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ABSTRACT 

Effects of weak interactions: parity nonconservation and time-invariance violation, can be enhanced up 

to lob timea in compound nuclei. This factor is produced by (i) “simple” kinematical enhancement 

(ratio of the s-wave to the pwave neutron capture amplitudes), and (ii) very large density of compound 

resonances (dynamical enhancement). The latter phenomenon should be generic to many complex 

many-body systems (rare-earth atoms, atomic clusters, quantum dots in solids, etc.), and is strongly 

related to the problem of quantum chsos. This review is devoted to the theoretical aspects of the 

problem. Statistical theory is used to calculate the r.m.s. value and the distribution of matrix elements 

of the wealc perturbations between compound states. The behaviour of effects upon averaging over many 

compound resonances is studied. It is shown that the e&&s, though of random sign, are not suppressed 

by such averaging. Valence mechanism, rotational doublet states, doorway states are considered as 

possible sources of regular contributions to the effect. The renormalization of weak interaction by the 

strong interaction and its relation to the problem of r-mesons in nuclear matter is discussed. 
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1 Introduction 

Huge enhancement of parity nonconserving e&&s (as well as any weak interaction) in compound nuclei 

is a remarkable physical phenomenon. It contains a number of different physical aspects in it. First of 

all, these effects are produced by the fundamental weak interactions, and thus can be viewed as a probe 

for their investigation. Secondly, this phenomenon is strongly influenced by the nuclear dynamics. So, 

the measured effects reveal details of the nuclear structure and the role of the strong interaction, which 

renormalizes the weak interaction in the nuclear matter. Thirdly, measuring weak interaction effects in 

the region of compound resonances one encounters the problem of quantum chsos: the nuclear spectrum 

and the structure of nuclear eigenstates are chaotic, and the system itself gives a particular example of 

the generic quantum chaotic system. 

Therefore, the study of effects produced by the weak interaction in compound nuclei contributes to 

several areas of physics. On the other hand, the complexity of the problem makes interpretation of 

experimental data and the process of extracting basic information from the results of measurements 

very difficult. There is a great demand for a theory which could describe different aspects of the problem 

(weak, nuclear, chaotic). This makes the whole problem very challenging for theorists. Even the most 

precise experimental data cannot be fully appreciated and used without a good and reliable theory 

(which in case of “chaotic” states should be a statistical theory). 

The relative strength of the parity nonconserving (PNC) weak interaction in nuclei (the ratio of the 

weak to the strong interaction) can be estimated as 

F N Gm: = 2 x lo-‘, (1) 

where G is the Fermi constant and m, is the r-meson mass. Accordingly, the estimates of effects in 

neutron optics made in the pioneering works of Michel(1964), Stodolsky (19’74), Karl and Tadic (1977), 

and others were very small. However, in 1980 it was suggested (Sushkov and Flambaum 1980) that 

in heavy nuclei one can observe PNC effects enhanced up to 10’ times, i.e., at a level of about 10% 

(see also Karmanov and Lobov 1969, Lobov 1970, Forte 1978, Stodolsky 1980, Sushkov and Flambaum 

1982, Bunakov and Gudkov 1981, 1983). Th ere are two main factors of enhancement of PNC effects in 

nuclei, which give roughly equal contributions (- 103) to the total enhancement factor. The first one 

(tinematicul) results from admixing large amplitudes to the small ones by means of the weak interaction 

(e.g., the s-wave to the p-wave in neutron capture). The second factor (dynamical, or statistical) arises 

due to a high level density of compound states, which provides mixing of opposite parity levels at 

very small energy separations. To estimate this enhancement factor accurately one has to evaluate the 

weak interaction matrix element coupling these states. The latter is noticeably suppressed because of 

a complex structure of the compound states, which makes the dynamical enhancement proportional to 

D-1/z rather than D-‘, where D is the mean level spacing (Haas et al 1959, Blin-Stoyle 1960, Shapiro 

1968). In some cases, such as PNC effects in nuclear fission and some effects in the (n,7) reaction, 

there can be another, resonance enhancement up to D/I’ times, where I’ is the compound state width. 

Dynamical enhancement must be a general feature in various many-body systems with dense spectra 

and complex eigenstates (nuclei, rare-earth atoms, molecules, clusters, quantum dots in solids, etc.). 

