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ABSTRACT
Effects of weak interactions: parity nonconservation and time-invariance violation, can be enhanced up
to 10® times in compound nuclei. This factor is produced by (i) “simple” kinematical enhancement
(ratio of the s-wave to the p-wave neutron capture amplitudes), and (ii) very large density of compound
resonances (dynamical enhancement). The latter phenomenon should be generic to many complex
many-body systems (rare-earth atoms, atomic clusters, quantum dots in solids, etc.), and is strongly
related to the problem of quantum chaocs. Thie review is devoted to the theoretical aspects of the
problem. Statistical theory is used to calculate the r.m.s. value and the distribution of matrix elements
of the weak perturbations between compound states. The behaviour of effects upon averaging over many
compound resonances is studied. It is shown that the effects, though of random sign, are not suppressed
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possible sources of regular contributions to the effect. The renormalization of weak interaction by the
strong interaction and its relation to the problem of 7-mesons in nuclear matter is discussed.
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1 Introduction

Huge enhancement of parity nonconserving effects (as well as any weak interaction) in compound nuclei
is a remarkable physical phenomenon. It contains a number of different physical aspects in it. First of
all, these effects are produced by the fundamental weak interactions, and thus can be viewed as a probe
for their investigation. Secondly, this phenomenon is strongly influenced by the nuclear dynamics. So,
the measured effects reveal details of the nuclear structure and the role of the strong interaction, which
renormalizes the weak interaction in the nuclear matter. Thirdly, measuring weak interaction effects in
the region of compound resonances one encounters the problem of quantum chaos: the nuclear spectrum
and the structure of nuclear eigenstates are chaotic, and the system itself gives a particular example of

the generic quantum chaotic system.

Therefore, the study of effects produced by the weak interaction in compound nuclei contributes to
several areas of physics. On the other hand, the complexity of the problem makes interpretation of
experimental data and the process of extracting basic information from the results of measurements
very difficult. There is a great demand for a theory which could describe different aspects of the problem
(weak, nuclear, chaotic). This makes the whole problem very challenging for theorists. Even the most
precise experimental data cannot be fully appreciated and used without a good and reliable theory
(which in case of “chaotic” states should be a statistical theory).

The relative strength of the parity nonconserving (PNC) weak interaction in nuclei (the ratio of the
weak to the strong interaction) can be estimated as

FrGm2=2x10"", (1)

where G is the Fermi constant and m, is the 7-meson mass. Accordingly, the estimates of effects in
neutron optics made in the pioneering works of Michel (1964), Stodolsky (1974), Karl and Tadic (1977),
and others were very small. However, in 1980 it was suggested (Sushkov and Flambaum 1980) that
in heavy nuclei one can observe PNC effects enhanced up to 10° times, i.e., at a level of about 10%
(see also Karmanov and Lobov 1969, Lobov 1970, Forte 1978, Stodolsky 1980, Sushkov and Flambaum
1982, Bunakov and Gudkov 1981, 1983). There are two main factors of enhancement of PNC effects in
nuclei, which give roughly equal contributions (~ 10%) to the total enhancement factor. The first one
(kinematical) results from admixing large amplitudes to the small ones by means of the weak interaction
(e.g., the s-wave to the p-wave in neutron capture). The second factor (dynamical, or statistical) arises
due to a high level density of compound states, which provides mixing of opposite parity levels at
very small energy separations. To estimate this enhancement factor accurately one has to evaluate the
weak interaction matrix element coupling these states. The latter is noticeably suppressed because of
a complex structure of the compound states, which makes the dynamical enhancement proportional to
D~1/% rather than D', where D is the mean level spacing (Haas et al 1959, Blin-Stoyle 1960, Shapiro
1968). In some cases, such as PNC effects in nuclear fission and some effects in the (n,7) reaction,
there can be another, resonance enhancement up to D/T' times, where T' is the compound state width.
Dynamical enhancement must be a general feature in various many-body systems with dense spectra
and complex eigenstates (nuclei, rare-earth atoms, molecules, clusters, quantum dots in solids, etc.).
One may consider this enhancement as a manifestation, or a signature of quantum chaos in a system.
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It can be compared with the known enhancement of perturbations in classical chaotic systems, which
results from exponential divergence of trajectories. Besides PNC effects, the two factors (kinematical
and dynamical) enhance time and parity violating (P,T-odd) effects (Kabir 1982, Stodolsky 1982,
Bunakov and Gudkov 1983). Note that there could be also T-odd P-even effects. The possibility
of their enhancement was considered by Ericson (1966), Mahaux and Weidenmiller (1966), Moldauer
(1968) [see also detailed calculations by French et al 1988, Bunakov et al 1990, and the books Tests of
Time Reversal Invariance in Neutron Physics (1987) and Time Reversal Invariance and Parity Violation
in Neutron Reactions (1994) for more recent developments]. The physics of these effects is quite different
and we do not consider them in the present review.

At present there is a large amount of experimental data on various PNC effects in nuclei. Values of
~ 10~* — 1073 were obtained for the asymmetry of ¥ quanta emission with respect to the neutron spin
in the (n,v) reaction (Abov and Krupchitskii 1976, Benkoula et al 1977) (k, - o correlation, where k,
is the momentum of the y-quantum, and o is the neutron spin). There were also measurements of
the circular polarization of y-quanta in reactions with unpolarized nuclei. Among the most surprising
results was the discovery of large (~ 10~*) PNC effects in nuclear fission by polarized neutrons (Danilyan
et al 1977, Vodennikov et al 1978, Andreev et al 1978, Petukhov et al 1979, Vesna et al 1980). The
correlation measured is p; - o, where p; is the momentum of the light fragment. Forte et al (1980)
measured the PNC rotation of neutron spin by unpolarised nuclei. The record values of PNC effects have
been observed in polarized neutron capture. The relative difference of the cross sections for neutrons
with positive and negative helicities (k - & correlation; k is the neutron momentum) is 10~ — 10!
(Alfimenkov et al 1981, 1983, Alfimenkov 1984, Masuda et al 1989, Bowman et al 1990, Frankle et
al 1991). All these effects are orders of magnitude greater than the relative strength of the original
PNC weak interaction (1). Therefore, predictions of very strong enhancement have been confirmed
experimentally. Experimental details can be found in numerous reviews, Bowman et al 1993 being the
most recent one, and we do not consider any particular experiments in the present work.

The aim of this review is to consider mechanisms of enhancement of PNC effects in compound nuclei
at all levels, starting from the nucleon-nucleon weak interaction. Recent experiments by the TRIPLE
collaboration (Bowman et al 1990, Frankle et al 1991) started a systematic study of PNC effects for
large sequences of resonances in several nuclei, and measured the root-mean-squared (r.m.s.) values
of the weak interaction matrix elements between compound states. On the other hand a considerable
progress has been made towards a theory incorporating both dynamical and statistical aspects of the
problem of the weak interactions in compound nuclei. This enables one to compare experimental data
with the theory and extract the strength of the weak interaction in nuclei.

The review has the following structure. We start from a qualitative consideration of enhancement
mechanisms in neutron reactions. In the next section we consider a statistical theory of matrix elements
of weak perturbations between compound states, and test this approach with results of numerical
experiments on chaotic many-body systems: the atom of Ce and nuclear shell models. Then we consider
dynamical aspects of the problem: the renormalization of the weak interaction by the residual strong
interaction, which leads to A'/3 enhancement of the residual two-body weak interaction between valence
nucleons and increases (by a factor of ~ 1.4) the strength of the one-body weak potential of the nucleus.
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It is interesting that this problem turns out to be related to the old problems of x-meson behaviour in
nuclei (7 condensation, etc.) and collective 0~ resonances. Comparison of the theory with experiments
yields the strength constant of the weak interaction in nuclei. Its value is in agreement with estimates
based on the standard electroweak model and QCD. A surprising result of the TRIPLE collaboration
(all 7 statistically significant values of the PNC effect in neutron capture by Th turned out to be
positive) initiated the search for regular, non-random mechanisms of enhancement. These mechanisms
are critically analysed in sec. 3. In sec. 4 the statistical properties of PNC effects are considered.
Surprisingly, some of the PNC and P,T-odd effects in compound nuclei are not necessarily suppressed
after averaging over many resonances in spite of their random-sign nature. This result means that one
does not need to resolve particular compound resonances to measure large effects, and measurements
at higher energies are possible. This possibility can stimulate a new class of experiments in nuclei,
as well as in molecules, atomic clusters, chemical reactions, etc. This can be a new approach to the
famous problem of asymmetry of biological molecules. An interesting question follows: Is there a limit
for enhancement?

1.1 Origin of the Enhancement and Estimates of PNC Effects in Neutron
Capture

Let us start off with one of the most impressive and simple examples of PNC effects: the spin asymmetry
in neutron capture. The quantity determined experimentally is the relative difference of the cross
sections of capture into a p resonance for neutrons with positive and negative helicities:

or -0
=55 2
a; +ap

It has been predicted (Flambaum and Sushkov 1980a) and observed experimentally for a number of
nuclei [®'Br, 1'1Cd, 1'"Sn, 13°La, %3%U and %?Th (Alfimenkov et al 1983, Masuda et al 1989, Bowman et
al 1990, Frankle et al 1991)] that at neutron energies of 1-100 €V the magnitude of the asymmetry (2)
in p resonances reaches 1072-10~". One can compare these values with PNC effects in the low-energy
p-p and p-a scattering, which are about 3 x 10~7.

Describing the mechanism which produces these large PNC effects it is convenient to consider the
simplest case of a spinless target nucleus of positive parity (see Flambaum and Sushkov 1984 and
Appendix A for the general case). Suppose that this nucleus can capture neutrons into a negative
parity compound state of spin 1/2. This may happen if the neutron is in the p;;; wave. However, due
to the weak interaction the negative parity compound state contains an admixture of positive parity
states:

/20y + S BEAGZAWT) _ oy s i Sz )

where

1/2tv|Wil/2-
=t /i(E_I— l13/) ) @)
is real, if the state widths are neglected, and i is introduced because the matrix element of the weak
interaction W is imaginary for the standard definition of the angular wave functions. The sum in (3)
allows neutron capture in the s wave. Let us now consider the wave function of a slow neutron with
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momentum k and expand it in terms of the |ijj.) states with definite angular momentum and helicity
(the z axis is along k):

, . k
e'hxi o~ (1 + zkl‘)xi = Vdr [Yoo(n) + 17;—},10(1’1) X+
kr\/_

\/E(lo 1/2,£1/2) ;z—u 1/2,%1/2) +i 1,3/2, :i:l/Z)) , (5)

where x4 is the spin function. The amplitude of neutron capture from (5) to the state (3) can be

written as follows:

T=3T,+3 nT, (6)

where T, and T, are the amplitudes of neutron capture from the p and s waves into the |1/2)
and |1/2%v) states respectively, and the + sign corresponds to the capture of neutrons with positive
or negative helicity. The interference between the p and s capture amplitudes in (6) results in the
difference between the cross sections for different helicities:

0':: X | :t Tp + EnyT,_ylz ~ T: :l: 2szﬂuTa,u [ (7)
and yields the following expression for the spin asymmetry (2):

T:, 1 2+VW
P=2§; T 22 r"‘ C—(E_% )

where the neutron widths I'") « 7?2, and T ) o T? must be evaluated at the energy of the p-resonance
(j1/27) state).

Equation (8) clearly demonstrates the existence of the two enhancement factors mentioned above. The
first of them is given by the ratio between the s- and p-wave capture amplitudes. In the neutron energy
range of 1-100 eV it yields [note the kr factor before the p-wave component in (5)]:

, I 1
== ~ 10%-107

Tp an k R 0*-10 (9)
where R is the radius of the nucleus. Equation (9) estimates the kinematical enhancement in neutron

capture.

The second factor comes from the ratio  (4) of the weak interaction matrix element coupling the two
compound states to the energy difference between them. Let us note that in the absence of a dense
spectrum of compound states this mixing is given by the relative strength of the weak interaction in
nuclei F (1). This value times the kinematical enhancement factor (9) estimates the role of the so called
valence mechanism to the PNC effect in neutron capture (see sec. 3.1). This mechanism can provide a
regular sign parity-violating contribution, however its magnitude is about 102 — 10® times smaller than

those measured in experiments.

On the other hand, owing to a very complicated structure of compound states their mixing is of almost
random character, and the items of the sum (8) give uncorrelated contributions to it. Since the contri-
butions of several nearest levels are important, the energy denominator in % is of the order of the mean
level spacing D between the states of the same angular momentum and parity (D ~ 1-100 &V).
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The matrix element (1/2+v|W|1/2-) contains the wave functions of compound states ¥, (¥, = |1/27),
or [1/2*v)). Each of them is a superposition of a very large number of simple basic states ®;, which
can be chosen as products of particle-hole excitations above the ground state of the nucleus:

¥, = ZC;Q; , (10)

with a normalization condition 33;C? = 1. The residual strong interaction mixes the basis states
strongly within some characteristic energy interval ',y ~ MeV, so that the number N of principal
components, i.e., those giving the main contribution to the sum (10) and to the normalization condition,

can be estimated as

N~ FB" ~10% - 10° . (11)

Since mixing of the basis states within I'y,, range is almost complete, the contribution of a principal
component to (10) is estimated as C; ~ 1/ v'N. By the same token each of the principal components
noticeably “participates” in about N compound states spread over the I'y,: interval.

The matrix element between two compound states is

(@IWIE) = S e (@iwie;) . (12)

i
Suppose W is a single-particle operator W = ¥ ,5(a|W|B)alas where a, § are the single-particle states,
and at,a are the creation-annihilation operators. For given o and 8 the matrix element (®;|W|®;) is
not zero if ®; and ®; differ by the state of one particle only: |®;) = a}ag|®;). Thus, if, say, i is fixed
there is only a small number g (g ~ 1-10) of different j contributing to the sum (12). Therefore the
sum contains ~ ¢/N nonzero items. Their typical magnitude is
1 1
CiCi(%:|W ;) ~ «/_N«/—JVW ;

where W is a typical single-particle matrix element. Since different items in (12) are incoherent, the
total can be estimated as \/gN times each item:

Wiz = (W, [W) ~ %ﬁﬁw N =w/L. (13)

Therefore, the matrix element between the compound states is suppressed by the 1/v/N factor with
respect to the single-particle matrix element. It is easy to see that estimate (13) is also true for a matrix
element between a compound and a “regular” state, containing some small number of components ;.
In the general case one should use N = max{N;, N;} in (13), where Ny ; are the numbers of principal
components in the ¥, ; states,

The mixing n of the two nearby compound states is given by

Wi q 1 \/T N W«
~ ~W = =~ - — A —Y = .
™™g N~ VN T Y T VY (14)

Thus, the dynamical enhancement factor produced by mixing of compound states is v/N, and its
magnitude can be about 10?-10°. The idea of this enhancement was first suggested by Haas et al (1959)
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and discussed by Blin-Stoyle (1960), Shapiro (1969), Sushkov and Flambaum (1982), Kadmensky et al
(1983), Flambaum and Sushkov (1984).

We must say that the real situation is more complicated, and (13) slightly overestimates the weak
interaction matrix element between the compound states. The point is that the PNC interaction W
induces transitions between single-particle states of equal angular momentum and opposite parity. These
states usually belong to different nuclear shells and are separated by the energy interval AE = wg ~
5-10 MeV > I',r. This means that the matrix element of W between the principal components ®; and
®; of the close-lying compound states is zero (Zaretsky and Sirotkin 1983, 1987, Kadmensky et al 1983)
and we have to take into account the contribution of distant components to the compound states. The
perturbation-theory estimate tells one that this contribution is suppressed by a factor of I'y,r/AE, since

Tepr characterises the strength of the residual strong interaction in the system. Thus, instead of (13)

4 Lopr
Wi W\/; AE’

and the mixing of the nearby compound states by the weak interaction is given by

Wiz F N T Wog
m~ 5 " WYNT aE~ aE YV (15)

we obtain

In sec. 2.1 we present an accurate statistical calculation of the matrix element between compound

states.

Combining (9) and (15) we obtain the following estimate for the spin asymmetry P of (8):

T, (1/2*|W)1/2-) 1 W./f4q . 6
P T B —E R AE\/_ F x (10* - 10%) , (16)
where we put W/AE ~ F as a typical value of the PNC effect in the absence of any enhancement.
Therefore, the mechanism of compound state mixing in the p-wave resonance fully accounts for large

PNC asymmetries observed in experiments.

1.2 Criteria of Enhancement

Note that a strong residual interaction is necessary to have dynamical enhancement of weak interactions.
For example, a dense spectrum of many-body states emerges in the ideal gas of noninteracting particles.
However, the energy interval between the states ®; and ®; which can be mixed by the interaction W is
the single-particle interval AE (since other particles are “spectators”). We must turn on the residual
strong interaction V between the particles, which admixes the distant component ®; to the compound
state closest to ®;, thus making the weak mixing (4) of nearby compound states possible. On the
other hand, neither “chaos” nor “ergodicity” of the compound states is necessary to produce certain
enhancement. We use these properties to develop a statistical theory and simplify our calculations.
However, the enhancement can appear even in the case of a relatively small residual interaction V, or
in a system with a sparse spectrum and no chaos. For example, using the perturbation theory in V we
can estimate the weak mixing between the nearest compound states as:
(W) (0 |W(®;)(8;1V|¥a)
E, - E, (B1 — E3)(E; - E;) °

amn
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where |¥;) contains only the principal components of |¥;). If V is stronger than the minimal interval

between the opposite parity levels E; — E; we can have some enhancement in comnarison with the direct

LA SAC OpPPORite pallly BVes coall la SOLRIC CIIRANCCIACHL 1 COIMIPalizOon Wit LAaC QI

weak mixing of distant states (¥, |W|®;)/(E; —E;). It is known that there is no repulsion between levels
of opposite parity. This means that for some fraction of levels one can always have E;, — E_ <« D,
which makes the enhancement possible even for V < D, when there is no chaos. However, to have
enhancement for each level we need V 3> D, and consequently a strong mixing of the components and,
probably, chaos and ergodicity in the space of N principal components.

There are also more sophisticated conditions of enhancement. For example, to obtain estimate (15) we
assumed the Breit-Wigner localisation of the components (the contribution of distant states decreases

ags I'__/AE). However, in, say. the Band Random Matrix model the localization is exponential, i.e

O Lgprj esad e A20W Ty 10, 53, sallQ RALQONR NASUIIR I10CCL SA0 200a15aLi00 38 CApOLnClivids, .G,

the admixture of distant components is exponentially small (see Section 2.2). Thus, to ensure sizeable
admixtures of distant components their direct mixing to the principal components of compound states
by the residual strong interaction V' is necessary. We discuss this question in detail in sec. 2.2. One more
case with no dynamical enhancement for an arbitrary strong residual interaction is given by a model of
Random Separable Interaction. Superlocalization (the number of principal components N ~ 1) which
takes place in this model is due to strong destructive interference effects (Appendix B).

Besides the capture cross-section asymmetry one can study other PNC effects in neutron optics: the

ratatinn af tha nalarization nlans around the ntum vector of the beam J\ the lanaitudinal
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polarization of the initially unpolarized neutron beam a. Analogously to (16) both effects can have
very large magnitudes in the vicinity of a p resonance (Sushkov and Flambaum 1980a, 1981a, 1982):
é,a ~ (1073-10"2)l/ly, where [ is the neutron path in the media, and I is the attenuation length:
lo ~1-5 cm (of course, one can not have | much greater than ly). Although, ¢ and a are usually several
times smaller than P because of the neutron elastic scattering, which decreases the attenuation length.

1.3 Other Reactions: Radiative Capture, Fission. v/ N Classification of
Amplitudes

The method used in the previous section to estimate the contribution of compound state mixing to the
parity-violating neutron capture amplitude can be applied to classify the amplitudes of other processes
involving compound siates (Flambaum and Sushkov 1984). The chief parameter of this classification is
VN >» 1. It allows one to find out dominant reaction mechanisms, and express the relative contributions
of different reaction amplitudes in powers of £ /N,

Besides the matrix elements, the expressions for reaction amplitudes contain energy denominators
E—-E. + %I‘c, where E. and T, is the energy and width of a compound state. These denominators are

N times smaller than the typical single-particle energy AE ~ wp ~ [y ~ MeV:

1 _ Lepr D 1 D 1
E~E.+il. D E—E.+il; Ty N————F—E_ECHFC o (18)

Since the amplitudes are to be classified according to powers of the large parameter v/N, we are not
concerned with other parameters (e.g., I'spr/wo). The rules for estimating the amplitudes are:
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(i) Each vertex (neutron capture, electromagnetic, weak, etc.) contains the factor 1/v/N, where N =
max{N,, No}, and N, N, are the numbers of principal components of the nuclear states coupled in
the vertex. In the ground state N. = 1 and near the neutron threshold N, ~ MeV/D.

(ii) Every summation over the intermediate compound states |c) (the Green function) gives the N, factor
and the resonance energy dependence D/(E — E. + iI'.). The latter can provide an extra, resonance
enhancement of up to D/T..

We should stress that the above rules produce a root-mean-squared estimate of the amplitude. Of course,
fluctuations can change the relative magnitude of the amplitudes. Nevertheless, the v/N parameter is
very large and the probability of a fluctuation which would violate the /N hierarchy is very small.

To see how this classification works let us consider the process of neutron capture once more. By
means of the optical theorem the total cross section can be expressed in terms of the forward-scattering
amplitude as follows:

o= 4—’:r—1mf(0) . (19)

For slow neutron scattering (kR < 1) the scattering amplitude f(0) can be presented as

1 (n)2 (n)2 1 MW, — iy W,y
g (R ) R D B IR B
» - a+§rn P E_EP+§FP 2 ap (E_EO+EF8)(E—EP+§FP)

(20)

where fo is the s-wave potential scattering amplitude, 4{™ and i'y},") are the amplitudes of neutron
capture into the s and p compound states (proportional to the amplitudes T, and T, of sec. 1.1)
normalized so that y{W? = I'(™, 4{m? = I'(™, W,, is the (imaginary) PNC matrix element coupling
the s- and p-wave compound resonances, and g is the factor due to averaging over the spin projections
of the target nucleus (the rules for calculating reaction amplitudes are given in Appendix A). The +
sign before the parity-violating term in (20) refers to neutrons with different helicities. Equations (19),
(20) enable one to calculate the PNC cross section difference o, — o_ and the neutron spin rotation,
proportional to Re(f — f_) [see eq. (121)] at arbitrary (yet low) energy, including the thermal point (see
experiments by Forte et al 1980, Vesna et al 1980). Amplitude (20) can be presented in the following
diagrammatic form:

— ——«p::x:'_il-—— ——-l_s__X:I'l‘l—— (21)

where the single line denotes the single-particle neutron states, the double line corresponds to the

compound states, and the cross is the weak interaction vertex.

Let us first compare the potential and resonant s-wave scattering amplitudes. The resonant term [the
second one in (20), or the second diagram in (21)] contains the neutron capture vertex (1/v/N), the
neutron emission vertex (1/v/N), and the Green function of the compound state (ND/(E — E, + iT',)),

which yields
D

“E-E+il,’
Therefore, the resonant scattering amplitude has zero order in powers of /N, just as the potential
contribution. Indeed, it follows from the square-well model and experimental data (see, e.g., Bohr and

fres (22)
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Mottelson 1969) that between the compound resonances at |E — E,| ~ D >» T, the ratio

fea 1 TP

—f——~ka D ~ (.05 - 0.5
0

(a = —fo is the potential scattering length) is determined by the parameters other than VN,

The parity-violating contributions to (20), (21) contain three vertices (1/N/2) and two Green functions
(N?), and their estimate is

D D
E—E,+iT, E—E, + i,

fev ~VN (23)

Therefore, this amplitude is v/N times enhanced with respect to the parity-conserving resonant ampli-

tude (22). One can see that other PNC amplitudes, e.g.,

S

s s

Wik = e — (24)
N\

and the diagrams obtained from (24) by changing the order of vertices, or by swapping the s and p

states do not have the /N enhancement. These diagrams describe the PNC mixing of the single-particle
neutron states, or the single-particle components of compound states {the so-called valence mechanism).
It has been first considered by Zaretsky and Sirotkin (1983), and will be discussed in sec. 3.1.

The diagrams shown above form a convenient language of describing the interaction of a neutron with
compound states. For example, the second and third diagrams in (24) account for the resonance increase
of the neutron wave function due to virtual capture into the compound states. Note that all-order
summation of the series of diagrams is equivalent to redefining the parameters of compound resonances
(positions, widths, etc.), which are anyway taken from experiments. Using this approach Flambaum and
Sushkov (1984) showed that resonance formulae for PNC effects are applicable at the neutron thermal
point where the effects are 3 to 6 orders of magnitude smaller than those measured on-resonance. An
alternative approach to the general description of PNC effects in neutron scattering based on Feshbach’s
projection formalism (Feshbach 1958, 1962) was suggested by Lewenkopf and Weidenmiiller (1992). In
this approach the operators P and @ project the total wave function onto open channels [single-particle
s and p states, thin lines in (21), (24)], and closed channels (compound states shown with rectangles).
In their notation Ty corresponds to the PNC diagrams in (21), TEY corresponds to (24), and T};g )
ng describe neutron capture by the weak interaction (not shown here).

