons has been known for a while (Strasburger and Chojnacki 1995, Mitroy and
Ryzhikh 1999, Bromley et al 2000). However, the true value of p in the 1/lpmax dependence
of the rate increments has never been established (see section 5).

A common feature of all asymptotic expressions is that the two particles which exchange a
high angular momentum l through the Coulomb interaction are ‘pulled together’ by the cusplike
singularity in V (l), or the δ-function of the annihilation vertex. As a result, the coefficients in
the asymptotic formulae depend on the wavefunctions taken at the same point. This makes it
is easy to guess the form of the nonperturbative answer from a perturbation-theory expression,
cf equations (25) and (41). Thus, in a system containing one electron and one positron in an
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S state the asymptotic increments of the spin-averaged annihilation rate will be given by (57)
with

C- = 4π2r2
0 c

∫ ∞

0
|#(r, r)|2r3 dr, (59)

where #(re, rp) is the wavefunction of the system. Practically, such an equation could be
applied to systems like e+Li or e+Na, where the electron–positron pair moves in the field of a
relatively inactive core (see the appendix).

5. Analysis of convergence of the energy and annihilation rate of PsH

To illustrate the slower convergence of the annihilation rate we examine the results of CI
calculations performed for the PsH system (Bromley et al 2000, Mitroy et al 2001). These
give both the annihilation rate- and the total energyE for calculations with successively larger
l values5. It should be noted again that a perturbative derivation of �E(l) and �-(l) is still valid
for a CI calculation, as the orbitals with higher l values only make a small contribution. Thus,
although the coefficients in a nonperturbative treatment may differ from those in equations (39)
and (57), the asymptotic l dependence of the corresponding increments should remain the same.

Figure 7 shows that numerical�E(l) and�-(l) do indeed converge towards their respective
asymptotic forms C(l + 1

2 )
−4 and C-(l + 1

2 )
−2. However, this convergence is very slow. It

only becomes apparent near the largest value of l = 9, see figure 7. Note that we can use
equations (41) and (59) to make rough estimates of the constants C and C- (see appendix).

A more detailed examination of the l-dependence of �E(l)(l + 1
2 )

4 in fact shows that even
at l = 9 this quantity is not constant. On the other hand, the behaviour of �-(l)(l + 1

2 )
2 may

indicate a loss of numerical accuracy at such high l values. The latter is supported by the fact
that even after extrapolation to l = ∞ the value of - is still 10% below the correct one (Mitroy
et al 2001).

The slow evolution of �E(l) and �-(l) towards their asymptotic forms can probably
be explained as follows. According to perturbation theory, the coefficients in equations (39)
and (57) are determined by the zeroth-order wavefunctions. In a nonperturbative calculation for

5 More precisely, they present E and - as functions of lmax. However, this difference does not affect the leading-order
l dependence of the increments �E(l) and �-(l).
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Figure 8. Ratio of �-(l) to �E(l) as a function of the maximal angular momentum l included in
the CI calculation by Mitroy et al (2001).

a given lmax = l the coefficient in the asymptotic formula is determined by the wavefunction
at zero interparticle distance (r1 = r2, or re = rp), obtained at this stage. Therefore, it
keeps changing as more partial waves are included in the calculation. This effect is especially
important for systems containing positrons, because the wavefunction is enhanced at re = rp

due to the Coulomb attraction between the particles. This enhancement also explains the large
size of the high-l contributions in such systems. On the other hand, if one looks at the ratio,
�-(l)/�E(l), the drift of the wavefunction should be largely eliminated. This ratio is plotted
in figure 8 as a function of l.

Figure 8 is a clear illustration of the slower convergence of the annihilation rate, as
compared with the energy. It also confirms that the ratio is superlinear with respect to l + 1

2 ,
although the asymptotic (l + 1

2 )
2 behaviour is not obvious. This may partly be because of the

numerical convergence problems mentioned above.

6. Concluding remarks

In this paper we have studied the problem of convergence of the correlation corrections to the
total and single-particle energies and positron annihilation rates, with respect to the single-
particle angular momenta.

We have derived an asymptotic formula for the second-order perturbation energy for
closed-shell atoms at high transferred angular momenta l. A 1/(l + 1

2 )
4 dependence has been

found. The formula reduces to Schwartz’s formula for two-electron atoms when hydrogenic
1s2 wavefunctions are used. By testing the formula for Ne and Kr we have demonstrated
that it agrees very well with the numerical results. These results also show that B-splines are
an excellent means of spanning the energy continuum. In other words, they provide a finite
single-particle basis which is effectively complete. On the other hand, we have identified
the limitations of such bases for very high l. They are related to the cusplike singularity of
the Coulomb interaction for high transferred angular momenta, and to the choice of a certain
B-spline knot sequence.

The general method employed in the first part of the paper has been applied to the problem
of positron annihilation on atoms. We have shown that the correlation corrections to the
annihilation rate have a much slower 1/(l + 1

2 )
2 dependence. The results of CI calculations of

the energy and annihilation rates of PsH by Mitroy et al (2001) converge towards the predicted
asymptotic behaviour.
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Qualitatively, our analysis explains the origin of the notoriously slow convergence of the
energies and especially annihilation rates for systems containing positrons. With little effort
the method we apply can be used to derive nonperturbative (‘exact’) asymptotic formulae. In
general, they show the same l-dependence, with the coefficient given by an expectation value
of the contact two-particle density.

The knowledge of the asymptotic behaviour can be used to test the accuracy and
convergence of numerical calculations. It can also be applied to extrapolate correctly the
contributions of high angular momenta, and account for all angular momenta beyond those
explicitly included in the numerical calculation. Such a procedure is especially important in
cases where convergence is slow.
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Appendix. Asymptotic forms of the energy and annihilation rate for bound Ps

Let us consider a positron bound state with an atom (negative ion) whose ionization potential
(electron affinity) is smaller than the binding energy of the ground state positronium atom
(Ps), |E1s| = 6.8 eV. In this case the lowest dissociation threshold of the system is that into
the positive ion (neutral atom) and Ps(1s). If the binding energy is small, the weakly bound Ps
moves mostly far away from the core and can be described by a normalized wavefunction

#(re, rp) =
√

κ

2π

e−κR

R
ϕ1s(r − rp) (A.1)

where R = (re + rp)/2 is the centre-of-mass coordinate of the positronium atom relative
to the nucleus, ϕ1s is the internal Ps wavefunction and κ is related to the binding energy by
Eb = κ2/2M , where M = 2 au is the Ps mass.

Using this wavefunction in equations (41) and (59) we obtain

C = 9π |ϕ1s(0)|2
8κ3

, (A.2)

C- = πr2
0 c|ϕ1s(0)|2

2κ
, (A.3)

where |ϕ1s(0)|2 = 1/8π , and the factor πr2
0 c|ϕ1s(0)|2 is simply the spin-averaged annihilation

rate of the ground state positronium and has a known value of 2.0 × 10−9 s−1 (Berestetskii
et al 1982). Equations (A.2) and (A.3) show that for more weakly bound systems (smaller κ)
the contribution of high partial waves l is greater.

Let us apply equations (A.2) and (A.3) to PsH which has a binding energy of Eb =
0.0392 au (Ryzhikh et al 1998). This leads to κ = 0.396, and gives asymptotic constants
C = 2.3 au and C- = 2.5 × 10−9 s−1, which are good estimates of the values inferred from
the CI calculations of Mitroy et al (2001) (see the caption of figure 7).
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