One may consider this enhancement as a manifestation, or a signature of quantum chaos in a system. 
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It can be compared with the known enhancement of perturbations in classical chaotic systems, which 

results from exponential divergence of trajectories. Besides PNC effects, the two factors (kinematical 

and dynamical) enhance time and parity violating (P,T-odd) effects (Kabir 1982, Stodoleky 1982, 

Bunakov and Gudkov 1983). Note that there could be also T-odd P-even effects. The possibility 

of their enhancement was considered by Ericson (1966), Mah aux and Weidenmiiller (1966), Moldauer 

(1968) [see also detailed calculations by French et al 1988, Bunakov et al 1990, and the books Tests of 

Time Reversal Invariance in Neutron Physics (1987) and T ime Reversal Invariance and Parity Violation 

in Neutron Reactions (1994) for more recent developments]. The physics of these effects is quite different 

and we do not consider them in the present review. 

At present there is a large amount of experimental data on various PNC effects in nuclei. Values of 

N lo-’ - 10q3 were obtained for the asymmetry of 7 quanta emission with respect to the neutron spin 

in the (n,7) reaction (Abov and Krupchitskii 1976, Benkoula et al 1977) (& . u correlation, where kr 

is the momentum of the 7-quantum, and u is the neutron spin). There were also measurements of 

the circular polarization of 7-quanta in reactions with unpolarized nuclei. Among the most surprising 

results was the discovery of large (- lo-‘) PNC effects in nuclear fission by polarized neutrons (Danilyan 

et al 1977, Vodennikov et al 1978, Andreev et al 1978, Petukhov et al 1979, Vesna et al 1980). The 

correlation measured is pf . u, where pf is the momentum of the light fragment. Forte et al (1980) 

measured the PNC rotation of neutron spin by unpolarised nuclei. The record values of PNC effects have 

been observed in polarized neutron capture. The relative difference of the cross sections for neutrons 

with positive and negative helicities (k . Q correlation; k is the neutron momentum) is 10d2 - 10-l 

(Alfimenkov et al 1981, 1983, Alfimenkov 1984, Masuda et al 1989, Bowman et al 1990, Rankle et 

al 1991). All these effects are orders of magnitude greater than the relative strength of the original 

PNC weak interaction (1). Therefore, predictions of very strong enhancement have been confirmed 

experimentally. Experimental details can be found in numerous reviews, Bowman et al 1993 being the 

most recent one, and we do not consider any particular experiments in the present work. 

The aim of this review is to consider mechanisms of enhancement of PNC effects in compound nuclei 

at all levels, starting from the nucleon-nucleon weak interaction. Recent experiments by the TRIPLE 

collaboration (Bowman et al 1990, Frankle et al 1991) started a systematic study of PNC effects for 

large sequences of resonances in several nuclei, and measured the root-mean-squared (r.m.s.) values 

of the weak interaction matrix elements between compound states. On the other hand a considerable 

progress has been made towards a theory incorporating both dynamical and statistical aspects of the 

problem of the weak interactions in compound nuclei. This enables one to compare experimental data 

with the theory and extract the strength of the weak interaction in nuclei. 

The review has the following structure. We start from a qualitative consideration of enhancement 

mechanisms in neutron reactions. In the next section we consider a statistical theory of matrix elements 

of weak perturbations between compound states, and test this approach with results of numerical 

experiments on chaotic many-body systems: the atom of Ce and nuclear shell models. Then we consider 

dynamical aspects of the problem: the renormalization of the weak interaction by the residual strong 

interaction, which leads to AlI3 enhancement of the residual two-body weak interaction between valence 

nucleona and increases (by a factor of N 1.4) the strength of the one-body weak potential of the nucleus. 



Parity and Tie-Invariance in Compound Nuclei 421 

It is intemeting that this problem turns out to be related to the old problems of x-meson behaviour in 

nuclei (r condensation, etc.) and collective O- reaonancea. Comparison of the theory with experiments 

yielda the strength constant of the weak interaction in nuclei. Its value is in agreement with estimatea 

baaed on the standard electroweak model and QCD. A surprising result of the TRIPLE collaboration 

(all 7 statistically significant values of the PNC effect in neutron capture by Th turned out to be 

positive) initiated the search for regular, non-random mechanisms of enhancement. These me&u&ma 

are critically analyzed in sec. 3. In sec. 4 the statistical properties of PNC effects are considered. 