Let us now turn to the diagrams describing the (n,v) reaction:

e rd
s v c - Y

X f X f (25)

The first of them (A4ir) corresponds to the direct radiative capture of the neutron into the final com-
pound state f. It contains one vertex of the electromagnetic interaction, hence, it is proportional to
1/ \/ITI; The second diagram (Ay,) describes the same process proceeding via the intermediate com-
pound state c. It contains the neutron capture vertex (1/4/N;), the Green function of the compound
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state N.D/(E — E. + iT';), and the photon emission vertex (1/1/N;), 80 Ay x N2. The ratio

Ny (26)

Mr

shows that even in the off-resonance situation (|£ — E.| ~ D) the resonance mechanism in the (n,¥)
reaction dominates for the transitions into the complex ﬁna.l states (Ny > 1). The direct and resonance

contributions become comparable o
contriout Decome comparanie o

(Ny ~ 1)

The dominant contribution to the parity-violation effects in the (n, ) reaction comes from the diagrams

with the weak mixing of compound states:

I . T

—r—K .
\ ; AN (21)

IR J—— Sy

The first alagra.m contains the neutron capture vertex \1 /\/1\!c ), the weak interaction vertex ( / Vvive),

the photon emission vertex (1/4/N.), and two compound state Green functions {N?), which yields

n n
v L

E- E-}-'F E - Ec:+'I"c:

Apy ~ /N, (28)

Therefore, PNC effects in the (n 7) reaction dispiay the same factor of dynamical enhancement \/JVC
102-10° as in the neutron capture. The second diagram in (27) contains the weak mixing in the final

atata and san ha astimatad as
svate€, and can o sLimaiea as
D Dy
~ /Ny : , (29)
E—Ec-l-;[’c E—w—E::-&-ZI‘u

where D; is the mean level spacing at E ~ E; and w is the hoton energy. Since Ny <« N, this
contribution is much smaller then Apy (28). Besides (27) th
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mber of other nanfv-vm]afmv
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diagrams with the weak mixing of single-particle states, or with direct electroma.gnetlc capture vertices,

either not enhanced or even suppressed as 1/ \'/N—!.

1t is instructive to consider a particular example of the '7Sn (n, ) reaction studied experimentally by
Danilyan et al (1976), and Benkoula et al (1977). The transition into the final 0 state of the ®Sn
nucleus takes place from 1* and 1~ compound states by means of M1 or E1 v emission. Taking into
account the dominant parity-conserving and parity-violating contributions one obtains the foliowing

total reaction amplitude:

@MU | (OHELL) (WL TLn) 0)
E-B 4T, (- B-FiE- B+ iT)

feveny

where |n) is the initial neutron state. We assumed in (30) that the neutron is captured into the s-wave

resonance (this is true for low energy neutrons if their energy is not too close to a p-wave resonance). The

rircular nolarization of the nhaton p .‘?.I'.d the agsvmmet fﬂt narameter f the nhnfnn angular dlstﬂb on

CIrcuial pCiallizasiOn Of i€ PAcLol £ tae asymine Pas et the photonl angilial n

(W(6) = 1 + acos 8) due to interference of the two terms in (30) are given by

(-Wit) @*E1L) | .
E—E (M) - (31)
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It is worth noting that the energy denominator in this formula contains the difference E — E.. rather
than E; — E_, as in (16). This gives a possibility of an additional resonant enhancement of the mixing,
if |[E— E_| € |E, — E_|, its magnitude being |E+ ~ E_|/|E ~ E_|. In this estimate we assumed
|E — E_}{ > T, and neglected the p-wave neutron capture. The numerical estimate of the effect is

(Sushkov and Flambaum 1982): 5
1

M1l
This value is in reasonable agreement with experimental data, if one assumes |E1/M1| ~ 1. Such value

jaf ~8x10™*

of this ratio is not too surprising for frequencies far from the maximum of the giant E1 resonance. It
appears also that several compound resonances contribute to the parity-conserving M1 transition in
the case of 18Sn. However, in principle, there is a possibility of kinematical enhancement in (31), if
|E1/M1] > 1.

The (n, ) reaction was the first one where parity-violating nuclear forces were observed [see, e.g., review
by Abov and Krupchitskii (1976)]. A detailed theoretical consideration of the problem can be found,
e.g., in Flambaum and Sushkov 1985, where all possible correlations due to interference of the E1 and
M1 ~-transitions for the s- and p-wave neutron capture are calculated (there are 8 P-odd and 9 P-even
correlations). Their behaviour upon averaging over the final state is also examined, and according to
it the correlations in the integral y-spectrum are divided into three classes. Note that a formula which
contained the enhancement of the circular polarization of v-quanta near a p-wave compound resonance
was presented by Lobov (1970), although the possibility of this enhancement was not stressed in that
work, and a standard estimate, P, ~ 1074, was obtained, similarly to what one obtains at the thermal

point or in an s resonance.

Another class of experiments where PNC effects have been observed is nuclear fission by polarized
neutrons (Danilyan et al 1977, Vodennikov et al 1978, Andreev et al 1978, Petukbov et al 1979, Vesna
et al 1980, see also references in Sushkov and Flambaum 1982). The quantity measured in these
experiments is the asymmetry of emission of the light fragment with respect to the neutron spin (W(6) =
1+acos 8, for unpolarised nuclei). The most surprising feature of this phenomenon is that the correlation
o - py between the neutron spin and the momentum of the light fragment is a manifestation of parity-
violating forces in the motion of a heavy particle: the nuclear fragment consisting of 10? nucleons.
Another fact which needed explanation was the apparent survival of the effect in spite of a very large
number of final states of the fragments. If the sign of the effect depended randomly on the final state of
the system, as, say, in the (n, ) reaction, the asymmetry measured for all final states at once would be
strongly suppressed. A theory of this effect was considered in Flambaum and Sushkov (1980), Sushkov
and Flambaum (1981a,b, 1982). The process of fission goes through a small number of intermediate
collective states, fission channels. The P-odd correlations, as well as the usual P-even ones, are formed
at this “cold” stage of the fission process due to mixing of opposite-parity rotational states by the
dynamically enhanced weak interaction. Thus, the effect does not vanish after averaging over the final
states of the fragments.

The main parity-conserving and parity-violating contributions to the reaction amplitude are given by
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the diagrams
i i (32)

where the circle denotes the cold stage of fission. Similarly to the (n, ) reaction, the first amplitude in
(32) contains the neutron capture vertex (1/+/N;), the Green function of the compound nucleus (Ne),
and the fission amplitude (1/4/N;)', so that the result is independent of N.:

D
f~ FoE T (33)
The estimate for the second (parity-violating) amplitude in (32)
D D
~ Nc - -
o VNeF B T, B-Ba 1T (34)

contains the /N dynamical enhancement factor. Thus, one obtains the following rough estimate for

the asymmetry parameter a:

D
~ CF——'——-— ~ -t _3.
an~ /N, E—FE, ¥ 1Ty 10 10

This value is indeed close to those obtained experimentally for the 232U, 35U and 23°Pu nuclei. Note
that there is a resonant energy dependence near the opposite parity (p-wave) compound resonance E,

(fission is dominated by the s-wave resonances E.).

A common feature of all PNC effects considered above is the existence dynamical enhancement, pro-
portional to v/N, when the parity-violating amplitude contains the weak mixing of compound states.
Of course, such enhancement should not be confined to nuclear processes only, but must be a generic
property of all many-body systems of interacting particles with dense spectra of states (compound nu-
clei, rare-earth and actinide atoms, molecules, clusters, spin systems, quantum dots in solids, etc.) For
example, the existence of dynamical enhancement has been recently demonstrated in numerical calcu-
lations for the rare-earth atom of Ce, and B, ?Be nuclei (see sec. 2.2). This enhancement originates
from a high spectral density of the excited states, or, equivalently, from extremely small energy spacings
D between them. Indeed, the distance between the levels decreases exponentially with the number of
excited particles n (D o e™®"), since the total number of possible states (number of combinations)
increases exponentially. In such a system the mixing of compound states by some weak perturbation is
proportional to VN « 1 / VD, i.e., is exponentially enhanced. This is possibly a quantum-mechanical
analogue of the exponential divergence of trajectories in classical chaotic systems.

In a macroscopic system the density of states is infinitely large, although no enhancement has been
observed so far (if we neglect the famous puzzie of biological asymmetry of the world). There are

1The factor 1/+/N; in the fission amplitude describes the admixture of the wave function of the cold deformed nucleus
in the wave function of the compound state ¢. This factor gives a reasonable estimate of the fission widths of above-barrier
resonances: I'y ~ (1/N)(1/7) ~ 0.1-1 eV, where 1/7 ~ v/R ~ 100 keV, v is the velocity of the fragments at the fission
barrier, R is the barrier size, and 7 is the lifetime of the cold state.
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several reasons for suppression of the enhancement, e.g., finite state widths, effects of temperature, finite
energy resolution. Interestingly, the examination of the latter produced an unexpected result: averaging
of random-sign PNC effects does not necessarily lead to their suppression, and a certain “violation”

of the Central Limit Theorem takes place due to unusual statistical properties of the compound-state

mixing (see sec. 4).
i.4 Hamiitonian of the Nuciear PNC Weak Interaction
The nucleon-nucleon PNC interaction can be represented by the following effective Hamiltonian:
G 1
Wy = 75-2;[(“,0‘5 = 9a0%) {Pa = Pb, 6(ra = 1)} + g34(0a X 04)Vab(ra — 1), (35)

where @,,, r. 3 and pq are the (doubled) spins, the coordinates and the momentum operators of the
nucleons a and b [protons (p), or neutrons (n)], m is the nucleon mass, { , } is the anticommutator,
and ga, g., are dimensionless constants. They take into account the renormalization of the Fermi
weak interaction by the strong interaction (ab = pp,pn,np,nn). The form of the contact interaction

{AR) swnibtan in tha lawast firat ardar in /e fallaws fenam tha P oadd tranafarmatinn nranartias of tha
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potential. This interaction dates back to the work by Feynman and Gell-Mann (1958). The constants g,
can be, in principle, considered as phenomenological parameters, similar to those of the Landau-Migdal
parametrization of the strong interaction. On the other hand, the Hamiltonian (35) can be derived as
a contact limit of the one-boson-exchange interaction (see, e.g., Desplanques et al 1980, Dubovik and
Zenkin 1986), which takes into account 7-, p- and w-meson exchange. In this case g,, are expressed in
terms of the weak (f,, AT, hT) and strong meson-nucleon interaction constants and meson masses, with
an account of the long-range and exchange nature of the interaction and the nucleon-nucleon repulsion
at small distances by means of the parameters W, and W, (McKellar 1968, Lobov 1980, Flambaum et

11004, L Adall o aend ITowdow 100OEY ML, conlecan oL dlhcca mcccdocde wrona ammoldo_ o
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of works (see papers cited above and references therein). It is necessary to note that by using Fierz
transformation exchange matrix elements of the contact interaction (35) can always be reduced to the

direct ones, and thus included in the definition of the g,, constants. Then the Hamiltonian W, will
have only direct matrix elements. This convention is used throughout the paper.

If one considers the interaction of an unpaired valence nucleon with the core of paired nucleons, the
interaction (35) produces the following single-particle parity-violating weak potential:

= Sl = G % tgpp(r)} (36)
V2im

where the sum is carried over all core nucleons b, and p(r) is the nuclear density normalized as
Jp(r)dr = A (A > 1). The constants g, of the potential (36) are given by g, = %ypp + %g,,,,,
On = %g,.,, + %g,m, and can be expressed in terms of the weak meson-nucleon coupling (see references

ahawvae halawr wa neasant tha saculé F Taemh AU &
GUVYL, UTiUWw Yre PLCWMH GALS 1ToUlY Ul 1 ladlivaldlll ©

=2.0x 10°W, [ 176%% fo — 19.5h3 — 4.7h] + 1.3A2 — 11.3(hS, + ) — 1.7h"]

< : (37
gn = 2.0 x 10°W, l 118;—;,:-f,, —18.9A0 + 8.4h‘ 1.3h% — 12.8(A% — BL) + 1.1h,‘, s

Using the “best” values of f,, A7 and AT from (Desplanques et al 1980) together with W, = 0.4 and
Wy = 0.16 [these values are based on the calculation of PNC nucleon scattering by *He (Dmitriev et al
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1983, Flambaum et al 1985), and agree with those obtained by McKellar 1968 and Lobov 1980] yields:
gp =~ 4.6, g, ~ 0.2. The smallness of g, is caused by the mutual cancellation of the - and p-meson
contributions. It should not be taken too seriously because of the large uncertainties in the values of
constants used to calculate g,. Sometimes a different form of the weak potential (36) is used:

w=3e{op S}, where S m o)/, e= g =10x10%g,  (38)

and po is the average nuclear density. In this case ¢, ~ 4 x 1078 and ¢, $ 1 x 1078,

The potential (36) is believed to play a leading role in various nuclear PNC effects [see, e.g., calculations
of the nuclear anapole moment (Flambaum and Khriplovich 1980, Flambaum et al 1984b, Haxton et al
1989, Bouchiat and Piketty 1991)]. Indeed, w contains a coherent contribution of A nucleons. However,
it was noticed (Zaretsky and Sirotkin 1983, 1987, Kadmensky et al 1983) that the matrix element of
(36) between the principal components of compound states close to the neutron threshold is zero. The
point is that for a pseudo-scalar operator (36) {a|w|8) # 0 only for the single-particle states o, 8
of different parity and identical angular momentum (e.g., 832 and pys;). It is known (see, e.g., Bohr
and Mottelson 1969) that such orbitals belong to different nuclear shells. They are separated by the
energy wp ~ 5-10 MeV, which is greater than the spreading width of the principal components ['ypr =~ 2
MeV. Therefore, the matrix elements of w between the compound states must involve distant, small
components, which can be described as a perturbation-theory admixture to the principal components
due to the strong residual nucleon-nucleon interaction. This mechanism can be described as the induced
parity-nonconserving interaction (IPNCI) (see sec. 2.3). Its magnitude is proportional to the strength
of the original PNC potential (36), and it directly couples the principal components of the compound
states. It will be shown in sec. 2.3 that this two-body interaction is an order of magnitude (~ A'/%)
stronger than the direct two-nucleon PNC interaction (35), and that the IPNCI has a different spin and

isotopic structure.

There is another effect which influences the strength of the nuclear PNC potential. Even if the constants
gas of the PNC nucleon-nucleon interaction (35) were known precisely, the PNC potential of the nucleus
w would be different from that of (36) with constants given by (37). This happens due to renormalization
of w by the residual strong interaction. Similar effect changes the magnitude of the parity and time-
invariance violating (P, T-odd) nuclear potential. These questions are considered in Appendix D. The
P,T-odd potential is renormalized by the momentum-independent part of the strong interaction. The
renormalization of the PNC potential is produced by the momentum-dependent spin-flip component
of the strong interaction. The latter increases the g, constants with respect to their initial values
(37). The size of the renormalization depends on the constants of 7- and p-meson exchange underlying
the strong interaction. It turns out that the r-meson exchange contribution alone is large enough
to generate instability (a pole) in the nuclear response to the weak potential. Thus, the question of
magnitude of the nuclear PNC potential seems to be related to the question of stability of the nucleus

against 7-meson tensor forces, and in particular, to the problem of = condensation in nuclei.
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It has been shown in the Introduction that there are several enhancement factors (kinematical, dynam-
ical, resonance) which increase the observable PNC effects in nuclei by up to 6 orders of magnitude
with respect to the basic strength of the weak interaction (1). The most universal of them is dynamical
enhancement (see sec. 1.3). This factor emerges when the weak interaction mixes nearby compound
states, and is estimated as VN ~ 102-10%, where N is the number of principal components of the
compound states. However, facilitating the experimental observation of PNC effects, the same “mecha-
nism” greatly complicaies the caiculation of the effeci. Moreover, it makes any calculation of ihe effect
for a particular resonance in a given nuclei simply impossible. Of course, the energies and widths of

the compound resonances which appear explicitly in the formulae describing the effect [p . (8] can
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be found experimentally. The main problem then lies with the matrix elements (c|W|c) between the

compound states.

According to the statistical theory of compound resonances this matrix element is a Gaussian random
variable, and its values are uncorrelated for different ¢,¢. Thus, the aim of the theoretical work
is to calculate the r.m.s. value of this matrix element. The latter can be directly compared with
experimental results of Bowman et al (1990) and Frankie et al (1991). In contradistinction with previous
experiments, the measurements of the parity-violating asymmetry P in these works were performed for
series of 17 p resonances in n+23%U and 23 p resonances in n+2?Th (about one-third of them are
expected to be py/2 resonances, which produce high P values), and provided the r.m.s. PNC matrix
elements: VIW? = 0.58*3%% meV in 22U, and VW? = 1.39*355 meV in °Th. These values are in
agreement with a crude estimate: VW? ~ (Wep/VN)(Tupe/ AE) ~ 1 meV for N ~ [ype/D ~ 105
Here W,, ~ (1 eV) X g, ~ 4 €V is a typical single-particle PNC matrix element (see, €.g., Flambaum
1993, Flambaum and Vorov 1993). However, one could get much more precise information about the
nuclear PNC weak interaction from an accurate theoretical calculation of VW?. We should mention
that besides the above quoted number Frankle et al (1991) produced an unexpected result: the values
of P turned out to be positive for all 7 p resonances, where the effects were greater than 2¢. This might
mean the existence of a large regular contribution to the PNC asymmetry, produced e.g., by a certain
degree of coherence in the compound resonances. We postpone the discussion of this question until sec.
3.

Several approaches have been suggested to calculate matrix elements between compound states. Urin
and Vyazankin (1991) expressed the mean square matrix element in terms of the strength function of a
cold nucleus, and calculated the latter semiempirically in the framework of “temperature mechanism”.
Johnson et al (1991) based their calculation on the the work by French et al (1988) and employed
the assumption that the mean square matrix element of the PNC interaction is proportional to that
of the residual shell-model strong interaction (see sec. 2.5). In the next section we consider the

statistical theoretical method described in (Flambaum 1993, Flambaum and Vorov 1993, Flambaum

1004a. Flambaum ef al 1994). Tt can he annlied to caleulation of mean sguare matrix elements between
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compound states (chaotic eigenstates) in various many-body systems.
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2.1 Statistical Theory

The wave function of a compound state may be expressed as the sum over simple components |®;)
which are many-particle excitations over the shell-model ground state |0):

|®) = Z:C,»|<I>,~), |®;) = alapalag ...]0) . (39)
Consider a single-particle operator (e.g., the weak potential):

M = ZﬁM"’ﬂa’Laﬂ = Zﬁ: Maﬂﬁaﬂ N (40)

where pop = alag is the density matrix operator, and Mup = (a|M|B). The matrix element of the
operator M between the compound states ¥, and ¥ is given by

M2 = (0| M|85) = 3 c e @, M|8;) (41)
i
or
My, = zMaﬂ(‘I’llﬁaﬁIWZ) = EMappf,l;) . (42)

The magnitude of p 12) Jetermines the “weight” of the single-particle transition o — 8 M, in M.
We suppose that in a “chaotic” compound state the mean values of the matrix elements (averaged over

many compound states ¥, and ¥,) are zero:
Moo= (WM¥) =0, 02 = [Wilposl¥a) =0, (43)

which is equivalent to the assumption of random and uncorrelated distributions of C’s:

C,-“) _('5 —(TF'TY

Thus, the matrix element (41) is the sum of a large number of uncorrelated random items. According
to the Central Limit Theorem, this makes the statistics of the matrix elements Gaussian (we indeed
checked this, see sec. 2.2). Note that statistical independence of C,-(l) and CJ@) is ensured by the fact
that ¥, and ¥, are the states of different symmetry, e.g., having opposite parity.

Our aim is to calculate the mean square matrix element or the correlator between matrix elements of
different operators with the same selection rules (e.g., P-odd and P,T-odd interactions):

M= Y MasMpapls ps = ZlManl’Ip("’l’ (44)
aﬂa’ﬁ'
MW = ZMaaWaalp("’I’ (45)

In (44), (45) we used the fact that transitions between different pairs of single-particle states are

uncorrelated: pglg’pf,’,},. = 6aa:6;;g:|p(m|2 which follows from the statistical properties of the expansion

coefficient in (39) for compound states (we check these properties in sec. 2.2):

CiC; = 6,CF (46)
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(C’s are chosen to be real). The mean square component C? is connected with the strength function
introduced by Wigner (1955),
pu(E,i) = S CS(E - By) (47)
y

where i and ) enumerate the basis states and the eigenstates, respectively. Averaging (47) one obtains
Dpul(E, i) = C™? = w(E; E,T,N) . (48)

Here D is the locally averaged level spacing between the states of given spin and parity: D™ = p(E) =
Y, 6(E — E,), and the function w(E; E,T,N) = cM? (E» ~ E) has been introduced to describe the
spreading of the component i over the eigenstates A. This function depends on the number of principal

components N in the sum (39), the spreading width I and the energy E; of the component, and on the
energy of the compound state E (in fact, on their difference E — E;)?. In the simplest model description
(Bohr and Mottelson 1969) w(E;; E,T', N) has a Breit-Wigner (or Lorentzian) shape:

1 I?/4 xl
NE-Ey+a’ YT (49)

w(E; E,T,N) =
The spreading width I' is connected to the mean-square off-diagonal Hamiltonian matrix element
V2 by I' = 27V?/D, and the last relation in (49) follows from 3=; C,-('\)2 = 1, or, equivalently,
Jw(Ei; E,T,N)dE;/D = 1. The strength function (49) also appears as the solution of Wigner’s Band
Random Matrix (BRM) model (Wigner 1955) for 1 <« 1—‘;—;— < b, valid at |E; — E| < Db, where b is the

bandwidth of the matrix.

Using equations (41), (46) and (48) we obtain:

10571 = TOlpasla)(Walppal W) = ‘;c.-‘"’ CI(®lfas|@;)(®; 521 2:)

= > wi(E:)wy(E;)(®ilpasl ®;)(®;hpal i) » (50)
i

where wy(E;) = w(E;; E1,T'1, M) and wo(E;) = w(E;; Eq, T2, N;). Below we assume N; > Ny (I'3/D; 2
T;/D,), i.e., the number of principal components among |®;) is greater than or equal to the number
of principal components among |®;). The operator jgo = a‘f,ao, transfers a nucleon from the orbital
a to the orbital 3. The matrix element {®;|5s.|®;} is not zero for |@;) = aI,aa|<I>j) only. Therefore,
E; — E; ~ €5 — €a = wpa (€a and ¢ are the single-particle energies) and the summation over j at fixed
i includes only one state. We can use closure and simplify (50):

2 (®ilap|®;)(®; 1550l Vs) = (ilbaphpal D) = (Bilfia(1 = 7p)|®1)

i
gince pughpa = af,aga},aa =ala,(l - a;,ap) = fia(1 — fig), where 2, is the occupation number operator.
Thus, we obtain

10521 = Zwl Dwa(E: + wpa){®ilRa(l — f1p)| D) - (51)

2We neglect the dependence of T on i in the expression (48) for C‘('\)z. This is justified when the number of “decay
channels” (off-diagonal matrix elements H;; # 0) of the basic component ®; is large, which makes the fluctuations of
T small, similarly to the fluctuations of the radiative widths of compound states. However, there is a weak regular
dependence of T on energy which can be easily taken into account. A numerical experiment for the atom of Ce (sec. 2.2)
confirms this picture.
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The matrix element (®;|fia(1 — 75)|®;) is equal to 1 if in the component ®; the orbital o is occupied

and f is vacant (this condition makes the transition o — 3 possible). In other cases it is zero. Since
w; and w; in (51) are smooth functions of energy (they vary on a typical energy scale ~ I'), the matrix
element of the #,(1 — 7ig) operator can be replaced by its average value:

(na(1 —np)h = (V1]fa(l — fig)|¥1) . (52)
The = sign is a reminder that the left-hand side is the local average value over ¥, states. Practically,

when the number of components is very large, the fluctuations of (¥1|fa(1 — #g)|¥;) are small.

Substituting this average into (51) and replacing the sum over i by the integral over dE;/D; we obtain:

PSP = (na(1 = ng))s o wi(Bwa(E: + wpa) = (a1 = na)h [ wn(Ewl(E; +waa)f’§l‘ . (83)

This result can be written in the following form:

|P$)P = (na(l — ng))1 D2b(T'1, T2, A) , (54)
where we defined
g 1 dE;
801,12, 8) = - / w(Ei; By, Ty, Ny Ju(E; + wgoi Ea T M) 30, (A= Ea = By —wpa) . (55)

The above definition is consistent if w(E;; E,T', N) depends on the difference E; — E. One can easily
check the following property of the function &:

/ §(Ly, Ty, A)A =1, (56)
and obtain for the Breit-Wigner model strength functions (49) that
. 1 T/2
5(F1,P2,A)= ;m y (P=F1+F2), (57)

also has a Breit-Wigner form. Due to (56) one may call § a “spread” é-function [if Ty, — 0, then
§(ry, T2, A) — 8(A)).

Using (44), (54) we can now calculate the mean square matrix element between compound states:

[Mis]? = Y IMagl*(na(l — ng))1Ds 8(T1, T2, By — Ey — wpa) (58)
af

where the summation is carried out over the single-particle orbitals a and 8. If the number of excited

particles is large we can use Fermi-gas formulae for the occupation numbers:

(al1 = ng)) 2 n(ea)(1 = n(es)), (&) = gy (59)

The temperature T and the chemical potentials (Fermi energies) pp, pn for protons and neutrons can

be found from the standard conditions:

Y eana = E, Yon,=2, 3 na=N, (60)
o ? n



Parity and Time-Invariance in Compound Nuclei 443
where E is the compound state energy, Z and N are the proton and neutron numbers. Equations (58)-
(60) allow one to do computer calculations of the mean square matrix elements between compound
states. Note that in the case of interacting particles the ideal-gas equation (59) could be refined. The
simplest way to do this is to introduce spreading widths of the single-particle states, which smooth
the Fermi step even at T = 0. One can also use a more consistent approach in the spirit of the
Landau theory of Fermi liquids and take into account the dependence of the interaction energy of quasi-
particles on temperature. The energy of the system with respect to its ground-state energy E — Eq and
the renormalized quasi-particle energies &, [to be used in (59)] are then given by:

E-E= Z €6nq + %Z Vaﬂ‘sna‘snﬁ ’ (61)
o af
€o = €4 + Z Vag&np , (62)
8

where 6n, = no(T) — nq(0), and V,z is the matrix element of the effective two-body interaction (e.g.,

the Landau-Migdal strong interaction).

For the two-body operator

A 1 \
¥ =2 ¥ alabia BV dasss = 3 3 alaVapmiaras (63)
afys afyb
the mean square matrix element can be obtained in a similar way:
[Myf? = (1| V| ¥)? = Z |Vaps — Vs *(nans(1 — ny)(1 = n6))1 D3 8(T'1,T2,w — wysep) , (64)
aB—yﬁ

where w = E,— Ey, and wys50p = €+ €5— €, — €g i8 the energy of the two-particle transition: a, 8 — 4, .

We can also calculate the correlator Cyw between matrix elements of two operators M and W with
identical selection rules:
- MW _ Tap aﬂWﬂalp 12)|2
= 1/2 172
(Pl W)™ (T IMuoli1oG0R) " (S Wesl P

One can easily see that [Cyw| = 1 if the matrix elements W,5 and M,g are proportional to each

(65)

other (M,s = const x Wog), or if there is only one dominating single-particle transition, say, s — p
(My, > Mo and W,y > Wy for all o # s, B # p). Usually there are several important single-
particle transitions near the Fermi surface (¢ ~ 10). If there are no special reasons for the coherence
or cancellations one could expect |Cyw| ~ 1/,/g ~ 0.3. However, in the most interesting case of a
P-odd and a P,T-odd interactions there are pairs of opposite sign contributions. Indeed, the matrix
elements of the weak (PNC) interaction are imaginary: Wso = Wy5 = —W.p. The matrix elements of
the P,T-odd interaction are real: Mg, = M,p. Therefore, we have pairs of opposite sign terms:

WapMpalpSgI* + WoaMapl oG = WagMsa (105317 ~ 052F) o na(1 = ng) — ng(1 = na) . (66)

This partial cancellation makes the correlator small (JCyw| < 0.3), which means that in practice the
matrix elements of the P, T-odd and the P-odd weak interactions are statistically independent (see sec.
2.4 and Appendix C).
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Note that equations (58), (59) for the matrix element M;, have simple interpretation. The transition
o — 3 takes place if the orbital « is occupied and J is vacant. Thus, the factor nn(1 — ng) selects the
transitions near the Fermi surface. In the limitI'; + Ty — 0 & transforms into a conventional §-function.
Therefore, it reflects the “energy conservation” for the quasistationary states with finite widths Iy,
I';. The M operator “favours” the transitions between the compound states with the energy difference
E; — Ey = w close to wp,, Where wg, = €5 — €, is the energy difference between the single-particle
orbitals coupled by M. In the case of w = Whas

e 2D,
M2 ~ |M —_—~
I 12' l aﬁl ‘n_r

IMatiI
—F 67
: (67)

where M,y is the single-particle matrix element (we used (57) to make this estimate). Recall that
N; > N;. Therefore we see that the result of the statistical calculation (58) agrees with the rough
estimate (13) made in the Introduction. Far from the “resonance”, at |w — wg,| > T there is an extra
suppression factor I'/|w —wgqa| (in the Breit-Wigner model). This suppression is especially important for
calculations of the weak matrix elements between nearby compound states, where w = 0, wg, ~ 5-10
MeV >T = 2 MeV (see also discussions in Zaretsky and Sirotkin 1983, 1987, Kadmensky et af 1983).

Starting from eq. (50) and using closure to sum over j (we assumed N; < N,) we arrived at eq. (54)

for the mean square matrix element of the density matrix operator. However, starting from

1651 = (WalBaal W) (Wlpag )
and summing over : first (for N; & N;, or Ny > N;) one would come to a different answer:
1651 = (np(1 = na))2Dyb(Fs, Tayuo = wga) (68)
Equations (54) and (68) are identical if the following relation is valid:
(na(l = ng))1 Dy = (np(1 — na))2 Dy . (69)

This can be checked, e.g., in a model where a number of particles are statistically distributed over a
larger number of orbitals. However, the approximate Fermi-gas formulae for the occupation numbers
(59) violate the identity (69). This violation is not important for the calculation of [My;[? from (58),
because of the summation over a,3 and since Dy &~ D, for Ny ~ N, (this happens for the weak
interaction matrix elements where F; = E,, I'; & I'y). Also, for Ny ~ N; one can use a symmetric form
of the result [half the sum of (54) and (68)]:

1P = (na(lz— )1 Dal'z + (np(1 — ":))2D1r1 ‘ (10)

m{(w — wpa)? + (T1 +T2)?/4]

In the case of wgy > I', w & 0 eq. (70) coincides with the perturbation theory result [equations (30)-(33)
and (27) of Flambaum (1993)]:

\% Vif?
Vo (1 = s+ ]

af ﬁa

1051 =

(np(l —na))2 ,

if one recalls that T' = 2x|V[?/D, and the admixture of the distant component |®;) = a}a,l@;) (®; is
one of the principal components of ¥1) to ¥, is V/wag.
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For the sake of completeness we also present formulae for the mean diagonal matrix elements:

(U1]pap|¥a) = Z:C.'mz(‘l’:'lalaﬁl‘l’i) = bap(na)t (1)
(01| M|9,) = 3 MogC%(®i)at ag|®:) = 3 Moa(nahr (72)
aff o
—_ 1 -5 1
(V1) = 5 32 VepnsCl " (@ilabaiorls) = 5 3 (Vasse ~ Voses)(manghy - (73)
afy o

Let us summarize the results of this section. Using the statistical approach formulae (58), (64) for the
mean square matrix elements between compound states have been obtained. The answer is expressed
in terms of the parameters of the compound states (N, I'), the single-particle energies (w,s), and the
orbital occupancies [n4(1 —ng), these can be calculated using the Fermi distribution]. In order to apply
eqs. (58), (64) one also needs to know the function &, which depends on the strength functions of the
compound states components and has a model Breit-Wigner representation (57). Although, this model
may suit to the description of the principal components, its validity for the distant, small components
is questionable. This point is extremely important for correct calculation of the PNC matrix elements,
since the weak PNC interaction mixes the principal components of one compound states with the small
components of the other, and vice versa [see secs. 1.1, 1.4, and the discussion after equation (67)]. It
will be shown in sec. 2.3 that by taking into account the residual strong interaction an effective induced
parity-nonconserving interaction, which mixes the principal components of the compound states can be

introduced.

The statistical approach presented above relies heavily on the properties of compound states, such as
those given by eqs. (46), (49). These properties are expected to be common for various many-body
systems, if the two-body interaction is strong enough to produce “chaos” in the dense spectrum of
excited states. In the next section we discuss the results of numerical calculations of chaotic eigenstates
of the Ce atom (Flambaum et al 1994), as well as those of nuclear shell-model calculations by Horoi et
al (1994) for 12 nucleons in the {sd) shell, and by Auerbach and Brown (1994) for ®Be and °B. This
allows us to check the assumptions usually made in statistical theories of compound states, to study
the behaviour of the strength function beyond (49), to check the validity of the mean square matrix

element calculation, and to demonstrate the existence of enhancement of small perturbations.

2.2 Numerical Experiment: Compound States in Atoms and Nuclei

It is a well known fact that rare-earth atoms have very complicated spectra (Martin ef al 1978), and
exhibit Wigner-Dyson statistics of energy levels at excitation energies above 2 eV (Camarda and Geor-
gopulos 1983). These atoms have several electrons in open shells and the structure of corresponding
eigenstates is expected to be similar to that of compound states in nuclei. On the other hand the
number of basis configurations in atoms is much smaller than that in nuclei near the neutron threshold.
This makes atomic calculations much more feasible and realistic, and allows one to control the results
against the experimental spectra measured at all energies from the ground state well into the compound
states region.

The Ce atom (Z = 58) contains 4 particles in open shells. There are 7 orbitals involved: 45z, 4f7/2,
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Figure 1: Odd and even J = 4 eigenstates of Ce. Shown are the eigenstates’ components C; in the basis
of ®;; states vs the energies of the basis states E; = H;;.

6312, 5dasz, 5dssz, 6p1y2, 6psja. We studied J™ = 47, 4% manifolds, which contained 260 and 276
states respectively. The Hamiltonian matrices Hyx = (®y;|H|®:) were calculated using the basis of
&;; states constructed of the Hartree-Fock orbitals. Statistical analysis of the matrices showed that
the dependence of the off-diagonal matrix elements Hjz upon ¢ and k is almost random. Since there
are 4 particles coupled by the two-body interaction about 40% of the matrix elements are zeros. The
distribution of the nonzero matrix elements can be approximated by P(H;x) o |Hix|™*/2e~Hisl/V  where
V = (.12 eV is the characteristic value of the off-diagonal matrix element. We observed that larger
matrix elements are mainly concentrated along the main diagonal thus imposing a band-like structure
on the matrix with a bandwidth b ~ 80 (see Flambaum et al 1994, Gribakina et al 1995 for details).
Therefore we can compare our results with predictions of the band random matrix model (Wigner 1955).
The average spacing between the basis state energies E; = Hj; is D =~ 0.03 eV, which is much smaller
than V. This means that basis states are strongly mixed by the residual interaction V. Indeed, the
eigenstates |¥,) = 3°; C,»('\)l(DJ.') are “chaotic” superpositions of large numbers (V ~ 100) of basis states

with C; = 0 (see Fig. 1).
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PFigure 2: Fitting C? with w(E;; E,T, N) for the 80th even eigenstate. The least-square Breit-Wigner
(solid curve), squared Breit-Wigner (dash-dot line), and interpolation exponential (dashed curve) fits
are shown.

To apply the statistical approach of sec. 2.1 we need to know the strength function (48), or the
distribution of the mean-square components w(E;; E,T', N). This also gives the number of principal
components N and the spreading width I'. In order to find them we performed local averaging of C?
over 19 neighbouring eigenstates. A typical result of this procedure is shown in Fig. 2. Since each of the
bins used to calculate C? contains about 10? components from 19 eigenstates, fluctuations of about 10%
are to be expected. The observed rate of fluctuations agrees with the existence of a smooth curve w(E;)
behind the histogram shown. In Fig. 2 we show the least-square fit of the C? histogram with a model
Breit-Wigner function w(E;; E + AE,T, N) of (49) 3. This fit yields N = 118 and I' = 1.64 eV. The
latter value of the spreading width is in good agreement with the model estimate: ' = 2aV2/D ~ 2
eV. By fitting C7 for other eigenstates in the spectrum we found the energy dependence of N and I'
(see Flambaum et al 1994 for details).

Despite an overall reasonable agreement of the Breit-Wigner fit with C? one may notice that the latter
shows faster decrease at the wings of the central maximum. Note that at |E— E;| > I' the approximation
(49) reproduces the first order perturbation theory result C7 ~ (—El,_;.‘jg (it also requires |E— E;| € Dbin
the Wigner’s BRM). If the Hamiltonian matrix has a band-like structure the coupling of states outside
the band happens in higher orders of the perturbation theory, which, of course, display a faster decrease

3AF is introduced to account for & regular low energy displacement of the eigenvalue with respect to the maximum
of 5‘7, which is a manifestation of uncompensated level repulsion near the lower edge of the spectrum. It corresponds to

the second order perturbation theory energy shift AE =3, E—g—
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with energy. For example, the BRM model (Wigner 1955) predicts a modified exponential drop*:

w(Ei; E,T, N) exp{—2£ In ({e'l\/2q"1 ln[{/\/cj])}, where ¢ = @;—Jgﬂ  g= _;’sz ()

To check this and to estimate the quality of the fit two other approximations have been tried. Introducing
the shape function f(¢): w(E;; E + AE,T,N) = % f(¢), where ¢ = E‘-"f?ﬁ, they are characterized by
f(e) = (1+4€%)7? (squared Breit-Wigner fit), and f(¢) = exp (1 - \/T-+T€’) (interpolation exponential
fit), while f(¢) = (1 +4¢?)! corresponds to the Breit-Wigner fit (49). The squared Breit-Wigner shape
takes into account the fact that outside the bandwidth the coupling of states happens by means of the
next, second, order of perturbation theory. A detailed statistical analysis shows that the quality of the
fits is almost the same around the maximum. However, at the tails the drop of the Breit-Wigner curve

is too slow, whereas that of the exponential one is too fast.

To make this feature more obvious C? is plotted in Fig. 3 using semilogarithmic scale. It is clear that
the decrease of C? at |E; — E| > T is much steeper than that predicted by the Breit-Wigner model.
However, good agreement with the asymptotic formula (74) is observed in a certain energy range. The
exception is a prominent high-energy shoulder for the numerical C? values due to the perturbative
mixing of some distant configurations. Therefore, we see that whereas the Breit-Wigner model for
w(E;; E,T', N) correctly describes the principal components of the eigenstates, the mixing of distant
states (small components) is more complicated. It depends on the structure of the Hamiltonian matrix
(the existence of an effective band b), and should rather be handled by means of the perturbation theory.

These results are in agreement with the (sd)-shell model nuclear calculations (Horoi et al 1994, Zelevin-
sky 1994). They showed that C? decreases faster than the Breit-Wigner curve and much slower than a
Gaussian one. We would like also to quote from another nuclear study (French et al 1988) which stressed
that ‘spreadings due to interactions between configurations which are very far apart in energy must not
be treated by statistical methods, these being appropriate only for strongly interacting subspaces. The
proper procedure is to ignore such interactions or treat them in the lowest-order perturbation theory

(which itself supplies a criterion to distinguish strongly from weakly interacting configurations)’.

One of the main goals of the numerical experiment on Ce was to check the statistical approach to
calculation of the mean square matrix element [formula (54)]. Having in mind to calculate the matrix
elements of a parity-violating pseudoscalar operator like that of (36), let us consider the simplest zero-
rank reduced density matrix operator f%; yiy; = L Prljmatitim = Lim af,,j,,,a,.q:j,,.. Then one obtains
instead of (54), (68):

( (112')0”,')2 - (i (1 — T:’f')) 1D, 5(P1»P2a ) (a) (75)
ot (nwri(1 — 335 ))2 D1 §(I'1,T2,4), (b)

where A = E; — By — wniirjmij, a0d nyy; i8 the oceupancy of the nlj orbital, given by the expectation

value of the operator fi,; = 3, a,f,,jma,.u,,..

In Figs. 4 and 5 the statistical-theoretical r.m.s. matrix elements obtained from eq. (75) are compared

4This formula is different from the asymptotic solution (35a) in (Wigner 1955), since the latter is incorrect. The
derivation of the correct expression (74) is given in (Flambaum et al 1994).
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Figure 3: Semilogarithmic plot of the window-averaged C? for the J* = 4* levels: 60th (open triangles),
70th (open squares), 80th (open hexagons), 90tk (solid triangles), 100th (solid squares), and 110th (solid
hexagons). The asymptotic behaviour (74) with V = 0.114 eV, D = 0.032 eV, and b = 80 (g = 0.16) is
shown by solid curve. Dashed line is the Breit-Wigner approximation (49) (N =120, T = 1.8 eV).

with those obtained by locally averaging the true matrix elements between the eigenstates. The com-
parison made for a number of single-particle transitions nij —n'l’j’ generally confirms the validity of the
statistical approach of sec. 2.1 to calculation of the matrix elements. One may notice that in a number
of cases the matrix elements obtained via the statistical approach reproduce quite subtle features of the
curves from the direct numerical calculations. There is also a reasonable overall agreement between the
two answers: (75a), and (75b). Some of the data indicate that a linear combination of the two formulae

(75), or (54) and (68), might often yield a better result.

We should add that we also examined the statistics of the eigenstate components, normalized within
each bin of Fig. 2 as C;/y/C?, and that of the matrix elements ps"};' ZS,,J. between the compound states.
We observed that with the excitation energy increasing the eigenstates become “more chaotic” (larger

N’s), and the above mentioned statistics tend towards Gaussian limit.

Let us now consider the admixture of the state ¥, to the state ¥, due to the effect of a perturbation
M. The magnitude of the admixture is given by:

'(‘I’AIMI‘I’ »)

|E (A) l:'lu\l .

(76)

According to the estimates made in sec. 1.1, this quantity must be dynamica.lly enhanced. The dynam-

ical enhancement factor for the Ce levels at 2-3 eV is estimated at v N ~ 10. The numerical model
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Figure 5: Comparison between the direct calculation (solid triangles) of the r.m.s. matrix elements of

1/2
the reduced density matrix operator |(p$"};" qulj)zl and the results obtained from formulae (75a) (solid

curve) and (75b) (dashed curve) using the Breit-Wigner approximation for w(E;; E, N,T). Left column:
odd state A = 80; right column: even state g = 80. The figures correspond to the following transitions
nlj —n'l'j: a,b - 6pyjz — 681/2; c,d - 63172 — 6p1ya; e,f - 5dssa — 4f52; 8,h - 4f5/2 — 5ds)2. Dotted curves
in figures a and b show the results for the squared Breit-Wigner w(E;; E, N, T).

considered in this section enables us to verify the existence of dynamical enhancement. As an example,
we calculated the mixing coefficients between the 21-70 odd levels and the 1-140 even levels using the
mixing operator M = Py o For each of the 50 odd levels the 140 mixing coefficients n (76) were
calculated, and we chose the maximal of them. Usually it corresponded to the mixing of the odd level
with the closest even one. The distribution of the resulting 50 values of 5 is presented in Fig. 6.

A simple analytical approximation can be derived to describe the distribution of 5. If one considers the
mixing of states of different J* manifolds, it is a reasonable assumption that the spacing between the
nearest levels |[E(*) — E(#)| obeys Poissonian statistics (no level repulsion). Assuming further that the
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numerator in (76) has a typical magnitude of My, one obtains the following probability density:

fn) = g™, (77)
where 1o = Mo/ D gives the typical magnitude of mixing, and D is the average spacing between nearest
levels from the different manifolds. It is worth noting that the distribution (77) has an infinite mean
7 = 00, since the corresponding integral diverges as [ dn/5. This means that the number of large values
of 7 is large. The probability to observe n > 1y is P( > m1) ~ 5o/ (provided 5; > n0). The model
distribution (77) is used in Fig. 6 to fit the histogram, producing 7o = 1.15 eV~

To demonstrate the existence of enhancement, let us find out the magnitude of the single-particle mixing

:._ [ SRGRpUN, JIGN , RGP Y o
TIIP? Wulbu ouc 11115ub €XpecCu in a Sparse, regular spcctrulu L

a S_‘y’aucul with one valence pa.rucu‘:. In this
case the matrix element of 4§, /2691, 18 €qual to 1, and the mixing coefficient is ngp = 1/wep, 61, = 0.5
eV~l. Thus, we see that the characteristic mixing no = 1.15 eV~! is greater than 75, by a factor of
2.3 (dynamical enhancement). The dynamical enhancement factor in our example turned out to be
smaller than the potential value of v/N ~ 10. This can be understood from (75), since both 4 and
the occupancy factor in it are smaller than their maximal values. A very important feature of Fig. 6
is that some particular values of 7 exceed 7y, by one or even two orders of magnitude. These large
values are due to fluctuations in the energy denominator of  (76). This gives a possibility of very
small denominators, and hence, very large mixing (statistical enhancement, see sec. 4). The average
value of enhancement corresponding to the set of data in Fig. 6 is /7 =~ 13, mostly due to statistical

enhancement.

There was a special nuclear shell-model calculation of the light nuclei °B and Be devoted to a search for
dynamical enhancement of the weak interaction (Auerbach and Brown 1994). Using 0s, Op, 1s0d, and
1p0f oscillator orbitals and the WBT interaction of Warburton and Brown (1992) they obtained 647 and
3266 J™ = 1/2-, 1/2% levels respectively. Then, the admixtures of 500 even levels to 20-40 odd levels
produced by the weak potential w = egop were evaluated. As expected, the single particle mixing in
this system is very small: 7, = 2 x 10~7. The typical mixing of compound states 7o = r.m.s.(w)/D was
found to be 13 times larger, which confirms the existence of dynamical enhancement in this system. The
authors say that there is a qualitative agreement for the dynamical enhancement factor with the estimate
/N ~ 10. We should note that the data in Table 1 of (Annrharh and Brown 1994) demonstrates also

V' N We should note that the data in Table 1 \uerbach and B demonstrat
the effect of statistical enhancement, particular values of admixture exceeding 7, 100 times (the median
enhancement of about 30). Unfortunately, no comparison with statistical theory for matrix elements

between compound states is presented.

Finally, we would like to mention other important results obtained by Horoi et ol (1994). They
demonstrated the similarity between the information entropy of individual eigenfunctions S* =
—T:(CH?In[(C})?] and the thermodynamic entropy found from the level density’. They also showed
that despite the strong nucleon interaction the occupancies of the single-particle orbitals agree with
the Fermi-Dirac distribution and there is a strong correspondence between chaos and thermalization,

including a consistent way of defining temperature for the chaotic many-body system. In fact this may

5We should mention that Flambaum et ol (1994) showed that in Ce the entropy localization length L} =~ 2.075 exp(S*)
(Casati et al 1990) of compound states is related to the number of principal components by L}, =~ 1.4N.
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Figure 6: Distribution of the maximal mixing n = max, { pg’);‘ /)206,,1 il (E® ~ E(’\))l}, (# = 0 — 140), for
the 50 odd levels A = 20— 70. The histogram is fitted by f(n) = non~2 exp(—no/n) with 5o = 1.15 eV~1.
The results of the x?-square test for the first 4 and 10 bins are: x2(3) = 0.45, x%(9) = 6.21. Also shown
is the magnitude of the single-particle mixing 5y, = 0.5 V™. Five 5 values of 50 fall beyond n = 10:
n =125, 20.4, 37.7, 41.8, 98.0.

be viewed as a justification of our numerical approach to the calculation of matrix elements between

compound states in nuclei [see egs. (58)~(64) and sec. 2.4].

2.3 Induced Parity-Nonconserving Interaction

This section is based mostly on the results of Flambaum and Vorov (1993,1995a), and Flambaum
(1994a). Similar results were later obtained by Johnson and Bowman 1995 within the framework of a
doorway state approach (see sec. 2.5). The magnitude of PNC effects depend on the weak interaction
matrix elements between compound states. There are two sources of the PNC effects: the single-particle
weak potential w (36), which describes the interaction of a nucleon with the weak mean field of the
nucleus and the residual two-particle weak interaction W (35). In principle, the matrix elements of w
and W should be calculated with respect to the true eigenstates of the strong interaction Hamiltonian.
However, in practice some truncated set of basis states is used to describe physical states at excitation
energies smaller than the gap between single-particle shells. For example, describing nuclear compound
states and the parity-violating mixing of them it is natural (Johnson et al 1991, Flambaum and Vorov
1993) to take only the principal components into account. The number of these components is already
10° in compound nuclei. The principal components have energies close to the energy of the compound
state, dominate the normalization sum and are built of the valence-shell (open) orbitals. As is known,
the latter do not contain opposite parity orbitals with the same angular momentum, which can be
coupled by the single-particle weak potential w. Thus, the matrix element of w between the compound
states is zero in the principal-component approximation (Zaretsky and Sirotkin 1983, 1987, Kadmensky
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et ol 1983).

To calculate the matrix element of w correctly one has to take “small” components into account,
i.e., consider the transitions between the single-particle orbitals a, § of opposite parity and identical
angular momentum, belonging to different shells. Therefore, for the P-odd (or a P,T-odd) interaction
lwsa| = |€s — €a] ~ 5-10 MeV > T'. We have seen in sec. 2.2 that the Breit-Wigner approximation (49)
for C,-(m is practically not applicable at the tails, where |E — E;| ~ |wg| 3> I'. However, one can easily
find the necessary admixture of the small components ®; using the first order perturbation theory in

the residual strong interaction V:

(@:|V]¥))

|‘Il)\ I‘I’A +EIQ E E y

(78)
where ¥, is the principal-component part of the compound state, and the sum runs over the distant
components not included in ¥y ((®;|¥,) = 0). Now we can calculate the matrix element of w between

the close opposite parity compound states ¥ and ¥,:

O ) (D|V]V,) (TAIVI®:)(Dil VD)
o E: D Dy ,

O, |w
(shol,y = 3 20 (19)
k
where Ey ~ E, = E.

The single-particle weak potential (36) can be simplified, if we use the approximation of constant density
p(r) ~ po inside the nucleus:

w= T{(ap)p(r) +olr)ep)) = Sop, (80)
where ¢= m/’o, po= i’% ) (81)

and g = gy, g» and £ = §,, £, depending on the nucleon considered. Further simplifications are possible
if we use the relation

p =im[Hp,1], (82)
where [...] is the commutator, and Hy = p?/2m +U(r) is the single-particle Hamiltonian of the nucleus
[writing the commutator we neglected the spin-dependent part of the strong nuclear potential U ).
Then the first term in the right hand side of (79) can be transformed as follows:

~ (‘iuerhil,,) ,

5 CO(&;|[Ho, v @) (e lVIT,) _ -y CONE; — Ee)(ilr|®e)(@:IV|¥,)
E —~E; E-E;

ke ki

where we used the expansion of ¥, in terms of its principal components &:: |¥,) =3 C!A)I(i);), replaced
E;— E, with E— E}, in the numerator, since |E; — E| ~ I' « |E— Ey| for the principal components 7, and
used closure to sum over k. Proceeding similarly with the second term of (79) we can express the matrix
element of w between the compound states via the matrix element between their principal-component
parts:

(Walw]€,) = (U za:[ie.,a,ra,vn‘im) : (83)
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which describes the effective coupling of the principal components of compound states due to the weak

We should note that in deriving formula (83) for the IPNCI some approximations were used (the constant
nuclear density, and spin-independent Hamiltonian Hy). When doing numerical calculations these
approximations are not necessary. Instead, one can consider the weak potential w as a perturbation. It
can be taken into account in the single-particle orbitals: |&) = |a} + T |o’}{o![w]|a}/(€x ~ €ar). Thus,
we can express the result in terms of the residual two-particle strong interaction V' renormalized by the

e 1 e ATRITINNT

weak interaction (VN = (afjVFTIh6) = (aBV]3)):

Vﬁrsim > WaatVarpys > wep Vaprys 3 Vapy'sWory > Vapy6rwses 7 (85)
o €a — €Eof I €g — €g¢ - €y — €yt § €5 — €5t

where W = (a|wla’), etc. The effective P-odd two-body interaction VIPNC! enables one to express
the parity-violating matrix element between the compound states [see eq. (64)] in terms of the matrix
elements (85) between valence-shell single-particle orbitals. Using (80), (82) one can show that in the
constant density approximation (85) is the matrix element of the VIFNCT operator (84).

The approximate analyiical expression (84) is convenient to study ihe coordinate, spin, and isospin
structure and the strength of the IPNCI. It will be shown that the IPNCI is an order of magnitude

stronger than the residual two-particle weak interaction W. To find the explicit form of the IPNCIL the

SVIVLECL wil&ll v i UG v U pPad vilal woan 1LwWiGluivil vy 40 40l wu CApatiL AU O wil ax ivuay v

Landau-Migdal parametrization of the strong interaction can be used:
V(l, 2) = Cls(l'x - I‘z)[f + f'rlrg + hdld'a + hi(‘rlfg)(d'ld’g)] , (86)

where C = #?/prm = 300 MeV xfm? is the universal Migdal constant (Migdal 1967) and the parameters
£, f'y b, b’ are in fact functions of r via density dependence, e.g., f = fin — (fex — fin)[p(r) — p(0)}/p(0).
Values of fin and f. characterize the strength of the interaction inside the nucleus and on its surface,
respectively). The interaction (86) dates back to the Fermi liquid theory by Landau (Landau 1958).
The numerical values of the parameters widely used for heavy nuclei are (see Migdal 1967, Brown 1971,
Khodel and Saperstein 1982): fin = —0.075, fex = —1.95, fi, = 0.675, fi, = 0.05, Ay = hex = 0.575,
and b, = Al =0.725.

Calculating the commutator in (84) one obtains:
i Y (a0ala, V] = 2 CE&,8(ry — ra)[(k' = h)(71s — 722) 11 - (02 X 1)
a=1,2
+ (B = fY)r2x T)srr - (01~ 2)], (87)

where £, is defined by £ = & + £, 7., and 7, = —1(+1) is the isospin projection for protons (neutrons),
so that f_ = (£ — £, \/‘) The first term in 127\ induces pn — »m transeitions, while the second one

------ ASH Sp/i < 2C 21785 WerIn I 22GULCE e LpPre SAGAABRGIONE, WALl 4l SC(CL4 OnT,

pn(np) — np(pn). For contact interactions, the second term (which is in fact the exchange term to the
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first one) can be reduced to the first term by means of the Fierz transformation (see, e.g., Okun 1982),

yielding

VIPNCL(] 9y = % 8(r1 — 1) (Ti: — T2z} 1 - (@2 X 1) —+ Qrp(o, X 04)6(r, — 1) , (88)
2
where  Q=2C(6a— &) ~ W) =3 gy~ )b 1)
We stress that this expression is valid within the nucleus only (recall that @ o £ o p). When using this
expression one has to assume that the exchange term pn — np is excluded. However, the conventional
choice of the parameters of the Landau-Migdal interaction assumes the same. This means that the
second term in expression (87) for the IPNCI should simply be omitted (to avoid double counting) and

the final expression for the IPNCI includes the pn — pn interaction only. Therefore, the constant in the
IPNCI (88) should be given by

2
Q=206 ~ &K - N0 =5 Z S (5~ g (#9)

where hy, = h — k' is the constant of the residual strong proton-neutron spin-flip interaction. The
problem with the definition of the IPNCI constant arises from the fact that the Landau-Migdal inter-
action is a phenomenological effective interaction, rather than the true ab initio strong interaction. For
example, it contains some fictitious spin dependence coming from the Fierz transformation of the ex-
change term for the spin-independent interaction Cé(r; — rz). However, this fictitious spin dependence
does not contribute to the IPNCI, since in the case of an initial spin-independent interaction the Fierz
transformation gives b’ — k = f' — h = 0. Therefore, only the “real” spin dependence of the strong
interaction (e.g., due to 7-meson exchange) contributes to the IPNCL

It is possible now to compare the IPNCI (88), (89) with the initial two-nucleon weak interaction W
(35). These interactions have different isotopic and coordinate structure (VIENCT contains the radius-
vector r instead of the momentum p, or the derivative V). Using the nuclear radius R = roAY?, where

ro = 1.15 fm ~ pg’ is the internucleon distance, we estimate r ~ R, ppr ~ prR ~ A3, and

yIPNCI Qr
~ ~ ppr ~ AY3 90
w %PF bF ( )

For heavy nuclei where neutron-nucleus PNC effects have been measured the nucleon number is A ~
114-240. Thus, the IPNCI (88) is an order of magnitude stronger than the initial two-body weak
interaction W acting within the valence shell. The numerical results for matrix elements of VPN
between valence-shell states in the Th-U region and those of the initial interaction W are presented
in Appendix C, Table 2. Their comparison on the whole confirms the estimate (90). It is worth
mentioning once more that selection rules (change of parity and conservation of the angular momentum)
forbid matrix elements of the single-particle weak potential between the valence orbitals presented in
Table 2. Therefore, the IPNCI and the residual two-body interaction W are the only sources of parity
nonconservation in the compound states within the “principal component” approach. The equations
expressing the root mean square matrix element between compound states in terms of the matrix
elements of VIPNCI and W from Table 2 were presented in sec. 2.1.

Of course, the explicit form (88) of the IPNCI based on the approximation (83) is semiquantitative. In
particular, due to the smallness of » — &’ in @, corrections to (88) may be relatively large for particular
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matrix elements. Especially large corrections may come from the interference term (proportional to
9p9n), When calculating the mean square value (64) of the weak matrix element (85) between compound
states. This quantity is a sum of products of the matrix elements between nucleon orbitals:

e
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The coefficients before g2 and g2 in this sum are positive, and the result is stable. On the other hand,
the coefficients before the interference term proportional to g,g, are not necessarily of the same sign
and the result tends to decrease after the summation (in comparison with the terms proportional to g3
and g2). Therefore, the result for the mean square matrix element is proportional to 92 + g% with a
somewhat smaller coefficient before g,gn, rather than to (g, ~ ¢)? [as it would appear from the strength
constant Q (89) of the approximate IPNCI (88)].

Numerical calculations of the r.m.s. matrix elements between compound states show that the contribu-
tion of the IPNCI (88), (89) is about 7-12 times greater than direct contribution of the initial two-body
weak interaction W (35), thus confirming the estimate (90).

It should be emphasized that formulae (84) and (88) for the IPNCI have been obtained using pertur-
bation theory considerations [see eq. (78), (79)]. Indeed, the IPNCI (84) is of the first order in residual
strong interaction V. The results of the all-order treatment are presented in Appendix C. However, the
“self-consistency” (RPA) iterations w — VIENCI 4y 4 §oy — VIPNCLY GYIPNCL _, i, of the VIPNCI
obtained from the momentum-independent strong interaction (86) would not change the result, since
VIPNCI (88) does not contribute to the single-particle weak potential of the core (§w = (VIPNC) = (),
The situation changes if one takes into account the momentum-dependent corrections to the Landau-
Migdal interaction. In this case, the summation of the series produces an additional enhancement
factor ~ 1.5 (see Appendix C). This enhancement in fact corresponds to the renormalization of the
single-particle weak potential w by the momentum-dependent nuclear forces (Flambaum and Vorov
1994). This renormalization is even stronger if one uses the “ab initio” strong interaction in the form
of (r 4+ p)-exchange (Appendix D).

Similarly to the IPNCI, one can consider the induced P, T-odd interaction. However, it turns out that
the latter has the same structure and strength as the initial two-body P, T-odd interaction (Appendix C),
and does not display the A'/® enhancement (90). The single-particle P, T-odd potential is renormalized
by the main velocity-independent component of the strong interaction, which reduces the corresponding
strength constants 7, and 7, by a factor of ~ 1.5-1.8 (Appendix D).

2.4 Application of Statistical Theory to Calculation of Parity and Time-
Invariance Violating Effects in Nuclei, and Comparison with Exper-
iment

The statistical approach to calculating mean square matrix elements (sec. 2.1) and the notion of the
IPNCI were applied by Flambaum and Vorov (1993) to evaluate the PNC weak mean square matrix
element for ***Th. The numerical calculations were performed using a single-particle basis of states
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obtained in the Woods-Saxon potential with the spin-orbit interaction:
B 1df

U(r) = =Uof(r) + U(e - Drn’c’ o=

+ UC(") ’ (91)

where f(r) = (1 + exp ’;R) _l, 1 is the orbital angular moment, Ug(r) is the Coulomb correction for
protons: Ug(r) = % (1 - %), r < R, and Ue(r) = ZT'Q, r > R, R and a being the nuclear radius
and the diffusity parameter. The numerical values of the parameters were taken according to Bohr and
Mottelson (1969) for 233Th: they are close to those established for heavy nuclei like lead to reproduce

their single-particle properties.

The mean square PNC matrix element W? was calculated by means of formula (64), using the Breit-
Wigner approximation (57) for §, and the parity-violating two-body interaction VPNCI (85). In the
latter the residual strong interaction V was chosen in the Landau-Migdal form (86), with the constants
depending on radius via p(r) = p(0)f(r). Note that the exchange matrix elements in (64) should be
omitted if we use the Landau-Migdal interaction, since exchange ie already taken into account in this
contact interaction by the appropriate choice of f, f’, g, and ¢’. The single-particle weak nuclear
potential w (36) was used. The single-particle occupancies were calculated from (59) at T' = 0.6 MeV.
This value of temperature was obtained to satisfy conditions (60) for the excitation energy E equal
to the neutron separation energy. It is convenient to present the r.m.s. matrix element VW32 in the
following form:

— 2D
VW = | /S0 + Zung? + Spnon (92)
spr

where X,p, Xnn, and X, are the contributions to the sum (64) from the squared proton, squared

neutron and interference terms, respectively, and the factor ,}m = 1/v/N reminds one about the
suppression of the matrix element between compound states. For g, = 4 and g, = 1 equation (92)
yielded VW? = 2.08 meV, in good agreement with the experimental value 1.39*255 meV for *3Th
(Frankle et al 1991). On the other hand, we can use the experimental vVW? and the calculated value of
Zyp to determine the value of g, (assuming that g > g2). The result is: g, = 2.671335. Having in mind
that there is some error in the statistical calculation of VWZ, we can say that this value is in agreement
with the theoretical value g, = 4. The only essential assumption made in the above calculation of VW?
was that concerning the distribution of the components (49). As far as the uncertainty in the value of
VN is concerned, the two estimates: VN = \/T—;,E (for D = 17 eV in ®*Th and [y, = 2 MeV), and
VN ~ \/r(‘,")/rﬁ"), give approximately the same answer VN ~ 4.3 x 10? [[{" and I'(® above are the
width of the single-particle s or p resonance (Bohr and Mottelson 1969) and the neutron width of the

compound s or p resonance respectively].
The valence mechanism takes into account the weak mixing of the single-particle components (in ?*3Th,
4s and 4p neutron states). Its contribution can be estimated as
1
Weal ~ %i(4s|w|4p) 2 +9.0.8 €V 2 2 X 1073 meV . (93)
Thus the statistical, compound-resonance contribution is 10° greater than (93) due to the extra v/N.

Similarly to the calculation of the PNC matrix element v W? Flambaum and Vorov (1995b) calculated
the r.m.s. matrix element of the P,T-odd interaction {Appendix C, eq. (C22)] and the correlator
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C(W,WFT) (65) between the P-odd and P, T-odd matrix elements for 2**Th. They obtained:

\/(Wﬁ)’ =0.20 n meV , (94)

where n is the characteristic constant of the P,T-odd interaction {C15). The ratio of the PNC and
P, T-0odd matrix elements is W/ VW7 ~ 0.17/g. This is explained by the fact that WPT does
not have the A'/3 enhancement, whereas the W does (see Appendix C and sec. 2.3). This result can
have important consequences for the experimental search for P,T-odd forces: the naive estimate of
the magnitude of a P,T-odd effect as that of a PNC effect times /g must be reduced by an order of
magnitude. The correlator

|C(W,WFT)| ~ 0.1 (95)

turned out to be small, in agreement with earlier estimates [see eq. (66)].

2.5 Other Approaches to Calculation of Matrix Elements Between Com-
pound States

2.5.1 The doorway state approach and the IPNCI.

The doorway state (or collective 0~ resonance) approach becomes more and more popular in calculations
of PNC effects. It was first used by Kadmensky et al (1983) to estimate the matrix elements of the
weak interaction between compound states [ten years later this idea was re-examined by Flambaum
1993]. Auerbach (1992) and Auerbach and Bowman (1992) used it to estimate regular valence-type
contributions. Recently Johnson and Bowman (1995) adopted this approach to derive equations for the
IPNCI (6Vpoore Pvm in their notation).

The main assumption of the doorway state approach is that the spin-dipole 0~ state |D,) o« 3, @4 Tq|s)
(actually, two states with isospins T = 0 and T' = 1) built on the compound state u dominates the
PNC matrix element between the two compound states A and p:

(Alwlg) = (AlDu)(Dulwln) - (96)

Of course, one can always construct a state |D,) o« w|u) to make (96) valid. However, this state is not a
stationary, and even not a quasistationary state, i.e., it can not be treated using the stationary pertur-
bation theory. One can interpret the “energy” of this state as an “average” energy in the perturbation
theory sum:

oy = SR B o, (o7

where w, = Ep, — E,. Starting from thxs pomt two ways of calculations are possible. To obtain the
results of sec. 2.3 one need to use the commutator relation p = im[H, ], and then

(Dulple) = (Dylim[H,r]|4) = (Ep, — Eu)im{D,|r|x) .

Applying the doorway state assumption: |D,)}{(D,lor|u) = or|y) and eq. (79) we come back to eq.
(84). Johnson and Bowman (1995) used an oscillator relation p = imwr, where w is the oscillator
frequency. Therefore, 6VPV(2) differs from Vipno: of eq. (84) essentially by the factor w/w,. Basing
on experimental data Johnson and Bowman (1995) take w, = 1.25w in the isoscalar channel, and
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= 3w in the isovector channel, and explained this shift as produced by a renormalization of the weak
potential by the strong interaction. There is an apparent disagreement between the damping of the
PNC interaction obtained by Johnson and Bowman (1995) and its enhancement due to renormalization
by the (momentum-dependent) residual strong interaction (Flambaum and Vorov 1994). It results from
the two facts. First, we believe that similarly to our eq. (D4) there should be another term in eq.
(A.2) of (Johnson and Bowman 1995), which cancels the first term if the contact-type residual strong
interaction is momentum independent. Thus, no renormalization takes place in this approximation (see
discussion at the end of sec. 2.3, and Appendix D). Second, the weak potential is indeed renormalized
by a momentum-dependent part of the residual strong interaction which was taken into account in
(Flambaum and Vorov 1994) and was omitted by Johnson and Bowman (1995). However, a complete
agreement between the two approaches can be achieved. Indeed, using the doorway language one can
calculate the renormalization of the weak potential of the nucleus in the following way. Due to the weak

interaction w the ground state of the target nucleus |0) gets an admixture of [0~) = | Do):

{Dalulo)

10) = 10%) + 107) = [0*) + 3 120 (98)

Weo

where ¢t = 0,1 distinguishes the isoscalar and isovector doorways. The mean strong field in the state
|0) differs from that in |0+}). This difference is a correction to the weak potential w:

= Lui ({0%(V(1,2)| Dio){ Deolw|0*) + (0* || Do) Duo|V(1,2)[0%)) (99)

where the matrix elements of V(1,2) are taken over the target nucleons (variable 2). Then, us-
ing the commutator or oscillator relation between p and r one obtains the analytical expression
(6w x {[V, T4 0a - Ta))core) for the correction to the potential. The latter can be introduced into an
equation like (D13) (Appendix D) to obtain the renormalized potential self-consistently (“all-orders”
treatment). Another possibility is to introduce corrected values of the frequencies wy into eq. (99)

based on experimental data for the 0~ excitation strength function.

It is worth stressing once more that the method of Johnson and Bowman (1995) is a different technical
approach to calculate the action of the single-particle weak potential w within valence shell configura-
tions by means of the induced two-body interaction, and there is much similarity between their analytic

results for 814, Pve)

oorway and that for Vipncr (sec.2.3). Comparing these approaches, we do not see why the

use of the commutator relation between p and r is less accurate than the oscillator relation (which is,

in fact, a particular case of the former).

2.5.2 Model space and statistical spectroscopy approach.

An alternative approach to calculation of the r.m.s. parity-violating matrix elements between compound
states was suggested by Johnson et al (1991) (see also Johnson and Bowman 1995) based on the
statistical spectroscopy methods of French et al (1988). The main assumption is that the mean square

PNC matrix element M? can be taken to be proportional to that of a schematic interaction Us:
M =o}(U;)? . (100)

The constant o is calculated as
Tr(VPV)2

AR (101)

ab =
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where the traces in the numerator and denominator are evaluated in a given model space. It is supposed
that a% should be insensitive of the specific choice of states over which the traces are taken, so that,
e.g., plane waves [Johnson et al 1991, Johnson and Bowman (1995)] can be used. The value of U2=26
keV? for 29U is taken from (French et al 1988). Within the latter the mean square matrix elements
are evaluated using ensemble averaging techniques and scaling properties (U? x D). We should note
that there is some similarity between this approach and that of sec. 2.1. For example, in the non-
interacting particles limit eq. (51) of sec. 2.1 (w2 are proportional to delta functions if the matrix
element is calculated between single-configuration states) is equivalent to eq. (12) of French et al (1988).
The interaction of particles is taken into account by French et al 1988 by calculating a convolution
of non-interacting particles strength densities with a bivariate Gaussian describing the spreading of
configurations. The operator U, in (French et al 1988) is a residual shell model interaction in the form of
a surface delta function. Johnson et al (1991) replaced it by an ordinary delta function U; = gé(ry —13)
with ¢ = 26 MeV fm® when calculating the trace in (101). Using the one-body weak interaction
w = (C, + Cx7;)op based on the meson-nucleon weak constants from Desplanques et al (1980) they
obtained M = 3.07 meV for 2°U. A slightly larger value of M = 3.24 meV is obtained when the
two-body piece were added to VFV6. The experimental value of M for 2°U is 0.58*33) meV (Bowman
et al 1990).

The drawback of the procedure outlined in egs. (100), (101) is that different operators have different
selection rules. For example, U, has nonzero matrix elements between principal components of the
compound states, whereas the one-body PNC potential w does not. This makes a dependent on
the choice of the model space, i.e., if one restricts it to the principal components only, a2 = 0 for
VPV = w. Moreover, even if a large model space is used to calculate the traces in (101}, the result will
be different to the average over nearby compound states (the latter is measured in experiments). Indeed,
egs. (58), (64) are sensitive to the position of the maximum of the distribution of the corresponding
matrix elements (via w-dependence of the spread delta function &). This means that a% in (100) (local
averaging) can be strongly different from a% in (101) (average over all model space). Consequently,
the M values of Johnson e al (1991) ignore a factor like I'ypy/wo ~ 1/5. However, the accuracy can be
substantially improved by using the IPNCI which acts in the subspace of principal components. In this
case the factor Ty, /wo ~ 1/5 does not appear which justifies the application of eq. (101) to sVEVQ)

Doorway*
This was done in the recent work of Johnson and Bowman (1995).

3 Regular Contributions to PNC Effects

Statistical nature of dynamical enhancement of weak interactions in compound nuclei considered in sec.
1.1 and employed in the calculation of the mean square matrix element (sec. 2.1) implies randomness
of matrix elements of weak interaction between complicated states of opposite parity. Therefore one
would expect the random sign of the corresponding PNC effects, e.g., the asymmetry (2). Recent Los
Alamos experiments (Frankle et al 1991) show, contrary to this expectation, that neutron capture into
p-wave compound resonances in ?*3Th leads to the asymmetry of the same sign for all 7 resonances
where the effect is greater then two standard deviations (other resonances are probably ps/,-resonances

SNote that these numbers (Johnson and Bowman 1995) are about three times greater than those quoted in Johnson
et al 1991 due to numerical errors in the latter.
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of statistical analysis for all p resonances which accounted for both random and regular contributions.
Despite the fact that the experimental data obtained for other nuclei does not show strong deviations
from randomness, the results for 23Th initiated a lot of theoretical activity (Flambaum 1992, Bowman
et al 1992, Auerbach 1992, Lewenkopf and Weidenmiiller 1992, Gudkov 1993, Auerbach 1994, Auerbach
et al 1994, Hussein et al 1994, Flambaum and Zelevinsky 1994). None of these works gives a reliable
explanation of the regular effect comparable in magnitude with the random effect. Nevertheless, the

review would be incomplete if we simply ignore them.

Near the neutron threshold there is only one component in the compound state which has an exit
into the continuous spectrum. This component (valence component) corresponds to the unexcited
target nucleus wave function times the neutron wave function. The valence component gives a regular

Swer ammtnihisdion o tha namitu vinlatine affacts since the coafRciant (. hafare this comnanent in tha
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compound state (10) or (39) appears in the expression for the PNC amplitude twice: the first time in
the capture amplitude T, C'é"” ), and the second time in the weak interaction matrix element, i.e.,

fev x C2.

There have been many calculations of the valence contribution (see Zaretsky and Sirotkin 1983, 1987,
Olkhovsky and Zaichenko 1983, Desplanques and Noguera 1984, Noguera and Desplanques 1986, Flam-
baum 1992, Bowman et al 1992, Koonin et al 1992, Lewenkopf and Weidenmiiller 1992). Below we
present a simple analytical derivation of the valence contribution as per Flambaum (1992) and discuss

briefly the recent resuits of other authors.

Tha naritv-viclating nart of the scattering amnlitude is
A 0€ panty-viciat ng part ol the scattening ampiitude 18
f (W lw] %) (103)
pv = ——7(¥s|w|¥;
orh? 4 o

where ¥ and ¥; are the wave functions of the system, corresponding to the scattering waves at large
neutron-nucleus distances. Outside the nucleus the wave function ¥ of the system is a product of
the target nucleus wave function and the neutron wave function %. The behaviour of the continuous
spectrum wave function 1 in the region with zero potential is determined by the scattering phase shifts.

Forkr<l,butr>R (L- is the momentum of the neutron), it is more convenient to express this wave

L0T ® iy DU 7 18 e momentum Of on j, 1t 18 maore c

function in terms of the scattering amplitudes. Close to a p;/;-wave compound resonance the neutron
wave function is

b Mt — 14 % +i328 6 n)o ni)xe (104)
where xz is the spinor corresponding to the right or left helicity of the neutron: & - mixz = *xa,
n, = k/k, and n = r/r. The s-wave and p, j,-wave scattering amplitudes are given by

1 TP 1~ I
f“*“_ﬁz,:E—E,ﬁr,’ Fon = 2kLE—E,+iI‘,,’




and Tima Tauvasianas i snd Nucls 462
Parity and Time-Invarianc Compo 00

where a is the potential part of the scattering length [compare with the parity-conserving part of (20)],
and the extra i factor for the p-wave amplitude is written out explicitly in this section [see eq. (104)].
Note that the wave function (104), (105) contains the contributions from all compound resonances
including the distant ones.

To calculate the valence contribution to PNC effects one has to know the neutron wave function inside
the nucleus, where it is strongly distorted by the interaction with excited nucleons. There are two ways
to overcome this problem:

1. Using commutator relations we can transform the weak interaction Hamiltonian into the surface
form and use the wave function (104) which is “exact” outside the nucleus.

2. We can match the wave function (104) with a solution for the neutron in the average nucleus
potential. This solution can be approximated by the nearest to E = 0 single-particle discrete state or
resonance wave function (4sy/; and 4py; in *3Th).

Let us start with the commutator method. Using p = im[H,r| and neglecting spin-dependent terms
(e.g., the spin-orbit interaction) in the Hamiltonian H of a nucleon in the nucleus, we can decompose
the weak potential w (36) into the following sum

w = wp+ 10, o—z\/_[Hpa r,

~ G ! / /

w=—4\/§ [n-ppo-r+p(n-p)o-r)+(o r)n-p)+o-ron-p], (106)
m

where ti is proportional to p' = dp/dr (it comes from the commutator [H, p]) and peaks at the surface
of the nucleus, and g is the nucleon weak interaction constant (g, in our case). For the sake of simplicity
a spinless spherical target is considered. The interaction wo does not contribute to fpy (103). Indeed,
the wave functions ¥; and ¥; correspond to the same energy. Therefore, the matrix element of the
commutator with the Hamiltonian (wg o [H, pe - r]) is zero’. In the simplest model of the constant
nuclear density p = pof(R ~ r), and p' = —poé(r — R). Introducing w = 1 into eq. (103) and using
the wave function (104) one obtains the valence contribution to the PNC forward scattering amplitude
(103) and the resonance asymmetry of the capture cross section:

fov(0) = £, .5 Cj/gl‘ (1 + —f-‘-) , (107)
—I mf(0) = —Im(fy,,, + fev) , (108)

Y _o=  4Gq, Ref, 3 Ref, v
“‘=_’“::++Z k\/g_pc;(l-}- 21;):0.9x10 Sg,.(1+21{) lEe . (109)

Note that if we use an experimental amplitude f,, the valence contributions from all compound reso-
nances are taken into account, since all of them contribute to f, (105). Typically, f, ~ —R, e.g., for
333Th between s resonances 1 + Ref,/2R = 0.42 (Mughabhab et af 1981). Comparing (109) with B
(102) one can see that P,y is almost 10 times smaller than that derived by averaging over 7 resonances.

Bowman et al (1992) derived the average asymmetry (P) (see eq. (117) below) by separating single-
particle components in the sum over compound resonances in eq. (8) (distant-state interpretation).

7Of course, this matrix element is not zero when mixing of distant single-particle states is considered, as in sec. 2.3.
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Let us show how to obtain their result from eqs. (103) and (104). Following their work we assume

the nucleus the single-neutron component is dominated bv a single-narticle resonance or a
the nucieus the single-neutron component 1s aominated by a singie-particie resonance or a

bound state close to the neutron threshold. The wave function of the state with E = 0 has the simple
asymptotic behaviour r~/, where [ is the orbital angular momentum of the neutron. Therefore, this
wave function can be easily matched with the corresponding component of the wave function (104), and

the neutron wave function inside the nucleus is given by

i
Iz

where ¢*P(r) is the single-particle resonance wave function, f = f,, or f = f;, , for the s- or py/y-waves

¥(r) = 5 ¥% (), (110)

respectively [see eq. (105)], and f*P is the single-particle resonance scattering amplitude

1 r 1 r
L R S S (111)
2k E — ¢, + 3T, 1/ 2kE —¢, + 3T,
In the above ¢, and ¢, are energies of the single-particle resonances, and I',, T', are their neutron widths:
I =~2 = 2:/RBm. and T. = ~2 = 2k3R/3m in the square-well model ] (Bohr and Mottelson 1969).

=& — s =" P ip (i i A e

The parity-violating amplitude for the scattering from the single-particle resonances ns and n’p over

the target 0% ground state is {compare with the last term in eq. (20):

mo i W, PO W,
PV = k E €ns + %ri‘i\(E — Eqip + %Fﬁ") YV ’

where we used (111) to express the result in terms of f*°. Now we can use (103), (108), (110) and (112)

to find the resonance part of the valence contribution to the PNC forward scattering amplitude:

4ikfaf?1/z <0+n3|W|0+nlp)

fov(0) = (113)
Y
N + 4,7
P = 4kRs(f,)z((‘)v-:z_SIW|0 n'p) (114)
st + ont
_ 2\/§mRe(fa)3(2 ns|W{0*n'p) , (115)

where in the last expression we used square-well model 4,,. The wave functions of the single-particle
states ns and np are normalized to unity over the nuclear volume. In the case of n+%**Th, 4sy/; and

4py /2 are best candidates for these states.

Suppose that the s-wave amplitude f, is saturated by one single-particle resonance ns:

1 r,

foiz=——— (116)
2kE — €ns + %Fr
Then in the case |E — ¢,| > T, the asymmetry (114) turns into
P, 27’ M (117)

Yo i(E — €ns) '

This result in fact coincides with that in the absence of compound states. Indeed, it can be obtained
from (8) by simply replacing the compound states with the single-particle resonances: 1/2~ — n'p and
1/2tv — ns, and assuming that there is only one single-particle s-resonance nearby. We should note
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that inclusion of more than one ns-resonance into (117) using one amplitude v, (as done by Bowman
et al (1992)) would be incorrect, since distant single-particle resonances have different amplitudes +,.

The calculations in the square-well model and the more refined ones (Flambaum and Vorov 1993) using
the Woods-Saxon potential with the spin-orbit correction give close values of the weak matrix element
for 2Th:

(4s1/2|wldpyya) ~ —ig,0.9 eV . (118)

If one takes E — ¢4, = —1.7 MeV, as in (Bowman et al 1992), the value of the PNC effect (117) is

1eV

_ -3
Py =1.2x 107%g, T

(119)

This value is in reasonable agreement with (109). A similar result obtained by Bowman et al (1992):
B = 2.9x103g, is larger since the weak interaction matrix element has been overestimated by extending
the nuclear density p in the weak Hamiltonian (36) beyond the nuclear boundary (they put p = const)
and using large-size oscillator wave functions. Note that formulae (107), (109) and (113)-(115) include
contributions from all compound s-wave resonances, whereas (117) includes only those from distant

states.

Lewenkopf and Weidenmiiller (1992) considered the valence mechanism within the Feshbach projection
formalism. They take into account the weak mixing of the s and p neutron valence components and ex-
plicitly include the interaction of the p-wave component with compound resonances [second diagram in
(24)]. The authors believe that this interaction gives rise to a specific barrier penetration enhancement.
However, their numerical result, B = (0.25-0.75) x 10~3g,, is in agreement with (109). This is not sur-
prising because the “experimental” amplitudes (105) include the above interaction exactly. Therefore,

there seems to be no grounds for any special barrier enhancement except for the usual kinematical one.

Koonin et al (1992) performed numerical calculations of the PNC asymmetry in the p-wave neutron
capture. They used an optical potential method to calculate the neutron wave function, and to determine
the corresponding value of P (2). The optical potential method corresponds to averaging of the true
neutron wave function over compound resonances. Therefore, the result of Koonin et al is in fact
{(of — o7)/{o} + o) rather than (P). This method can be quite accurate for the valence PNC
amplitude in the range of overlapping resonances or between the resonances. However, it is not so good
for the calculation of the effect at the resonance, since the neutron wave function does not satisfy the
correct boundary condition given by the asymptotic form (104), (105). Thus, the result of Koonin et
al can be viewed only as an order of magnitude estimate of the valence contribution at the resonance.
Surprisingly, their numerical value B = 0.3 x 10~3g, is very close to that of eq. (109).

In some of the works discussed above the authors claim that they can explain the observed average value
of the effect. However, this would require g, ~ 300, [¢ ~ 3 x 10~%]. First of all this value of g,, which
is in fact the coefficient of renormalization of the Fermi weak interaction by the strong interaction,
looks unreasonably large (see, e.g., eq. (37), or estimates by Koonin et af (1992), which yield |g,| < 1).
This value of g, is also excluded by the experimental data. Firstly, the statistical contribution to P
is compatible with g, ~ 1. Secondly, there are measurements of PNC effects in nuclei with sparse
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compound resonance spectra, such as 124Sn (Forte et al 1980), 2®*Pb (Abov et al 1989), and others. In
these nuclei the dynamical enhancement factor is small and one can extract some limits on the valence
contribution directly. For example, Forte et al (1980) measured the angle of spin rotation for thermal
neutrons in 24Sn:

#(***Sn) = (0.48 £ 1.49) x 107% rad em™? . (120)
The angle of the neutron spin rotation is given by (see, e.g., Stodolsky 1974)
47!'Nol

¢= Refpv , (121)

where Np is the density of atoms, and { is the neutron path. Using fpv from eq. (107) or (113) one can
obtain a limit on the strength of the neutron weak potential:

lgal S1, or Je| S1x107°. (122)

Thus, the contribution of the valence mechanism can account for less 1% of the observed average PNC
effect in Z3?Th.

3.2 Correlations among Compound State Components and the Quasi-
elastic Mechanism

Valence mechanism takes into account the contribution of the compound state component where the
target nucleus is not excited. We can call this an “elastic” contribution. Different compound resonances
give a coherent contribution to the PNC amplitude in this “elastic” process. However, the coherence
can not be lost completely after the first neutron-nucleon collision inside the nucleus. Moreover, there
is a process in which the s-wave capture and the p-wave capture continue to work coherently. If after
the first collision the s-wave neutron is transformed into the p-wave, its strong field acting on the target
nucleons is given by the matrix element (p|V|s). The transition of a p-wave neutron into the s-wave
produces the same strong field (s|V|p). Therefore, similar target nucleus states can be excited in the
p-wave and s-wave compound resonances. This possibility of creating a certain degree of coherence
among the compound state components was considered in (Flambaum 1992, 1993). The estimates

showed that the above described “quasielastic” contribution can hardly exceed the valence one.

However, the question of correlations between “chaotic” compound states should be considered more
carefully. To derive the expression for the dynamical enhancement factor and matrix elements between

the compound states (secs. 1.1 and 2.1) it was assumed that:

1. When the residual interaction is strong {much greater than the level spacing) the number of
principal components N is large. This produces the enhancement factor of VN.
2. The components C(’\) [eq- (39)] of compound states are statistically independent: C('\)C(" )

5.','6,\‘,.

At first sight these assumptions seem very natural. However, they are not necessarily true. There
is some correlation in the components imposed by the orthogonality condition. More importantly,
the number of “independent variables” (different two-body matrix elements of the strong interaction) is
proportional to N#, where N, is the number of single-particle orbitals, whereas the number of expansion
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coefficients C,-('\) is N3, and increases exponentially with the number of orbitals. Thus, strictly speaking,
they cannot be statistically independent. If the correlations are of the order of 1/N they can of course be
neglected. In Appendix B we consider the example of a system (random separable residual interaction)
where the result is quite opposite, and the above assumptions are maximally violated:

1. N ~ 1 at arbitrary strong residual interaction, and consequently, there is no dynamical enhance-
ment of perturbations.

2. C,'('\)C}'\) x &;;, i.e., the components of a given eigenstate are uncorrelated, whereas CVC* ) ~
E‘(’\T (A # p are nearby eigenstates), which means very strong correlations between close eigen-

states.

These strange properties result from very strong interference effects taking place in this model. If we
imagine that a real compound nucleus were described by a similar model, it would be very easy to
explain the sign correlations of PNC effects for different resonances observed in Th (Frankle et al 1991).

3.3 Doorway States and Giant Resonances

Auerbach (1992), and Auerbach and Bowman (1992) suggested to use doorway state approach to
calculate the regular contribution to the PNC asymmetries. They assumed that the spin-dipole 0~ state
|D,) built on a compound state |i) dominates the PNC matrix element between the two compound
states ) and y [see eq. (96)]. This assumption combined with the extraction of the regular valence-type
contribution from the equation for the PNC asymmetry (8) gave the following result:

_ 29, (0% nsya|w|0tn'py )
T wp

Pp= , (123)
where wp is the excitation energy of the 0~ spin-dipole doorway [D,) (~ 7 MeV). This result looks
similar to the valence contribution (117) and cannot explain the size of the average effect observed in

BITh,

3.4 Two-particle One-hole Doorway States

Recently Hussein et al (1994) suggested that the sign correlation effect in the PNC asymmetry in Th

can be explained by a contribution of a non-collective 2p — 1k doorway [regular contribution of such

states was also mentioned by Flambaum (1992)]. They assumed that parity violation occurs through

the coupling of a p-wave doorway to a nearby s-wave doorway, and obtained the average value of P:
M ~p,

(P)= g2 (12¢)
where M is a characteristic “weak” matrix element between p and s doorways, AE is a characteristic
energy distance between these doorways, and 7p,, 7p, are neutron decay amplitudes of the doorways
(kinematically yp,/vp, ~ 1/kR). Hussein et al claim that this mechanism can reproduce (P) = 0.08.
However, we believe that they strongly overestimate the 2p — 1A contribution. The only source of
enhancement for this mechanism in comparison with the valence mechanism is a higher density of the
2p — 1h states with respect to 1p states. However, Hussein et al do not take into account that this also
reduces the weak interaction matrix element. More importantly, the spreading width of the 2p— 14 state
is not smaller than that of the 1p state (T'epr ~ 1 MeV) since the number of possible final states for the
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decay of the former is not smaller. Thus, a relatively small spacing between 2p— 1k states (D ~ 30 keV)

does not give any enhancement at all, since the corresponding denominator is AE ~ |D 4 £ $lerl ~ 1

MeV. Even after using M = 1.0 eV and AE = 50 keV the result of Hussein et al is not large enough,
and a statistical fluctuation has to be assumed to further increase the ratio vp,/vp, by a factor of
about 4. The probability of such fluctuation is quite small. Indeed, it cannot be achieved by small vp,
(in this case other doorways will give larger contributions to the p-wave capture amplitudes), and the
probability of large vp, is exponentially small for a Gaussian distribution. It seems easier to believe
that all 7 PNC asymmetries in Th have the same sign due to a fluctuation. Our conservative estimate
of the 2p — 1h contribution (124) does not exceed that of the valence mechanism, mostly because of a
large spreading width in the denominator AE.

3.5 Rotational Doublets

The experimental pattern of the target of 2**Th gives a hint that this nucleus, and consequentiy the
compound nucleus ***Th, might be a special case due to some peculiarities of its structure as compared to

bUnanmal? daformad hanve nuclat like 233'” which annarantly avhibits random PNQO asvmmetrvy Indaad

normal” deformed heavy nuclei like which apparently exhibits random PNC asymmetry. Indeed,
Th isotopes display strong octupole correlations (Bohr and Mottelson 1974, Leander 1982, Otsuka 1986,
Nazarewicz 1990, Jolos and von Brentano 1994). Octupole deformations lead to the existence of nearby
rotational parity doublets. Such doublets are known to play crucial role in PNC effects in nuclear fission
by polarized neutrons (Flambaum and Sushkov 1980). It was suggested by Auerbach (1994), Auerbach
et al (1994), Flambaum and Zelevinsky (1994) that these doublets can produce regular PNC asymmetry
in Th. Below we use the approach of the latter work.

Let us assume that static octupole deformation is already present in the first (ground state) potential
weii of Th. However, this assumption is not critical. At excitation energies near the neuiron threshold,
the nuclear wave function in the space of the deformation parameters certainly has a significant portion
of large octupole deformation, 5 ~ 0.35 (Pashkevich 1984, Bengtsson ef al 1987, Cwiok et al 1994), For

Ol ialge CLvupu€ GCIoIinaclion, A4 SAXCVILA LoJos, DOl 27014 loX €l a4t 199%)

sufficiently strong deformations, the use of adiabatic approximation is justified. This allows one to write
down the nuclear wave functions as products of the orientational D-functions and the wave functions of
internal motion |x) (Bohr and Mottelson 1974). In the case of axial symmetry the projection K = In
of the total angular momentum I onto the axis of symmetry n is conserved and can be used to label
the wave functions |x) = |e, K). In the neutron capture by a spinless target we are interested in the
states with |K| = 1/2. For a given intrinsic state with K # 0 the presence of octupole deformation, or
of any other deformation which is axially symmetric but has no symmetry with respect to reflection in
the equatorial plane, leads to the rotational doublets with definite parity IT = %1,

2l +1\"? |, I+K pl
Z20)" [Dhixle 9,010, K) + I-1)* Dy (0,9, 0)a,~K)] . (129)

The energy splitting of the doublet states implies that there is a physical interaction which couples

laK M) = (

the “right” and “left” configurations |a,+K). One can imagine various particular mechanisms of this

coupling, e.g., tunneling of an excess cluster. In the case of K = 1/2 the Coriolis force acting in the
first order can be sufficient to generate this coupling, similar to the decoupling parameter in normal

spectra of odd-A deformed nuclei (Bohr and Mottelson 1974).
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Since the likely energy splitting within the doublet is of the order of several keV one can expect that

mnnng of the np?nmha p:nhi doublet states ]-\v the weak interaction is much stronger than mnnng of

the single-particle orbitals separated by MeV energies. However, a direct mixing of the states (125)
with the same intrinsic structure and opposite II is possible only if the weak perturbation W violates
time-reversal symmetry as well as the parity (Sushkov and Flambaum 1980b). Indeed, the mixing

matrix element can be expressed in terms of the intrinsic expectation values of the weak interaction,
(K I M|WIaK M) = %((a,K|W|a, K) - (a,~K|Wla,~K)) . (126)

Since W is a pseudoscalar, the matrix element (a, K|W|a, K} should be proportional to the intrinsic
pseudoscalar K. On the other hand, it means that this quantity, together with K, changes its sign
under time-reversal which would contradict to the T-invariance of W. One can see from (126) that
only a T-odd interaction lea.ding to the opposite sign of the two matrix elements in brackets can mix
abho A L1 4 —dodao Alood ML cnlarie o IV S AP PRO 1) PEVan RpRuv 1= I IO adistad L. S T [{ 3 pip— | ]
u.lc QOUDIEY Svalts uucvuy 4 HuUb, llllklus vl lluc aoduoiel SnoiIa D€ miEdia IJ ea Uy O».LlUl)uCl \ noliilial
P,T-even) interaction H' leading to non-adiabatic admixtures of different configurations |b, K’). For
instance, this could be the interaction already mentioned as a source of the energy splitting within the

doublet. The interaction H' influences PNC in the first order via the matrix elements (e, — K|H'|b, K)

which appears in the P-conserving mixing matrix element
(aKI"M|H'|bKI"M) = Ak (a, — K |H'|b, K) (127

with the amplitude Ajx depending on the nature of the interaction H’'. When both H' and W are
taken into account the total rotational function (125) acquires an admixture of opposite parity,

|eKI"M) — [aKTTM) = |aKI"M) + n|aKI""M), (128)

where 7 is the mixing amplitude:

A —K|H' w
”=_2nn 1x 5~ (o =KIH'lb, K) (5 K| Wia; K) (129)
E—-En% E—-E, /

E is the neutron energy, and the rotational energy splitting of the doublet b in the denominator of (129)
has been neglected. The mixing 5 is directly related to the observed PNC asymmetry (8),
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expressed in terms of the amplitude An(,
En— E_n =2l1AIk(a, —KIH’Ia,K) . (131)

In this case the resulting PNC admixture {129) at the resonance energy £ = Ep does not depend on
Ark.

Note that in the sum (129) the numerator contains two matrix elements and both of them are suppressed
as ~ 1/+/N for the generic compound wave functions a and b. Therefore, the contribution of the closest

SNote that for a P, T-odd interaction a direct mixing within the doublet is not forbidden which can be of some interest
for the problem of search for parity and time-invariance violating nuclear forces.



470 V. V., Flambaum and G.F. Gribakin

states with the energy difference about D in the compoﬁnd nucleus is not dynamically enhanced.
However, one can consider the contribution of distant states 5. If the product of the matrix elements

peaks for the states b at the distance of E, — E ~ w from the resonance, one can apply closure to obtain

_ 2I_.A_]_x\_'(a, —K!H'W!a,K) 132
= oE~Em) (132)

and, in the case (131), at E = Eyy we come to the remarkably simple result

_ {a,~K|H'W|a, K)

wl{a,—K|H'la,K) ~ (133)

Thus, in this scheme one can expect the admixture amplitude of the order 5 ~ W*/w, where W* is a
typical single-particle matrix element of the weak interaction, W®® ~ 5 eV. For the Coriolis interaction
as H', the transition energy w between the deformed single-particle orbitals with Am = 1 is of the
order of 100 keV, which yields an optimistic # ~ 5 x 10~°. It can be compared with the mixing
between the compound states of opposite parity feomp ~ \/ﬁ/ D ~ 107*, which means that the regular

contribution of parity doublets should be considered quite seriously.

The mechanism presented above is based on the assumption that the pear shape of the nucleus and

4ho =oladad Ao llad odes
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d excitation energies. If this is the case, the complicated

intrinsic states are superpositions

la, £K) =Y C|®;, £ K) (134)

~(a) -

of simple quasiparticle configurations [®;, £K) with amplitudes C;* independent of the sign of K.
Then the matrix element in (133) contains a regular contribution

2
(a,~K|H'W|a,K) ~ ¥ C%&;,~K|H'W|®,, K) . (135)
i
A 10nn4\ L1 ﬂ LAY l a1 TIYRT Y it 1 2 f1omN\
AS BI lOWIl 111 \I‘ 1a.moa.um 3.11(1 aelevmsxy 133‘1} wne ra.mo ) petween the rINU matrix eiement \100)

and a similar expression for the doublet splitting (131) can be calculated explicitly using the statistical

approach of sec. 2.1.

'
w
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upon Averaging

Considering PNC effects we so far assumed that the energy of the system E is a well defined quantity. It
meant, e.g., that studying the spin-asymmetry in neutron capture one could tune the neutron energy to
the p-resonance and obtain the corresponding kinematical enhancement, together with the dynamical
one. Consequently, the energy resolution was supposed to be better than the level spacing D and the

resonance width I'. The mixing of opposite parity levels by the weak perturbation is inversely propor-

tional to the energy distance |Ey — E_| between them (and the overall magnitude of the dynamical
enhancement is proportional to 1/4/D). As is known the level spacings decrease exponentially with
energy, which, in principle, gives rise to a possibility of observing very large dynamical enhancement
factors. However, it is likely that when the level spacing becomes very small, it would no longer be pos-
sible to resolve individual resonances, and the measured quantity would be an average of the effect over
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many resonances. This situation is quite possible not only for neutrons or other particles (photons, pro-
tons, etc.) of higher energies, but also in other reactions (e.g., chemical reactions). Considering it is also
important for answering the question: what happens to the dynamical enhancement of perturbations
when the size of the system grows towards macroscopic limit?

The compound-state (dynamical) mechanism of enhancement implies that the effects for different reso-
nances are random variables with zero mean (or a very small mean value produced, e.g, by the valence
contribution; the rotational doublet mechanism discussed in sec. 3.5 for Th seems to be a rather spe-
cial case). Thus, one faces an interesting and vital question: Can the statistical in nature dynamical
enhancement of perturbation survive averaging over a large set of compound states? At first sight it
seems impossible, since the effect has random signs for different resonances, and its magnitude should
therefore decrease as n=/2, where n is the number of resonances. This is a well-known consequence of
the Central Limit Theorem (CLT) of the probability theory. However, the larger the set of compound
states involved in averaging, the more probable it is to find a pair of opposite parity levels with a very
small energy separation (there is no level repulsion between the levels of opposite parity). Hence a very
large value of the effect can be achieved for a particular pair of levels, thus making the average effect
large!

Consider the average value of the effect X given by the following sum over individual resonances involved:

X = Zi:l .’E{’ (136)

n

where z; is the contribution of the ith resonance. Its characteristic magnitude is z. « D™, where
D is the mean level spacing between levels of opposite parity. In the sequence of n levels there is a
large probability to find a spacing of |E, — E_| ~ D/n, which makes some z; ~ nz., and therefore
produces a typical value of X ~ z., not decreasing with n. These arguments give one an indication
that dynamical enhancement can survive after averaging. This fact indeed contradicts the standard
CLT, and is connected with a peculiar statistics of the PNC effects (the corresponding probability
density behaves as f(z) ~ a/z? at = > z., if the states’ widths are neglected, and thus has an infinite
variance). In some sense this means that there is an additional statistical enhancement, manifesting
itself in measurements done with poor energy resolution. Below we present an accurate derivation of
this statement and consider its applications to different reactions and possible experiments [details can
be found in (Flambaum and Gribakin 1994)]. The closest analogue of this effect is, probably, Ericson
fluctuations in the differential cross sections of nuclear reactions (Erikson and Mayer-Kuckuk 1966).
Random variables with similar peculiar statistics also emerge in the problem of anomalous diffusion in

disordered media (Bouchad and Georges 1990).

4.1 Probability Distribution of a Single-Resonance PNC Effect

Any parity-nonconserving effect results from (and is proportional to) the mixing of states of opposite

parity. The mixing coeflicient is
ik = =ik __ (137)
* T E—E’

where E;, Ey, are the energies of the resonant states, and w;; is the weak interaction matrix element
between them (compare with eq. (4): ¢ can be included in the matrix element to make it real). The
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formula for the PNC effect also includes capture or emission amplitudes, and a sum over the resonances.

The result can be presented in the following general form [see, e.g., eq. (8)]:

A ,
z‘-E;—Eo-i—; ik (138)

where E; is the opposite parity level nearest to the ith state, and the primed sum represents similar

contributions from the mixing with other states. Repulsion between opposite-parity levels emerges only
in the second order of the weak interaction and hence can be neglected. Thus, the probability to find
E, in the AE vicinity of E; is simply proportional to AE (for small AE) that makes the probability to
find large values of z; relatively large. Random matrix theories show (see, e.g., Brody et al 1981) that

the probability density for the interacting energy levels Ey is

P(ED,EI,”-,EIB,---)O(HlEk_Ejl- (139)
k<j
It means that the probability to find the second level in the same interval AE around F; is very small:
P o AE3. Therefore, the possibility to obtain large values of z; is determined exclusively by the first
term in eq. (138).

Let us introduce a new variable y;,

A;
=29 By = v 140
p=e zk: k E; - E, (140)

which gives the contribution of the nearest level mixing. The probability density for y = y; ia

Jo(@) = [ fo(e)g(A)8(y ~ Afe)dedA, (141)

where ¢ = E; — Eq, fp is the probability density for the interval ¢, which depends on the mean level
spacing D in the {E;} manifold, g(A) is the probability density of A = A;. It is quite easy to obtain
the behaviour of fo(y) at both small and large y values:

fo@lymo = 9OFT, where Tl = [ lelfn(e)de , (142)
Jo@llhce = 75+ where a = fo(O)TA] = fo(0) [ (4)|41d4 (143)

At large y the contribution of the admixtures of the distant states in (140) can be neglected, so one can

put z = y. It means that the probability to find large values of the effect is given by
a
f(@)lowco = — - (144)
Although the distribution f(z) is properly normalized [ f(z)dz = 1], its mean [z f(z)dz can only be

calculated as the principle value, and its higher moments including the variance [ ?f(z)dz are infinite.

All we need from f(z) is its asymptotic behaviour at large . However, we can use some model
considerations to find out more about its actual shape. It is easy to check that the distribution of the

spacing between nearest opposite-parity levels is given by

fole) = D / [ Bo($)ds | (145)
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where Pp(S) is the level spacing distribution in one manifold. Note that the probability to find large
values of = does not depend upon a particular shape of Pp(S). Indeed, due to the normalization
condition for Pp(S), fp(0) = D™, and the constant a = JA|/D in (144) represents some characteristic
value of the effect . As is known, Pp(S) can be described by the famous Wigner formula

s
Pp(S) = ;’—De-*s’/w . (146)

It follows then from eq. (145) that the distribution of ¢ is Gaussian:
fo(e) =D '™ /P* | where €3=¢? = D*/2r . (147)

The g(A) distribution depends on a particular effect considered. For the mixing coefficient n (137) A is
the matrix element of the weak interaction (A; = w; = w) between compound states, and should have

Gaussian probability density

e—w7/2wg

g (w) = \/577'!00 .
The calculation of the integral (141) with the functions from (147) and (148) yields the so-called Cauchy

distribution for the nearest-level mixing coefficient 7

(148)

1 _ \/2_72120 _Wo
fo(n) = g +17§ » where ne=———= o (149)

where 7. is the characteristic magnitude of mixing. At n 3> 7. the function fo(n) turns into (144) with
a =[x

Using n as a model variable we can examine the contribution of other levels, given by the primed sum in
(138). For example, if we assume that the effect is produced by mixing of level ¢ with the two opposite-
parity neighbouring levels Ey and E; [y = wy/(E; — E;) + we/(E; — E,)), the probability density can
be written as follows:
e~wi/2w} o—wi/2uf
) = \/271000 e\/z_"r_wo PD(E;;- 52) (7’ —Euill- - Z)—:) dw;dwydeyde, (150)
/"/ 2 (cos ¢ + sin @) cos @ sin pdyp

’70\/— Z(cosp + singp)? + ﬂ; cos? @ sin ¢]

where 1o = wo/D = n./v/27. It is easy to check that (150) has the same asymptotic behaviour as
{149). Another way to take the contribution of other levels into account is to consider them in the
“picket-fence” model [Bunakov et al (1990) used it to find the distribution of a P-even, T-odd effect].
Within the latter all E levels except the nearest to E; are assumed to be equidistant and separated by
D spacing. This yields

emui/au o
f) = /m k]&(n—¥Ei_Ek)P(...,Ek,...)...dEk‘.. (151)
2,2 —re?
- S/Lf/ooexp e de | (152)
w320 Jo o (e2+ %) 2+ 3

In Fig. 7 we compare distributions (149}, (150), and (152). One can see that they differ only around
the maximum and quickly achieve the same 1/5? asymptotic behaviour as 7 increases. We should stress
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Figure 7: Probability densities for 5 in the nearest level [eq. (149), solid line], two neighbouring levels
feq. (150), short-dashed line], and “picket fence” leq. (152), long-dashed line] models for 5o = 1,
= v/27. Note the identical asymptotic behaviour of f(5) at large 7.

once more that the asymptotic behaviour of the probability density of x (138) or 5 is determined by
the nearest-level mixing only.

v essions describing real PNC effects u
amplitudes. Therefore, the probability densities for these effects are different from eq. (149), even in
the two-level approximation. For example, the difference between the capture cross sections for neutrons
(protons, photons, etc.) of positive and negative helicity (7), or the photon polarization rotation (121),
are proportional to the product of the two opposite parity capture amplitudes o and S (s-wave and
p-wave neutrons, E1 and M1 photons, etc.), times the weak matrix element w divided by the energy

denominator. In the two-level approximation the expression for the effect is

Aacstming that o 2 and 2 ara indanandant (nsasian random variahlas ane can ghtain tha nrahahility
ABSUININE that &, 47, &l W arc InGCpInaciy uaussian rana 1€8, ONC Canl Oolalnl i€ Provacliivy

density for ¢ in the following form:

fo() = 21ecobo Kolo)es L 2 (154)
0 = / = T3
72 Jo (neawofo)?t+¢* |, T &
PR LY < 3 | o=l £ _af — e o~ A2 i /_ ML . ncerimnamd bl
Wuclc 1\0\2} lﬂ & Imodiiea DCBHCI. luubbluu, mlu (Pc —_ ‘1’cuolJo/ A = ‘v ouopo[u 1UT adylupuouic

behaviour at ¢ 3> ¢, coincides with (144), and of course, holds in the many-level case too.

The expression for a relative PNC effect, e.g., the spin asymmetry (8), looks like
aw

B e

n
F 4
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It is a product of two factors (the nematical factor K = a/f, and the mixing coefficient = w/¢).
Each of them is distributed according to the Cauchy law [eq. (149)]. As a result the probability density

FIETISS 2R RS il = e ATV i

Z:"

for the relative effect p is

D, Qon to

112 - . R
fr(p) = W, 22 "p,' F where pc=Kcrzc—ﬂ0 Pl (156)

The probability to find large values of p decreases very slowly, as In p?/p?, since there are two possibilities

to obtain large p: 8 — 0,0r e — 0.

The distributions discussed above describe effects induced by mixing of states belonging to different
manifolds, e.g., opposite parity states in the PNC or P, T-odd (violating both parity and time-reversal
invariance) effects. However, some effects can be produced by mixing of states which have the same
parity. The levels in this case repel each other, thus suppressing the probability to find large values of

4l ffnnd A Af ariah affaa add and D_avan Rvafald alnds 1o $evma) woan
i€ enedi. An c)Lmuch of such eflect \.L -odd and P-even fivefold correlation in neutron LGPI:I.IACI was

considered by Bunakov et al (1990). The probability density of the effect has the asymptotic form:

A2

A?
fr()lemoo DoF (157)
Tk nuinnmecn af tha dinteihadion (187) 30 atill infinita hawavar tha nalavant intaceal divarens vaner wanlle
A A1t Gl IGLILT UL LUT Uiduiivuvivil \J.Ul} 1D dbuiul u.lnuurc, HU"C Cl VUG LTICVadLY Auucslm Ul ¥TLECD vcx_y Wcﬂl\l_’,

asInt at t — oo. In the case of a finite level width I' the variance was calculated in (Bunakov et al 1990).
It is proportional to In(D/T'). It should be noted, however, that this purely “statistical” consideration
may not be correct for the matrix element between close levels with identical exact quanturn numbers
due to existence of some approximate quantum numbers, e.g., the isospin (T'), or the total orbital

momentum (L).

™

Role of Com-

AT

4.2 PNC Effect Averaged over Many Resonances and the
pound State Widths

As we have shown in the previous section, the probability densities f(z) for PNC effects typically satisfy
the following conditions:

1
f(z)llzl—wo = ; .'l:_i ’ (158)

2 =0 (150}
o . \LUU}

Note that the second condition in (159) can always be achieved by subtracting the regular contribution
z — z — T, and the corresponding integral exists only in the principle value sense. Suppose one knows
the statistics of the on-resonance effects z;. We need to find out, what is the size of effects one might

eynort meassuring a o
Capely INCAGUIINE SCINC AVIIGECG quadlvivy 7

X =) 6iz;, where 29 =1, (160)
=1 i=1

where 8; are the weights which depend on the energy resolution function [6; = O(1/n)]. If the variances

a? of fi(z,) were finite the CLT would tell us that as n — oo the distribution of X turns into 2 Gaussian
one:

LX) P
Fo(X) — ————— exp| ~z7—=—1] , where (0%, =Y 8202~ 0O(1/n), (161)
V2m{o%), \ 2@/ i=1
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producing typical effects X of about ¢;/+/%, i.e., \/n times smaller than in a single-resonance measure-
ment. However, the variance of the distribution (158) is infinite. Thus, the standard CLT is inapplicable,
and the answer has quite a different form:

1 X

; —m;i , where XC = Zo,'za' . (162)

i=1

Fn(X)ln—-oo =

The derivation of (162) is given in Appendix E together with the residual term which estimates the
convergence of F,(X) to its limit. The most striking feature of F,(X) is that contrary to (161) the
distribution (162) does not narrow as n increases. This means that in spite of the random signs of effects
for different resonances one would obtain averaged PNC effects of about the same magnitude as those
for individual resonances: X, ~ z. [there is a certain suppression of the kinematical enhancement factor
in some cases (sec. 4.3), but it has nothing to do with the statistical suppression due to the random sign

of the effects for different resonances, which would take place if #; had finite variance distributions].

To apply the CLT (162) to real physical effects we need statistical independence of the effects ;
for different resonances. Strictly speaking this is not true, because the energy levels are correlated.
However, when the number of resonances n is large, and since the average is dominated by a few of
them [see the reasoning after eq. (136)], it is quite improbable that these “important” ones are close
to each other (when the level spacings D1 and D_- in even and odd level sequences are different it is
also “impossible”). Therefore, there is a small parameter of about 1/n which allows one to consider the

effects for different resonances as independent variables.

Below we briefly discuss the limit theorem for some other distributions with infinite variances. The

probability density for the relative PNC effect (156) displays the following asymptotic behaviour:

1 z., z?
fr($)|z-.oo = ;5 ;'2‘ n;—g

v (ze=pe). (163)

In this case the width of the distribution of the average effect X increases slowly (x Inn) with n. With

logarithmic accuracy
1 X

T X2+ X2’

This means that the typical value of the average relative PNC effect increases with the number of

nX?

2
Ze

Fo(X) ~ X, ~ %m (164)

resonances where the effect has been measured (a conclusion opposite to the standard CLT). This
seems to happen in the present measurements of the PNC effects in neutron capture (Alfimenkov et al
1981, 1983, Masuda et al 1989, Bowman et al 1990, Frankle et al 1991). We should also mention the
distributions of effects caused by mixing of levels repelling each other [see end of sec. 4.1, eq. (157)],
where the asymptotic behaviour of the probability density is: f(z) ~ z2/|z[2. In this case the Fourier

transform of the F,(X) probability density is

. 2,,2
F,(w) =exp (—%—;—L [ln ;%E’:’—' + const]) . (165)

The difference with the standard CLT here is only the logarithmic term in the exponent. This term
shows that the width of the distribution decreases as y/Inn/n instead of the standard 1/+/n.
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So far we neglected the widths of the compound states mixed by the weak interaction. It is easy to see
that this supposition is crucial for the validity of eq. (162). When the finite widths are taken into account
the mixing coefficient (137) can not be greater than ~ w/T', since I' determines the smallest value of the
denominator. This restriction becomes essential for the average effect X when the “probable” minimal
interval |E; — E_| ~ D/n becomes of the order of I': D/n ~ I'. In the many-decay-channel case the
fluctuations of the compound state width are usually suppressed and the possible magnitude of the
mixing coefficient is indeed limited. In the case of a single-decay-channel domination the fluctuations

of the width are usually large. However, a simultaneous vanishing of the interval ¢ and the width I’

arafas PR S. Sy Py am 2 lea dLho

1ea.(1mg to a very la.l'ge mlxulg is qulbc nnpluud.un: Lucu:u)u:, in puubipn:, finite widths make the
variance of the probability distribution of the mixing coefficient finite. For small widths I' <« D this

variance is very large [o< (T'D)~* for mixing of opposite parity levels (Flambaum 1985), and « In(D/T")

et == =4

for the same parity levels (Bunakov et al 1990)], and in practice it does not have any physical meaning,
if the number of resonances involved is n < D/T' (D/T ~ 300 for compound states near the neutron
threshold in non-fissionable nuclei). Indeed, the probability to find a pair of mixing levels separated by
¢ ~ T interval is very small in this case (~ nI'/D), and the widths can be simply ignored. However,
the widths must be taken into account for n 2 D/T, or if one is interested in the probability of finding
very large effects | X| > X.D/(T'n).

Quantitatively the results for the finite width look as follows. The variance of  becomes finite and at
I' « D it is given by

— wA?
72~ 2 166
or (166)
Of course, this means that the 1/z* asymptotic behaviour of f(x) is violated if finite T are taken into

account, and there is a certain “cut-off” in f(z) at large z. The variance of the average effect X (136)

vy Bolia aa walll
OW Iiiit€ a8 Weul

=]

15 wﬁ
X2, ~ )
(X0 nDT

At n € D/T its square root is much greater than X, the characteristic width of F,(X) (162): X, =

¢, = 7A/D ~ \/A?/D?. Thus, Fo(X) retains its Cauchy form (162) for |X| < ZX,. Therefore, as a

manifestation of the finite state widths, we obtain the following interplay of the :nﬁu.ue='v'm:ana (162)

and conventional (161) versions of the CLT for the probability density F,(X) of the average effect X:

(167)

2_ X D _ . _T|A]
forl<<n<<1_,. F.(X)= X2+X7’ |X| < = F Xc_xc———-D , (168)
n o[ X2 ] _ = 73
i =w‘"l X7 < 2 n L FA
fr n>p: F(X)= —pSie, XIS VXD, (X%)a=—x— . (169)

4.3 PNC Effects Integrated over the Initial State Energy

Let 18 now ﬂl’lnw tha real N’(‘ effects averagad over the ener

t real effects averaged over the energ al an ee

expressed in terms of the sum X (160) of individual resonance contributions. Such situation takes
place when one cannot resolve individual compound resonances. In (Flambaum 1985) the mean square
values of energy-averaged PNC effects were roughly estimated (the aim was to separate possible regular
mechanisms of the effects). However, as has been shown above, when the number of resonances involved
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is not too large: n < D/T, one has to consider the probability distribution of the effects, since the mean
square value of the effect is too large [oc (DI')~1/?], and is not observable.

All PNC effects occur due to interference of some opposite parity amplitudes (s wave and p wave for
neutrons, E1 and M1 for photons, etc.). The influence of energy averaging on the magnitude of a PNC
effect depends on whether this interference happens in the capture channel or in the decay channel.
Thus, we can divide all PNC effects into different ciasses.

PNC effects due to interference in the decay channel. In this case the consideration can be limited to

one dominating capture amplitude (s wave for neutrons, E1 for photons, etc.). Examples of the corre-
sponding PNC effects are: the & - p; correlation between the neutron spin and the momentum of the
light fragment in nuclear fission, a similar correlation in the (n,<) reaction, the circular polarization
of the emitted 4 quanta, and other correlations of the third class, according to the classification of
Flambaum and Sushkov (1985). The amplitude for a reaction of this type which leads to some final
state |f) looks like

Af T, Bf WaTn
Zp:p‘¢;r‘ +E(p= ¢;rpv‘;£ L 17
s g T gl ap \ a7 glaj\Ld T Lp T Qip)
Ag, T, ( 1 By, W,, )
= _ 11 ——
};E—E,+§I‘, \ +A,.§E-E,,+gr,,, ’ (170)

where T, is the capture amplitude, As, and By, are the decay amplitudes from the opposite parity
compound states |s) and |p), and W, is the weak matrix element coupling these states. The relative
magnitude of the PNC effect near an isolated s resonance is given by [compare with eq. (31))

p=DA{2,T‘,_BfL%‘___\ . (171)

Here we do not specify any coefficients depending on the angular momenta of the resonances since
they depend on the particular reaction under consideration. They can be found, e.g., in (Sushkov and
Flambaum 1982, Flambaum and Sushkov 1984, 1985), see also Appendix A.

In order to find the integral value of the PNC effect the squared absolute value of the amplitude (170)

has to be integrated over the energy E:

A3 T AT,
fo' Lot 4Nfa
/0(E) { (E-Ey —il,)(E - E, +iT,)
A T IB!pr'T ‘| }

> 172
[-% (E - E..—-I‘.')(E E,+1T, YE-E,+ 3 F) CJI (172)

where §(E) is a smooth energy resolution function of the characteristic width A, normalized as
[8(E)E/D, = 1, so that 3, 6(E,) = 1. The term quadratic in W has been omitted from eq. (172). If
I’ € D the dominant contribution to the integral (172) is given by the diagonal terms s = s'. Assuming
that the number of s-resonances inside the integration interval is large, n ~ A/D, > 1, and omitting
some common factor we obtain the following result for the integral effect:

A% B o Tsl? _
T 0lALPITE + [W., pBWull ] omPmE e x),  am)
ry P ﬁl_ﬁp'f'zu-"'lv) ]
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where 8, = §(E,), and X determines the relative magnitude of the integral effect:

Vos

X =) 0,, z, =) _Re , 174
2o, ’ zp: E,—E,+ (T, +Ty) (174)
2A%,B,W,,|T,|? —
V=—Lé, A 2T2= 0,A 21“2. 175
s AP |A1:?IT.| Z.: | Aus || (175)
The squared amplitudes |T,|? can be replaced by the capture widths T'{9 (e.g., T, for the neutron

o L
- I (o
capture), and |Ay,|? by the partial decay widths I'(®:

TFTALE = S 0.4900

where g is the statistical weight of the resonances. The value of V,, is usually real (fission is an exception).
Equation (174) shows that X is the weighted average of the single s-resonance contributions z, [compare
the expression for z, with eq. (138); the width T' =T, + I, is introduced into it by E; — E; + i%, and
taking the real part]. Thus, the probability density of the integral PNC effect X at n < D,/T is given
by [see eq. (168)]

1 X, _ wm
fX)~ - m, X. = D, (176)

Note that expression (174) for x, differs from the single-resonance relative effect p (155) by the factor
|As[?|T.*/TA7PIT.2. The mean value of this factor is unity. However, the presence of the Ay,
amplitude in the denominator of p [ in (155)] gives an extra possibility for p to be large [the In(p?/p3)
factor in the distribution (156)] and slightly changes the CLT. As a result the expected value of the
average (integral) effect depends on the method of averaging. The distribution of the average over the
single-resonance effects slowly widens with n [eq. (164)], whereas the distribution of the energy average
tends to its limit (176).

PNC effects due to interference in the capture channel, Let us start from the calculation of a PNC effect
in the total capture cross section: the difference of the cross sections for neutrons (protons, photons,

etc.) of positive and negative helicity. The capture cross section o(E) is obtained from (19), (20):

|‘|2 IPIZ : sp-p " psts
E) x Im L + 1 + LW T, + T W, ,
o(E) X,:E—E,+gr, X,:E—E’,+§I‘,, ,Z,,,:(E—E,+gr,)(E-E,,+g )

(177)

If one neglects the kinematic dependence of the amplitudes T,, T, and integrates (177) over the energy
interval A > D,, D,, the third sum, which is responsible for the PNC effect, vanishes (the integration
contour can be closed in the upper half of the complex plane leaving out all the poles of this term). It is
easy to explain the reason for this vanishing. The expression in question has opposite signs at E = E,
and E = E, and the contributions of s and p resonances cancel each other. However, the quantity
measured experimentally is not the cross section itself, but the number of neutrons passed through the
sample, or the neutron spin rotation (121), which is expressed in terms of Refpy(0). In s resonances
the attenuation length is too short for any neutrons to be detected in the end. Thus, the s-resonance
contribution (E = E,) is totally suppressed, and no cancellation happens.

Below we present some estimates for the magnitude of the energy-averaged PNC effect: the difference
between the positive and negative helicity neutron numbers N, and N_. The number of neutrons passed
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through the sample of length ! is N = Npexp(—onol), where Nj is the initial number of neutrons, and
ng is the concentration of atoms in the sample. The neutron number difference then is

Ny—N_=N, (e'”+"°' - e"’"“") ~ —Noe"’"°l(a+ —o_)ngl (178)

where ¢ = (04 + 0_)/2 is the average cross section for neutrons with different helicities. The relative
difference of the neutron numbers integrated over the energy distribution 8(E) of the projectiles is given

by the ratio
Ny —N_ _ nolf(o+ — o_)e~°™!9(E)dE
N +N_ ™ 2 fe—omlg(E)dE

The difference 0, — o_ is large near p resonances only, where it is expressed in terms of the spin

(179)

asymmetry P (8):

Opt
oy —0_=2P,0,(E), P, m—— Z ut)
P -

E ) (180)
where 0,1 and o,(E) are the p-wave capture cross sections dominating in ¢ at E = E,. In the case of
I' « D (well separated resonances) the total cross section can be presented as ¢ = g + o,, where oo
is the cross section far from the p resonance. The integral in the numerator of (179) is replaced by the
sum over p resonances, the integral in each of its items being calculated over some energy interval A,
containing the resonance (I', € A, < D,):

nol T, Pe~o0m! [ a,(E)H(E)e"’P""‘dE

Ny—N_ A, UP(E) o, (E) dE
Ny+N_ ™ el [ §(E)dE - ZP:P lo / ag xp aolo 0(E)_—;
~ 1 Ty op(Ep) op(Ep)l
~ XP:P,, L 3D, o exp oo 0(E,) (181)
==Y Pl =) z,0,, (182)
) P

where ¢, is defined by eqgs. (181), (182), 8, = 0(E,), x, = —Pyqp, lo = 1/0ong is the attenuation length
far from the resonance, and the normalization [(E)dE/D, =1 has been used.

Now we can apply the CLT to the X = Y, z,8, variable from eq. (182), where

A
z, = —qup = ﬁ + ZIBP’ s (183)
ap(Ep)l )

aolo

o= sRlen=2), 7= (184)
The first term in the right hand side of (183) describes the mixing of the p resonance with the nearest
s resonance [compare with eq. (138)], and produces the =2 decrease of the corresponding probability
density. The length of the sample ! can be adjusted to achieve an optimal situation Z, = 1, ¢, =
#lp/(2Dye). In this case the magnitude of the PNC effect is . ~ P.I'/ D (P, is a characteristic value of
the single-resonance effect, I' and D are the average width and spacing for the p resonances). Therefore,
the PNC effect (178) in the integral spectrum is suppressed by a factor I'/D, with respect to single-
resonance effects, however, it does not decrease with the number n of resonances involved (poor energy
resolution), as long as n < D/T. It is necessary to add that of course the magnitude of the relative
effect (179), or P in (180), is limited: |P| < L. Therefore, there is another boundary max|P| ~ nP. <1
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on the possible values of n in this case. Although, this limit is not important for the integral effect,

where z,. ~ 10~ 4 it can be essential if one calculates the average of the relative cross section differences

viulIiC T € CE8CNHLIA: 11 ONIC LACULIAVCE LAC JVCIags OL vac fiav: 0SS B 1ICTCALS

P,, which have typlca.l values of about 1072, This gives the limit n < 100.

Integral PNC effect in elastic scattering and the “weak optical potential”. This case is somewhat inter-

mediate between those studied above. On the one hand, the corresponding PNC effect (e.g., the & - n
correlation, where & is the incidental neutron spin, and n is the direction of the scattered neutron mo-

mentum) is due to interference of the final state amplitudes [TsYoo(9, ) and T, »Yim (¥, 9)]. On the other
hand, it is kinematically suppressed as T, /T, since the s-wave scattering proportional to T? dominates.

The scattering amplitude taking into account the s-wave capture is given by [eq. (20), Appendix Al
1 [ T2 Ty, s WeeTs ]
fO=fo-= | —1 + 3~ e — (o - n) (185)
Zkl-g b_ba'{'ils 8,p (E—E,+5F,)(E—Ep+§l‘,,) J
[ TS AU LYV SO, IO 4 o (Y I - IR A o () ST R T S S U L I SIS,
WICIT vUC alllPlituucy alc iz = IV 1l .lp - Ilvlp y GUU LUC SIIIPICSL LasC UL uie LCIU‘SP]U hd-rgt:l/
is considered. For the longitudinally polarized neutrons & - n = cos¥. Folding the differential cross
section with 8(E) energy distribution yields
T,
|fo|2+20,a, s !1+Z [ _”’ +c.c.1 cos 191 . (186)
el + 4T+ 1)) ] )

The angular distribution of neutrons W () is determined by the ratio of eq. (186) to its angular average.
It is given by

0,0,(E,) P,
W@ =1+ ,% :,'(n ')2,‘;: = cosd (187)
170" T 2.5 Us0s\ L5 )3 5¢
where .
D an_\O Tpllﬁwp’ /100N
r, = ¢Zne (188)

o

> Tu By~ By + 4(Ts + 1)
determines the effect for a given s resonance. Introducing the contribution of the s resonance to the
energy averaged cross section o, = 0,(E,)7T',/(2D,), we obtain

W) =1+ 2Bl 9115 %P0, cosy (189)
—=—" " cos¥ = = cos
[folf + 5, 0.6 Lot et
where @ = |f3|? + L, 0,0, is the sum of the potential cross section and the energy averaged resonance
cross section, whlch are usually of the same order of magnitude. Thus, the angular dependence of W(¥)

(189) is determined by the integral effect

X=z’:z,0,, 2,=%‘P.s»

which obeys the CLT (162). There is a certain kinematical suppression (T,/T,) for the effect in the s
resonance, but, as in the case of capture, the effect does not decrease after averaging over the resonances.

Kinematical suppression takes place in the potential scattering as well (the PNC effect due to direct
interaction of the neutron with the weak potential of the nucleus). However, the potential contribution
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(valence mechanism) does not show statistical enhancement, and the resonant PNC effect dominates.
Therefore, the PNC effect in the low-energy scattering should have giant fluctuations on the scale
depending on the energy resolution (manifestation of the infinite-variance CLT). The magnitude of the
statistically enhanced effect will be about /N ~ 10? — 10° times greater than the potential effect. As
is known, the energy-averaged cross section & can be obtained from the optical potential, since the
fluctuations decrease as 1/./n. Contrariwise, there is no “weak optical potential” for the PNC effects,
since the size of the fluctuations is constant, and is much greater than the mean value (produced by
the weak nucleon-nucleus potential).

PNC effects in the integral spectrum of final states in (n,7) reaction. These effects were observed by
Vesna et al 1982 and calculated by Bunakov et al 1984 and Flambaum and Sushkov 1985. However,
in this case the statistical enhancement of mixing in the final states competes with the dynamical

enhancement due to compound resonance mixing in the initial state [see diagrams (27) and eqs. (28),
(29)], and the whole question deserves further investigation.

Concluding this section we should remind the reader that all PNC effects are of interference nature.
The results obtained above show that because of the peculiar statistics the interference effects does not

necessarily vanish upon averaging.

5 1Is there a Limit for Enhancement?

When the number of excited particles increases the interval between the levels decreases exponentially.
A npatural question arises: can the magnitude of dynamical enhancement increase up to infinity? The
common sense tells us that it is hardly possible, since we apparently do not observe large PNC effects in
macroscopic bodies where the spectrum of states is “infinitely” dense. (Strictly speaking this argument is
not correct since a macroscopic body is not in a stationary state and does not possess exact symmetries).
However, one can consider a system of variable size, say, an atomic cluster, and try to follow what
happens with the enhancement factor when the number of particles increases. There are several reasons

which can limit the enhancement factor.

1. Widths of compound states. If the admixed state is quasistationary the energy denominator in the
mixing coefficient is E — E, +iT,/2, and its magnitude can not be smaller than I',/2. This is a natural

limit of the enhancement for fissionable nuclei where the width is comparable with the level spacing
D. The width also becomes important in any nuclear reaction at higher energies. However, in atomic
systems the natural (radiative) width can be extremely small in comparison with the atomic energy

unit.

2. “Spectator” degrees of freedom. There are certain degrees of freedom (vibrations, rotations) which do

not participate in the weak interaction directly. However, these excitations have a very dense spectrum
in molecules and clusters (recall that the rotational intervals in heavy molecules are Mmya/m, ~ 10°
times smaller than the energy intervals between the electron states). At first sight one could conclude
that only the interval between the electron states is important, and the interaction with rotations and
vibrations (phonons) produces some effective width for electron states only, i. e, their contribution
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to the enhancement is destructive. However, this is not true. The point is that one can construct an
effective weak operator which mixes rotational or vibrational levels. For example, (Labzovsky 1978,
Sushkov and Flambaum 1978, Flambaum and Khriplovich 1985) calculated the effective weak operator
which mixes opposite parity rotational levels in diatomic molecules: Wpne = %(je X L) - Ay, where
jc is the electron angular momentum, I, is the nuclear spin, and A,, is the direction of molecular
axis. The effective interaction constant « is proportional to the electron-nucleus PNC interaction. Note
that only the nuclear-spin-dependent part of the weak interaction and the nuclear anapole moment
(parity-nonconserving magnetic multipole) contribute to it. The situation is even simpler in the case of
P, T-violation, where the effective interaction is WFT = A.j, - A + Al - A;n. The effective interaction
constant A, (As) is proportional to the P,T-odd electron (nucleon) electric dipole moment, or to the
electron-nucleon (nucleon-nucleon) P,T-odd interactions. This effective interaction can mix very close
opposite-parity rotational molecular levels, thus enhancing PNC and P, T-odd effects in molecules by 5
orders of magnitude in comparison with atoms.

The density of rotational and vibrational levels in complex molecules and clusters is very high even at
low excitation energies (where the radiative width, proportional to w?, is negligibly small). Therefore,
there is a possibility of very large enhancement factors. It would also be interesting to consider the
enhancement of parity conserving effects: violation of the adiabatic approximation for the rotation (due
to the Coriolis interaction) and for the vibration in the energy range of high electron level density.

3. Finite time of the process, collisional broadening, etc. These effects produce an effective width of the

states and depend on particular experimental conditions.

4. Poor energy resolution. As it was shown in Section 4, the averaging of a “random” PNC effect by itself

does not reduce the magnitude of typical enhancement. However, there could be some “kinematical”
reasons for suppression. For example, the PNC effects are large in M1-electromagnetic transitions (due
to the kinematical enhancement E1/M1), but the integrated photon-capture cross section is dominated
by the El-capture where the effects are suppressed by the factor of M1/El. However, one can find
effects which are not suppressed kinematically. In nuclear reactions these are PNC effects in fission,
some effects in neutron radiative capture, etc. There is also an example of such effect in atomic physics:
the P, T-odd rotation of the polarisation plane of light (optical activity) in a gas placed in a longitudinal
electric field (Sushkov and Flambaum 1978, Barkov et al 1988). This effect is proportional to the P, T-
violating electric dipole moment (similar to the Faraday rotation in magnetic field, where the effect is
proportional to the magnetic moment).

6 Concluding Remarks

There are several mechanisms which enhance PNC and P, T-odd effects in complex systems:

1. Kinematical enhancement. The amplitude admixed by the weak interaction is substantially big-
ger than the main reaction amplitude (e.g., the admixed s-wave amplitude vs the main p-wave
amplitude in neutron capture).
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2. Dynamical enhancement. This enhancement is due to very small energy intervals between excited

states in many-body systems. A naive estimate of this enhancement v N (N is the number of
principal components) is usually an order of magnitude greater than its true magnitude. The cor-
rect value should take into account particular dynamics of the system, e.g., the information about
localization law for the components of the compound states, the properties of the perturbation
operator (e.g., parity-violating operators in nuclei transfer particles from one shell to another),
the single-particle occupation numbers, possible collective effects, etc.

3. Resonance enhancement. In the absence of kinematical enhancement in the capture channel of the
reaction one can “come” very close to the admixed state energy. For example, in the case of PNC
in nuclear fission the main neutron capture amplitude is the s wave. The energy dependence near
an opposite parity (p-wave) compound resonance is given by D/(E — E, + %I‘ »). If the distance
to the p-wave resonance is much smaller than the mean level spacing D between the compound
states, we have resonance enhancement of up to D/T. This enhancement factor can be especially
large for some PNC and P, T-odd effects in neutron radiative capture where the resonance width
T’ is small.

4. Statistical enhancement.
(2) Resonance statistical enhancement. As known the levels of two subsystems with different

quantum numbers (say, opposite parities) do not repel each other. When one considers
effects for n compound resonances there is a high probability that at least for one of them
the distance to the nearest opposite-parity level will be very small |E, — E,| < D/n. This
will make the contribution of this resonance about n times greater than the “typical” one.
(b) Structural statistical enhancement. Relative values of resonant PNC effects usually contain
ratios of the admixed amplitudes to the main one. Random fluctuations of the main (p-wave)
amplitudes in the case of n resonances can make one of these amplitudes n times smaller

than the r.m.s. one, producing the effect n times greater than the typical one.

Statistical enhancement combined with dynamical and kinematical enhancement can produce
maximal possible value of the effect (say, 100% parity nonconservation). Parity nonconservation
at 10% level which corresponds to the total enhancement factor of 10® has been already observed
in Dubna and Los Alamos. Statistical enhancement is very important when considering the
effects averaged over many resonances. Because of this enhancement the values of the randomly
fluctuating effect do not tend to zero (proportionally to 1/4/n as prescribed by the standard
Central Limit Theorem of the probability theory) for measurements including n resonances at

once.

In this review we mostly considered nuclear physics applications. However, there are very interesting ap-
plications of perturbation enhancement to other systems and phenomena: violation of “non-relativistic”
conservation laws in rare-earth and actinide atoms, violation of adiabatic approximation in molecules,
parity violation in chemical reactions, enhancement of external noise and “violation” of quantum me-
chanics in atomic clusters, spin systems and mesoscopic systems, etc. For example, the idea of dynamical
enhancement has been recently applied to such a “distant” physical phenomenon as Anderson localiza-
tion. It was shown that the localization length in the two-body problem is strongly increased due to

the enhancement of the interparticle interaction (Shepelyansky 1994, Sushkov 1994).
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Appendices

A Calculation of Reaction Amplitudes

The rules for writing down reaction amplitudes near the neutron threshold have been formulated in
(Flambaum and Sushkov 1984). Let n; = k/k be the direction of the neutron momentum k, I the spin
of the target nucleus, J = I + j the momentum of the compound resonance, « the polarization of the
neutron, and j = 1 + s the momentum of the captured p-wave neutron. Then,

(i) The amplitude of neutron capture into the s resonance is

i AE). a
(ii) The amplitude of neutron capture into the p resonance is

3 Clisi,CimgaVARYin (m)ing) (B) (A2)
Jism
Here [y("(E))? = T"(E) is the s resonance neutron width, and [y, ")(E)] (")(E) is the neutron
width corresponding to the emission of a neutron with momentum j (F{" = I‘g’;)’ + l"f,;‘):)
(ili) The matrix element of the weak interaction between two compound states is (s|W|p). It is
imaginary if we use the standard definition of the Y}, functions.

(iv) The Green function of the compound nucleus is

1

FRTI (A3)

(v) The common factor for the scattering amplitudes is —1/2%.

The additional factor ¢ in the p-wave capture amplitude is due to the phase of the free motion p wave.
We consider scattering at kR <« 1, therefore the potential scattering phase is zero. It is shown in
(Flambaum and Sushkov 1984) that there is an additional phase factor ¢’ (¢ ~ 6I'/D, where 6T is the
fluctuation of the total compound state width). However, this factor can be large only when the width
fluctuations are large, e.g., if the fission channel is open. One can find the rules for the fission amplitudes
in, e.g., (Sushkov and Flambaum 1981b, 1981c, 1982), and those for the emission (or absorption) of
v-quanta in (Blin-Style 1973, Flambaum and Sushkov 1985).

Let us illustrate the rules by writing several simple amplitudes. The forward elastic scattering amplitude
near the s resonance is given by

1
—— JJs 7\) P JJs n)
f0) = c,, 1B g, T Ciige (B - (A%)
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After summation over J, and averaging over I, one obtains the usual Breit-Wigner formula {the second
term in the right hand side of eq. (20)] with g = (2J + 1)/2(21 + 1). Similarly, for the p resonance

— Iy '3y , (n) 1
0= -5 ,nzm, Oty Ciniya VA Yams ) 1) B) T,
¥ Iz™
X Cffs;,Ciory VATY;, (ne)ing (E) (A5)

The expression obtained after summation over J, and averaging over I,

1 gIi(E)

f(0) = “®%E-E + T, (A6)

the expression coincides with the third term in the right hand side of eq. (20), I'{") = (M2 4 4(n)2

Pi1/2 Ps/z

Finally, the parity violating forward scattering amplitude [e.g., the fourth diagram in (21)] is given by

1 y

JIs o (n JJy B n)

- E OB g oW P g o, X Ol Ol imin )l B) - (AT
After summation over J,, averaging over I,, and adding the contribution of the third diagram in (21)

we obtain .
1 27(E)i(sIWIph{), (E)
2% (E - E, +3T,)(E — Ep +3T3)

in agreement with the last term in the right hand side of (20). The + sign corresponds to the positive

fev(0) ==+ (A8)

or negative helicities of the neutron.
B Correlations Between Eigenvectors and Superlocalization in the Ran-
dom Separable Interaction Model

Assume that the off-diagonal matrix elements of the Hamiltonian matrix are separable:
H; = foiv; + €6i; (B1)

where v; are random variables, and ¢; are the basis state energies, i = 1, N. In this case the number of
independent variables N is much smaller than the number of Hamiltonian matrix elements N? (as in a
real physical system, see sec. 3.3). The Schrodinger equation HYy = E\¥,, ¥, =3, C',-(x)tb.- can be
written in the matrix form: ¥ H;; C(’\) E;C,('\), which yields

o = Jut (B)
where ¢ = Z CJ(-’\)v,- . (B3)
2

Multiplying (B2) by v; and summing over ¢ gives the equation for the energy Ej:

[ D A (B4)
,.E,\—e;_ )

The value of g can be found from the normalization condition:

2
;C§*”=q§f’;ﬁ=l . (B5)
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If v; are independent random variables, T;5; = v?6;;, the signs of the coefficients C’,w within one
eigenstate are not correlated:

MNAO) _ q?\fh:,'vj N Q§f2 —,
C¢ CJ - <(E,\ - Ei)(EA — Cj) - (EA — 6.')2 v, 6!] . (B6)

The last equality is approximate since E) and ¢} depend on v. However, they are even functions of v
[see egs. (B4), (BS5)], while the coefficients C are odd functions of v [see eq. (B2)]. Thus, Ci(A)CJ(’\) =0,
if 1 # j. Consider now the correlator between two different eigenstates ¥, and ¥,,:

AW _ 4 Dguv?
PP - () =0
The signs of the normalization factors gy and g, are not fixed by eq. (B5) and we can always make them
positive. In any case, physical effects can contain g7 only, since the compound state wave function always
appears twice, say, in the capture amplitude and in the weak matrix element. Therefore, it is obvious
that the correlator (B7) is not zero. Moreover, for close eigenstates (Ey ~ E,) the coefficients C»
and C’,~(“) are almost equal, except for such ¢ that E) < ¢; < E,,, where their signs are opposite. Thus,
the random separable interaction model (RSIM) gives very strong correlations between the eigenvectors
which have close energies. This can result in strong correlations between “observable” effects induced
by a weak perturbation.

Superlocalization of eigenstates in RSIM. Eigenvectors in the random matrix models or in real “chaotic”

systems are characterised by large numbers of principal components N, which dominate the normal-
ization condition. Very often N, < N, and it remains finite as N goes to infinity. N, is related to
the spreading width T,y and the mean level spacing D as N, ~ Ty,r/D. It is usually assumed that
[ypr is determined by the strength of the residual interaction which mixes different components ®;.
Surprisingly, this assumption is not valid in RSIM. The number of principal components is N, ~ 1 for
arbitrary strong interaction. Indeed,

w2 _ _Gf @ 1
G = (Bx—€)? D K?° (B8)

where K = (E» — ¢;)/D. The sum over i in the normalization condition (B5) converges as 3~ 71 and is
dominated by few terms with |K| ~ 1 (see Flambaum 1995 for detailed discussion).

C All-Order IPNCI and Renormalization of the PNC and P,T-odd In-
teractions in Nuclei

Below we present the derivation of VIPNC! and the analogous induced P, T-odd interaction VP! based
on the unitary transformation technique presented in (Flambaum and Vorov 1995a, 1995b). Consider
the nuclear Hamiltonian  in the form

H=H,+V+W+F, (c1)

where H is the one-body Hamiltonian of the nucleons {see below eq. (82)], V is the residual two-body
strong interaction, W is the PNC weak interaction (35), and F' describes other possible interactions, eg.,
coupling to an electromagnetic field (the hatted operators refer to the many-body system). Considering
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the PNC interaction of valence nucleons one should distinguish the two contributions to it: the weak
nuclear potential & (35) caused by averaging of the two-body interaction W over the nuclear core (this

interaction mixes nucleon states from different shells), and the residual two-body weak interaction
W=W— (Weoe =W -, (C2)

which directly couples the nucleons in the valence shell. :W: and w are analogues of the residual strong

interaction ¥ and the strong nuclear potential U(r).

Let us start with the case when V is switched off. Using (80), (81) and (82) one can show that in
the constant-density approximation w = ifo[Ho,r], and the action of the weak perturbation of the
single-particle orbital +, is described as

o= ot S < g gttt = (1~ itobax v (D)
o 8

where a = ifar. Accordingly, the matrix element of any operator O, including the Hamiltonian, can
be calculated by using the unperturbed wave functions ¥ and the transformed operator 0:

(8,018,.) = (¥5[e20e78|0,) = (1:|0]8,) = (¥,]0 + [4,0]|¥,), (C4)

where e? is the operator of the corresponding unitary transformation with the one-body anti-Hermitian
operator & = ¥, 1€,@,r,. The correct choice of the transformation corresponds to the total compensa-
tion of the single-particle P-odd potential in the Hamiltonian: et He8: 1 + [a, Ho] = 0. The effect of
this potential is now included into the renormalized operators O rather than the wave functions ¥.

Let us switch on the strong interaction V and find the corresponding operator A (we will see below
that the operator A differs from & mainly due to the renormalization of the weak interaction constants

by the residual strong interaction V). The transformed Hamiltonian looks like:

H=erle A= Ho+V+o+W: +F +[A Hl +[A F] +[A, V] (C5)
where we have used the decomposition (C2) and neglected all terms above the first order in the weak
interaction. To obtain the effective two-body P-odd interaction acting in the valence shells we should
find the operator A which would compensate the single-particle P-odd contribution in eAHe A, The
last term in (C5) is a two-body operator. Let us apply the decomposition (C2) to the last term in
(C5): [A, V] = ([A, V])eoret+ {{A, V]:. The first, one-body term is the average over the paired nucleons,
and the second one, :[/i, 17] , which yields zero under such averaging, is the effective induced two-body

interaction:
VNG A, V), (VP = 0. (C6)
If we impose the following compensation condition:
W+ (A, Ho) + (1A, Veore = 0, (cn

the transformed Hamiltonian would take the form
H=Hy+V+W: +VPNC L | LA F], (C8)

with no single-particle P-odd potential. Thus, there are three sources of the parity nonconservation in
H (C8):
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Table 1: Comparison of the matrix elements of the induced parity-nonconserving interaction between
the valence-shell orbitals with the matrix elements of the original two-body weak interaction in the

Th-U region.

Matrix elements 2 (g\!)

a B A § J VENCID  PINCIc  Wogyssd
29972 lhgss 1lhgpy 1ljisp2 3 0.067 0.082 0.00%
2902 lheya lheyy 1lj1s;2 4 0.033 0.062 0.001
2952 lhsjz lhgyz ljis;z 5 0.035 0.048 0.012
29972 lhosa lhoyz ljis;z 7 0.029 0.043 0.016
2gas2  lhosa lhayy liisyy 8 0.043 0.082 0.001
liyyy2 lhoys lhgys ljispe 3 0.144 0.184 0.007
1i1172 lhgyz lhgsy 1j15;2 5 0.130 0.165 0.016
12112 lhojz lhejz 1jisp2 7 0.131 0.166 0.032
Yiyayz lheys lhesa ljispz 9 0172 0.218 0.027

& Given in the table are the absolute values of the matrix elements between pairs of neutron-proton
single-particle states (a3 and év) coupled into the total angular momentum J.

b The IPNCI (88), (89) obtained using the Landau-Migdal strong interaction (86).

¢ The IPNCI (C13) renormalized by the momentum-dependent component (C10) of the Landau-Migdal
strong interaction.

4 The initial two-body PNC interaction (35).

i. The commutator [A bJ which gives a direct contribution of the PNC potential % to the matrix
elements of the external field F: (U)|F + [A, F||¥,) = (§,|F]T,).

2. The residual two-body weak interaction :W:.

3. VIPNCI which plays the same role as :W:, but is enhanced in comparison with :W: (see sec. 2.3

and below).

It is easy to check that if we use the Landan-Migdal interaction V (86), the operator .

J, uhn 1

density approximation is proportional to a:

— ifmm
—— bs P

Indeed, the commutator [A, V] would then give eq. (87) with ¢ replaced by €. The average (1A, V])core in
the compensation equation (C7) is zero because of the spin-isospin structure of {87), and it would follow
from the compensation equation that the interaction constants £ coincide with their “bare” values ¢

(1 .e., with those obtained without the strong interaction \ Therefore, the VIPNCI 111 this roximation

ith those o ithou trong intera Therefore, the in this approximation
is given by eq. (88), (89). The strength of this interaction was estimated analytically in eq. (90) to
be ~ A!/3 times greater than that of the original weak interaction W acting within the valence shell
(:W:). In Table 1 we present the matrix elements of VPNl and W between the valence-shell orbitals
calculated numerically by Flambaum and Vorov (1995a).

The fact that £ = ¢ and the IPNCI above coincides with eq. (88) obtained by including the strong

interaction in the lowest first order follows from the fact that the Landau-Migdal interaction (bb)
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does not renormalize the weak potential the nuclear weak potential w, unless momentum-dependent
corrections to it are considered (Flambaum and Vorov 1994). The latter can be taken in the form

()
WV = Zﬁ(hl + hiTima)(0102) {{8(r1 — r2), P1}, P2} s (C10)

which originates from the 7-meson exchange contribution to the nucleon-nucleon interaction. Its con-
stants are h; = —0.5, h] = ~0.26 (Khodel and Saperstein 1982). Note, that only the terms contributing
to the P-odd interaction renormalization are retained in (C10). Spin-independent contributions to V;
responsible for, e.g., the mass renormalization, are supposed to be taken into account by the choice of
the constants C, m, and k. Introducing the operator A in the same form (C9) into the compensation
equation with V — V + V4, one obtains from (C7):

P+ Kiopat) =0, @=pm), (cm)

w, + [zﬁaa'r,

where K, = —2—55; [%(hl +h)E + B F h;)é,.], and a = p(n) corresponds to the upper (lower) signs
(see Appendix D). In the constant density approximation, all terms in eq. (C11) have the same operator
structure and it is equivalent to an algebraic equation for the renormalized constants €. Since ¢, and
the weak-potential constants g, are proportional to each other [eq. (81)] the solution of eq. (C11) is
equivalent to the following renormalization of the constants g, — §a:

=5 {g [1 + s + b)) - Lhgalhs — D)}

dn =3 {on 1+ Z(h1 + B)| - Zgy(hs - h)}

where D = [1+ % (ks + )] [1 + Z(hs + h)] — 44 (k1 — h})? (Flambaum and Vorov 1994). Thus, the
account of V; cha.ngea the IPNCI (88), (89) into

VIPNCL = PIPNCL 4 yENCT = 2(5% - Ep)(hl — h)Cry(op X 04)6(rp — 1a) + +Va (C13)

(C12)

where VIPNCI has the form of (84) with the renormalized constants £, £, At hy, ki < 0 (see above)
the renormalized IPNCI is enhanced: £ ~ 1.4¢. Numerical values of the corresponding matrix elements
are given in Table 1. Another calculation of the weak potential renormalization based on the (r + p)-
exchange strong interaction is presented in Appendix D. It produces even larger values of the weak
potential constants §, €. The second term in (C13) contains the velocity-dependent corrections:

VENC = [4, W] = —-CT{(En = &)(hr = B)(m1: — T2 ){{r1 - (02 X 1)8(r1 —12), p1}, P2} (C14)
4pp

#[[(E+ &) + Birira) + 56— E)(ba + KoY + )| {oap + 22, 654 — 1))
+a(ba =) — K)(rsa = ) {aps — 4P, 61~ )} }

where CE/4ph = G§/(6v/2Zm). One can see that VE"C! is not enhanced with respect to the two-
body weak interaction W (35), except for the first term in the right hand side of (C14), which is the
momentum-dependent correction to the IPNCI from egs. (88), (89).

Using the same approach as above the induced P,T-odd interaction can be considered. The two-body
weak P,T-odd interaction WF'T can be presented in the form analogous to (35) [see, e.g., Flambaum
et al (1986)]:

W \/-2 (b0 a — Ma0s) Vab(rs - ry) + op(ga X Vb){pc —p,8(ra — )}, (C15)
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Table 2: Single-particle matrix elements of the P-odd and P, T-odd nuclear potentials.
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a B €a — €8 Wag wh} wEy
(MeV) (eV) (eV) (eV)
proton states
2pa 38yt —8.44 —0.500g,, — 0.722g,, —0.066n,, — 0.078n,, —0.044n,, — 0.0527,,
2d;/2 3p3/2 —8.73  —0.558¢,, — 0.803g,n  —0.0501,, — 0.073n,,  —0.033n,, — 0.0487,,
lgoss 1hg /2 —11.05 0.599¢,, + 0.842g,, 0.1127,, + 0.1297,,, 0.074n,, + 0.0867,n
1h3 /2 2932 —9.42 —0.575g,, — 0.789¢,,  —0.0559,, — 0.064n,, —0.037x,, — 0.0427,,
neutron states
3] 12 43172 —6.65 —0.452g,, — 0.660gn, —0.0357,, — 0.0129,, —0.0207,, — 0.0077,,
3032 2d3s2 778  0.541gs, +0.778gny  —0.07170n — 0.0487,,  —0.0407,, — 0.027n,,
332 3d3p —8.73  0.446g,, + 0.661g,,  0.060n., + 0.0267,,  0.0335,, + 0.015ny,,
2f5s2 3dy/, —6.63 —0.539gnn — 0.773gn, —0.0441,, — 0.0170,, —0.0247,, — 0.0097x,

* Asterisks are used to mark the states closest to the Fermi energy.

where 145, 7., are the dimensionless constants which determine the scale of P, T-odd effects [very small,
as predicted, e.g., by the Kobayashi-Maskawa model, see Sushkov et al (1984)]. Similarly to eq. (36)
the P, T-odd potential of the nucleus is given by

PT G 7.

. = ﬁﬁ”vl’(”) )

(C16)

w
where 1, = %r)pp + %r],m, N = %qnn + %nn,. Limits on these constants were obtained from atomic
(Lamoreax et al 1987) and molecular (Cho et al 1991) electric dipole moment measurements [see calcu-
lations by Flambaum et al (1986)]. The matrix elements of the P, T-odd potential (C16) have the same
selection rules as those of w:

Al =+1,

Aj=0. (C17)

Table 2 shows some of the matrix elements of w"T (C16) and w (36) between the single-particle orbitals
in %Pb calculated by Flambaum and Vorov (1995b). The numerical calculations were performed using
the Woods-Saxon potential (91).

Table 2 shows that single-particle matrix elements of the P, T-odd potential are numerically suppressed
(by about an order of magnitude) with respect to those of the P-odd potential, since w*T is proportional
to the derivative of the nuclear density and is large only near the nuclear surface. By analogy with w
the single-particle states coupled by the P, T-odd potential usually belong to different nuclear shells and
are separated by the energy of 5-10 MeV. Therefore, to study the effect of P, T-odd interaction within,
say, valence shell one should consider the matrix elements of the two-body P, T-odd interaction (C15)
directly coupling valence-shell orbitals, The effect of the one-body potential w"T can be described by
means of the induced P, T-odd interaction (IPTI). It can be derived similarly to the IPNCI.

The effect of the perturbation w*T on the single-particle orbitals is now described as: ¥, = e™%t,,
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where

Gn  p(0) -
= —oV 0= P _ 8
a oV, 2 am U0 = 2x107% 9 xfm, (C18)

[see eq. (D3)]. Introducing the transformation of operators eA0e~4 and proceeding in a way similar to

that for the P-odd interaction we arrive at the following effective P, T-odd operator:
{IPTI E:[A, V] : (VIPTI)COR =0, (C19)
and the compensation equation
BT + (4, Ho) + {[A, V])eore = 0, (C20)

which should determine the transformation operator A, and thus, the IPTI (C19). The explicit ex-
pression for the IPTI can be obtained using the Landau-Migdal interaction (86). In this case A is
proportional to a: A = —3, 8,0,V,. Indeed, the commutator in (C20) yields:

[A, V] = —C(f + f"rl‘rg)[élcerM + égszg&] - C(h + h/Tlfg)[5162V16 + 5201V26]
—iC(h + h'T172) (02 X 1) {0V — :V5,8(r1 — 13)} . (C21)

where we use the notation V.8 = V,8(r; —r;) (¢ = 1,2). Contrary to the case of the P-odd interaction,
averaging (C21) over the core nucleons gives a nonzero contribution to eq. (C20), which now reads as
eq. (D6) and produces the renormalized values of the P, T-odd potential constants #, . [eq. (D7)]. One
can see that the strong residual interaction reduces the values of the P, T-odd potential constants 1.5-2

times and, thus, further suppresses the size of its matrix elements (II)QP;,[ in Table 2).

In principle, the commutator (C21) is the VIF™ sought. It has the same operator structure as the original
interaction WFT (C15), and contrary to the VIPNC! is not enhanced with respect to it. Therefore, the
P, T-odd interaction of nucleons in the valence shell is determined by the effective two-body interaction

G 1 . .
Wy =wr = S L [[(nﬂ,, — 4Chas)0a = (e — 7aChas) 8] Vab(ra — 13)

—i(o, X Ub){(flib + flaéhab)vﬂ - (ﬂ;b + ﬁbéhab)vba 5(1',, - I‘z,)}
+0(1a = 1508) Vals(ra = 1) fs(re)] (c22)

where hy, = hny = B+ R, hyn = hnp = h — b’ the constants 7, and € can be found in Appendix D [eq.
(DT7)], the strong interaction constants f,; are defined in the same way as hq, and the fact that they

depend on the radius has been taken into account.

D Renormalization of the Single-Particle P-odd and P,T-odd Potentials

This section is based on the work (Flambaum and Vorov 1994). Let us first consider the renormalization
of the P, T-odd nuclear potential w"™. Using the fact that the shape of the density p(r) and the strong
nuclear potential U(r) are are similar, one can present the P,T-odd potential (C16) as
Gn
PT
~ —=—oVU(r) = 6eVU(r D1

W S VU(s) = b VU(r) (o1)

where 7 = 7, or 7, and 8 has been defined in (C18). The total single-particle potential acting on the

nucleons is
U(r) + wPT = U(r) + 8aVU(r) ~ U(r + 60o) . (D2)
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Thus, it is obvious that wFT perturbs the nucleon wave function ¢, in the following way
Yo — Yo = Ya(t + 60) = (1 + 00V )Yu(r) = o + 6t . (D3)
Accordingly, the direct correction to the strong potential can be written as follows:

= 3 [(6%a(@IV(1,2)1$a(2)) + ($a(2IV(1,2)|66a(2))] , (D4)

where 1(2) = [ry(z), 01(2), T1(2)] are nucleon variables (coordinate, spin and isospin), and the summation
is carried out over the occupied nucleon states a. If the Landau-Migdal parametrization of the strong
interaction (86) is used, only the direct terms should be considered. Equations (D4), (D3) and (86)
than yield the following correction to the P, T-odd potential:

PT =~ 5 [ rt )00,V Vs, ra)a(rs)
= Y bu(h+ HTiTa)a Via|' = 701 Vp , (D5)

where v = C[0,2(h £ 1') + 0,5 (h F 1)) for protons (neutrons), p = ¥, [¢%a|?, the proton and neutron
densities are taken as p, = f—p and p, = —-p respectively, and {3)core = 0 (the potential considered is
created by paired nucleons). Now the self-consistency equation wpr = wFT + UFT should be solved to
find the actual strength of the P, T-odd potential:

. p(0)
foVU = 8oVU +4 —U(O)aVU (D6)

where the first term in the right hand side contains the “initial” values of the P,T-odd interaction
constants 7, whereas %FT o 6§ and UFT 7 contain the “final”, renormalized values 7. The solution for
the pair of simple linear algebraic equations for the constants f is the following (Flambaum and Vorov
1994):

iy =3 {np [1 + CH(h+ 1) — Clna(h - &)

%
o = & {1n [L+ CZ(h + )] - Cny(h — k) (D7)

i
12
o

where D = [14+CE(h+)| [14+CL(h+H)| -CBE(h~k'?, C = Cp/|U| = der/3)U) = 4(1+]el fer) ™" =~
1, and the well known relations have been used
7(‘2

2 2
C=pp+m’ 3?:, 6F=2£:? |U| = er + €], (D8)

where |¢| is the nucleon separation energy.

Thus, the strong residual interaction reduces the values of the P,T-odd potential constants 1.5-1.8
times. Note that the response of the nucleus to the P,T-odd potential (C16), (D1) as a function of
the interaction constants has poles (D =0) at h = (-1~ —1 and ' ~ C~1 ~ —1 (for N ~ Z). The
positions of the poles differ from the instability points in the infinite Fermi system k = A’ = —1.5 (see,
e.g., Khodel and Saperstein 1982, Pines and Nozieres 1966), since the interaction (C16) does not exist
in the infinite system (w®T = 0 at p = const). It is interesting that the P, T-odd interaction induces a
spin “hedgehog” (o oc r) in the nucleon spin distribution within a spherical nucleus (Flambaum 1994b;
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such possibility was first noticed by R. M. Ryndin, see Khriplovich 1991). A simple calculation with

41 oo fTon AL _ £ 11
the wave function (80 glves tne Iouowmg proton and neutron spm distributions:

op(r) = 0,V pp(r), 0alr) = 6.Vpn(r) . (D9)

The interaction UFT in eq. (D5) is, in fact, the strong interaction of the nucleon with the spin hedgehog

Let us now consider the corrections to the weak P-odd potential w (36). In the constant nuclear density

approximation its perturbation of the single-particle wave functions is described by eq. (C3), with ¢
given by (81):

. Gy
6o = —ifory,, €= mpo . (D10)
) S IR [P SUpU R ULy PRt RSP [ ISR SO N, T S PR o Y I e ok D e
peimniiy 5 1L1CIal Cadtc \lCdJ ucusxb_y S PC adia uue Splu'ul D1y lubtﬂ.dbbluu lrd»Keu luLU accou } ne correction
to the wave function contains xtra spherically symmetric function ¢,(r) (see, e.g., Khriplovich
1991):
tpe = —torda(r)a(r) . (D11)
mL. D .23 __ 1 ot it (a0 1 b oo oaloo oot Jfal L‘LA, LL __________
AL1Ue r-0ouu weahk 1uwiacuion \OU} S0 CHallgcs Lilc Spiil u Sl,l'l.Ul.lblUlJ. 1 LeES vue pll.l d.l'ULlIl(.l VCLLUI
r (see eq. (C3) by the angle {r and creates a spin helix (Zeldovich 1957, see also Khriplovich 1991).
However, after the summation over the paired nucleons of the core this spin structur e disappears. As

pate Lthe SUInmatlion ove LRIz Spiil Ll adisap

a result, the Landau-Migdal contact spin-dependent strong interaction (86) does not contribute to the
renormalization of the weak potential [because of the factor i in eqs. (D10), (D11) the contributions of
(6%a(2)IV(1,2)I¢a(2)) and ($a(2)|V(1,2)]6¢4(2)} cancel each other in (D4)]. This result looks natural
since the only possible orientation of the spin in the spherical nucleus (& « r) violates both P- and
T-invariance and can not be produced by a T-even weak interaction (36). It also explains why the
“all-order” treatment of VIPNC! (Appendix C) gave the same result (84) as the first-order calculation

in sec, 2.3.

The correiation which is actually produced by the P-odd weak interaction is op. To obiain such
structure the contact strong interaction in (D4) must depend on both the spin and the momentum of

the nnrlmna [nnn}hnr nnna‘l’“l‘fu 18 provi ided bv a finite range exchange interaction cons r‘ArAA }\n]nm\
v NUliCU POSSIoL 18 provided by a Nnite range exciange imnieraction consiae:

Using the momentum-dependent component of the Landau-Migdal interaction (C10) one obtains from
{D4), (D10):

U= zﬂ:/‘firﬂ/’l(rz)[‘fz“:rz,Vl(rlai‘z)]'l’a(l'z)

c ,
= -:?P_’p; €a(h1 + MiTaT2){o1p1, [¢af’} = K(op1p + po1py) (D12)
where K = —-is,; [%(hl + hy)é + S(hy F A ){u] for protons (neutrons) respectively. The equation for
the total P-odd nuclear potential is:

b=w+U, (D13)

where % and U contain the renormalized constants £ (§), and w is the original P-odd potential (36)
[compare with eq. (Cl11)]. Solving the corresponding pair of linear algebraic equations and using
Cpm/p} = 2/3 one obtains the renormalized constants §,, §» of the P-odd potential, eq. (C12). It
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is worth noting that the poles (D = 0) in the response of a nucleus to the weak potential w o< op
coincide with the boundary of stability of the Fermi liquid with the interaction (C10): Ay = b} = —1.5
at N = Z (boundaries of stability of the Fermi liquid with the Landau-Migdal interaction can be found,
e.g., in Khodel and Saperstein 1982, Pines and Nozieres 1966). It looks natural, since the approximation
p = const has been used in the wave function (D10)®.

The interaction Vi with ky = —0.5, k] = —0.26 does not cause instability. However, it acts in the
direction of the poles and increases the P-odd potential:

Gp = 1.3, +0.18g,, §n = 1.4g, +0.12g, . (D14)

Therefore, the Landau-Migdal interaction V + V; [eqs. (86), (C10)] does not produce critical changes
in the values of the interaction constants of the P,T-odd and P-odd potentials. The corrections are
of the same size as, e.g., the corrections to the Schmidt values of the magnetic moments. However,
the Landau-Migdal interaction originates from the underlying (= + p)-exchange interaction which also
generates tensor components. The account of the latter brings the nuclear matter much closer to the
verge of instability against the P-odd perturbation.

The (7 + p)-exchange strong interaction is given by

2 2
(1 ) = _ Jz (019)(92q) | f; (01 X q)(e2 X q)

V™2(1,2) = —4n(1172) mI @+ ml + m F+mi , (D15)
where q is momentum transferred, m, (m,) is the pion (p meson) mass, f? = 0.08 is the pion coupling
constant, and f? is the p-meson constant ranging from 1.86 (weak coupling) to 4.86 (strong coupling)
(see, e.g., Brown et al 1976, Speth et al 1977, Krewald et al 1988). When using V*** one should add
the exchange contributions to (D4). The single-particle matrix element of the induced P-odd potential
($.0¢,) = U,, is then

Ouw = 3 (AesV,55 = Vi Ase) - 2 (Al = VaiiAse) (D16)
where V%, = [ dr} dr3 $L)SLQIV (1, 20s(DW(1) , Aug = (buliboriia), and T, runs over the

occupied nucleon states. Re-writing the first two (direct) terms as the commutator, we obtain:
O =3 [ dr} drg $11)8LQ) [itarars, VF+2(1,2)] u(2(1)
-y / dr dr $L(1)$1(2) (iaomV™e(1,2) - V™(1,2)i&309m) $a(2)9(1) . (D17)

In the coordinate representation the potential V**# depends on jr; — r;| and its commutator with A =
i202r; in (D17) is zero. On the contrary, the exchange terms are effectively momentum-dependent (due
to the nonlocality of the potential) and yield a nonzero contribution to /. To calculate the latter, the
exchange terms in (D16) should be reduced to the form of direct ones, which can be done by substituting
Q — p; — p2 (the nucleons are on the Fermi surface) and performing the Fierz transformation of the
spin and isospin tensor structures (see, e.g., Okun 1982). This yields

Vit = Vigaw = [ dr} drd $1095@V(1,20a(2(1) (D18)

®Zelevinsky (1993) independently obtained a similar result: the correction to the effective field op diverges at the
same point where the first harmonic of the Landau interaction h,(e'102)(p1p3) leads to an instability of the Fermi liquid.
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where

3 T
VI(1,2) = —2r (5 - I0) Slaouien; + (1~ 0102)63]
i

[L_?_ (Pr—P2)i(Pr = P2); |, f2 (P1—P32)*6i; — (P1 — P2)i(P1 — P2);
m; (pr—p2)?+mi  ml (P1 — p2)? + m? '

(D19)

By means of (D18) the integrand in the exchange terms in eqs. (D16), (D17) is reduced to the commu-
tator [i€,021;, V/(1,2)] and the meson exchange correction I to the P-odd potential acting on the first
nucleon is

O™+ = = S (Ya(2lliboars, V(1,2)]1%a(2)) - (D20)
Calculating the commutator in (D20) and using [ryi, p2;] = 16ij, (02i02;) = &;, one obtains
rto _ _ 1 _ (P —p2)* ]
U ;(¢a(2)|K,m(p1 :2)) [(pl o+ (e — paf + I [1a(2))
- S Dor b1 = ) | s - e PR )y, oz
e (Pr—p2)P+m2 2(pr—p2)? +m?| T

where K, = 6n(f2/m2)(3 — T173)&, and K, = 8x(f?/m2)(3 — 7172)¢2. The expression (D21)
can be evaluated using the Fermi-gas approximation to parametrize the density of the core nucleons
Yo %1 (2)%a(2), as is often done in such calculations [e.g., obtaining the “bare” nucleon P-odd potential
(Adelberger and Haxton 1985)]. Equation (D20) then yields

U = K™*2p0p , (D22)

where the constant K™+ for the proton and neutron has the following form:
. Z N - N Z
K5t =g (spz v2.2), K=q(63+2%7),
2
=6 i—W, (PF) 4Ly (PE)] (D23)
mi My 3mi m,

and the nonlocality factors W (W,, — 1 for m,, — oo) are W, (ff::) =0.11, W, (ﬁﬂp) = 0.69. The
nonlocality effect is stronger for the pion due to its smaller mass (m, = 0.7 fm™" compared to pr =~ 1.3
fm™!, while m, = 3.7 fm™'). The above value of W, is quite close to W, = 0.16 obtained for the
nonlocality factor for the “bare® weak potential obtained in a-cluster calculations (Flambaum et al
1984a,b, Dmitriev et al 1983, Flambaum et al 1985).

Introducing U/™+# (D22) into eq. (D13) instead of I/ one obtains the following renormalized constants
of the P-odd potential:

p %1[[ p (1 - Yk) +28g.k] (D24)
D9

Gn = (1 - 2k) + 24g,k|

where k = 2gpm, and the determinant D is equal to D = (1 - %k) (1 - %k) — 482k, The expression
for ¢ in eq. (D23) shows that the contribution of the p-meson exchange partially compensates the
7-meson contribution, whereas the latter strongly pushes the solution towards the pole (D = 0). The
condition D = 0 determines a curve (function of N/A) corresponding to the border of stability of
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a nucleus against the P-odd perturbation. For real nuclei (N/A ~ 0.5-0.6) the position of the pole

corrasnands t

corres o value of b = l- ~ 0.67. The r-meson alone gives £k = Lk~ 1 and nroduces
ponas o Cr ™ ces

the ecritical 4
11 rifical value of ¥ ne w-meson awone g i ang produ

an instability in the “shell-model” nucleus. The p-meson exchange reduces this value to k = 0.4 (strong
p-meson coupling), which corresponds to enhancement factors §,/g, = 1.6, §n/g, = 0.7 (for g, = 4
and g, ~ 0). Thus, g, becomes comparable to g,, even for a very small initial value of g,. The weak
p-meson coupling produces k¥ = 0.7 ~ k. (“infinite” enhancement). Of course, the accuracy of this
calculation is not sufficient to give a definite answer in this situation, since only the linear response
has been considered, and fine effects like smoothing of the pion in nuclear matter (Migdal 1967, Fayans
et al 1979) have been neglected, to say nothing of the uncertainty in the 7 and p coupling constants.
Nevertheless, the above calculation indicates that that there is a possibility of strongly enhanced (D ~ 0)
P-odd effects.

Interpretation of this fact which results mostly from the strong w-meson exchange contribution, is not
straightforward. It is obviously related to the problem of stability of the nucleus against the tensor -
exchange interaction. This question has been widely discussed in the literature (see, e.g., Brown 1971,
Speth et al 1977, Khodel and Saperstein 1982, Negele 1982, Osterfeld 1992, and references therein), in
particular, in relation to the problem of = condensation in nuclei (see, e.g., Migdal 1967, Fayans et al
1979). The large enhancement factor is also naturally associated with the low-lying 0~ excitation (a
node in D at finite frequency of the PNC field). The influence of the 0~ resonance on the PNC-effects
was discussed by Kadmensky et al (1983), Auerbach and Bowman (1992) and Flambaum 1993. On the
other hand, there is a recent evidence from w—nucleon scattering and deep inelastic scattering from

nuclei that tha formfactaors of nion-nuclaon intaraction are nrobably very “saft? {cut_off naramatar ~. 500
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MeV) (Thomas 1983, Bertsch et al 1993 and references therein, Pearce 1994). This greatly suppresses
the pion field at small distances. There are two direct consequences. Firstly, the original “bare” P-odd
potential constant g, may be reduced since the corresponding interaction contains two 7-meson vertices
at the basic level (whereas, g, increased because the cancellation of the 7- and p-meson contributions
will no longer take place). Secondly, the renormalization of the P-odd potential by the residual strong
interaction would be weaker. This will probably bring the renormalized constants g,,» back to the values
(D14). Of course, it also makes the nucleus stable.

" Olantral Timit Thaoanrarm far MNiginihiitiang with TafRniéa Vartarnaaoa
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Suppose z (1=1,. ,n) are independent random variables with probability densities satisfying condi-

;=1 (E1)
)

When the number of variables in the sum n increases, the weights behave as §; = O{1/n). Our aim is
to find the distribution of X as n — co.

It is convenient to present f(z) in the form

v

flz) = L
T
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/ ” h(z)dz = / * zh(z)dz =0, (E3)
gy = /w z?h(z)de (E4)

where (E3) follows from (E2) and (159), since the first term in the right hand side of (E2) is normalized
to unity. It is assumed that the integral (E4) for o, converges. This condition is certainly fulfilled in
all practical cases, where h(z) ox 1/z* (the next term in the 1/z? expansion). However, it is likely that
the theorem can be proved without this restriction [compare with a very weak Liapounov condition
required for the standard CLT (Ash 1970)]. Note that in principle all z; can have different distributions
fi(z), and consequently, different z. = x4 and o, = 03;.

Proceeding in a way similar to the proof of the standard CLT (see, e.g., Ash 1970) it is convenient to
deal with the Fourier transforms of the probability densities:

flw)= /:: e f(z)dz = e~ 4 /:: e “h(z)dz , (E5)
Fuw) = [T ¥ [T1fmdde = I o) (E8)

i=1 =1
The Fourier transforms f; in (E6) are functions of §iw = O(1/n)w. Being interested in the large-n limit
we can expand the second term in the right hand side of eq. (E5) {with w replaced by fw] in powers of
Ow:

fi(Biw) = exp(—z46;|w]) + /_: hi(z)dz — 0w /_o; zh(z)dz — %0?(02 /;: z*hi(z)dz + O(®)

= exp(—zc,-0,-|w| - %0?02;4.02) +0(6%) . (ET)
Let us introduce the weighted mean values of the distributions’ parameters z; and 5; of the z; random
variables: n n
X. = Za;zq‘ , o= nz9?02i ’ (E8)
i=1 =1

where the factor n in the definition of ¥; provides £; = O(1) as n — oco. If all z; are identically
distributed, then X, = z. and X, ~ ;. Using eqs. (E6), (ET), and (E8) one obtains

2 2
Fo(w) = exp (—Xc|w| + 22’: ) +0(1/n%) = (1 - 22_:’) e~ Xl 4 O(1/n?)
— 22 i =Xclwi 2

F,(X) is obtained as the inverse Fourier transform of (E9):

1 X. 2, 8 (1 X 2
== | - == . El
B =t mrx maxe (WX2+X02>+0(1/”) (E10)
As n — oo only the first term in the right hand side of eq. (E10) survives
1 X
Fn(X)ln—too = T X2 ¥ X2 . (Ell)

This is the form of the CLT for distributions with 1/z? asymptotic behaviour. Note that if all f;(z;) are
Cauchy distributions [eq. (149)], then h(z) = 0, ¥; = 07 =0, and F,,(X) is also a Cauchy distribution
for any (finite) n. If all z; are distributed identically and §; = 1/n the theorem proved is a particular
case of the Levy-Khintchine theorem (see, e.g., Gnedenko and Kolmogorov, 1954), which specifies the
limit distribution for a sum of independent random variables with f(z) & 1/|z}* ( = o0) , 1 < p < 3.
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