Surprisingly, some of the PNC and P, T-odd effects in compound nuclei are not necessarily auppreaaed 

after averaging over many resonances in spite of their random-sign nature. This result means that one 

does not need to resolve particular compound resonances to measure large effects, and measurements 

at higher energies are possible. This possibility can stimulate a new class of experiments in nuclei, 

aa well as in moleculea, atomic clusters, chemical reactions, etc. This can be a new approach to the 

famous problem of asymmetry of biological molecules. An interesting question follows: Is there a limit 

for enhancement? 

1.1 Origin of the Enhancement and Estimates of PNC Effects in Neutron 
Capture 

Let WI start off with one of the most impressive and simple examples of PNC effects: the spin asymmetry 

in neutron capture. The quantity determined experimentally is the relative difference of the cross 

sectiona of capture into a p resonance for neutrons with positive and negative helicities: 

P= 
CT+-U- 
P. 
up++o; (2) 

It has been predicted (Flambaum and Sushkov 1980a) and observed experimentally for a number of 

nuclei r’Br, “‘Cd, “%, ‘%La, mu and 232Th (Alfimenkov et al 1983, Masuda et al 1989, Bowman et 

al 1990, Frankle et al 1991)] that at neutron energies of l-100 eV the magnitude of the asymmetry (2) 

in p resonancea reaches 10-2-10-1. One can compare these values with PNC effects in the low-energy 

pp and pa scattering, which are about 3 x lo-‘. 

Describing the mechanism which produces these large PNC effects it is convenient to consider the 

simplest case of a spinleas target nucleus of positive parity (see Flambaum and Sushkov 1984 and 

Appendix A for the general case). Suppc#le that this nucleus can capture neutrons into a negative 

parity compound state of spin l/2. This may happen if the neutron is in the pll2 wave. However, due 

to the weak interaction the negative parity compound state contains an admixture of positive parity 

states: 
,1,2-) + c 11/2+~)(1/2+~~~~1/2-) = ]1/2_) + ix9 

E_ - E, 
Y ]1/2+v) 1 

Y Y 
(3) 

where 

?lu = 
(1/2+v]W]1/2-) 

i(E_ - E”) (4) 

is real, if the state widths are neglected, and i is introduced because the matrix element of the weak 

interaction W ia imaginary for the standard definition of the angular wave functions. The aum in (3) 

allows neutron capture in the s wave. Let us now consider the wave function of a slow neutron with 
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momentum k and expand it in terms of the I&j,) states with definite angular momentum and helicity 

(the z axis is along k): 

e ‘hx* N (1 + dkr),y* = 6 
1 
Ym(n) + i ?Ks(n) xi 

fi 1 
= & 

( 
IO, l/2, f1/2) F i$]l,1/2,f1/2) + n+3,2, l 1,2)) , (5) 

where xk is the spin function. The amplitude of neutron capture from (5) to the state (3) can be 

written as follows: 

T = &Tp + c rlvT,v,, (6) 

where Tp snd T.,,, are the amplitudes of neutron c:pture from the p and s waves into the ]1/2-) 

and ]1/2+v) states respectively, and the f sign corresponds to the capture of neutrons with positive 

or negative helicity. The interference between the p and s capture amplitudes in (6) results in the 

difference between the cross sections for different helicities: 

g,’ K I l Tp + c PL,,I~ N T, f 2Tp c rl,T,,u , 
Y Y 

and yields the following expression for the spin asymmetry (2): 

(7) 

I- I% (1/2+v]W]1/2-) 
P=2C$+2C -1 

P Y rp’ c(E_ -&) ’ 
(8) 

where the neutron widths $2 0; Tzy and I’?) oc T,’ must be evaluated at the energy of the presonance 

([l/2-) state). 

Equation (8) clearly demonstrates the existence of the two enhancement factors mentioned above. The 

first of them is given by the ratio between the s- and pwave capture amplitudes. In the neutron energy 

range of l-100 eV it yields [note the kr factor before the p-wave component in (5)]: 

T* 

\i 

rPJ 
T,= rf) 

- N & N 103-102 ) (9) 

where R is the radius of the nucleus. Equation (9) estimates the kinematical enhancement in neutron 

capture. 

The second factor comes from the ratio p (4) of th e weak interaction matrix element coupling the two 

compound states to the energy difference between them. Let us note that in the absence of a dense 

spectrum of compound states this mixing is given by the relative strength of the weak interaction in 

nuclei F (1). This value times the kinematical enhancement factor (9) estimates the role of the so called 

Pralence mechanism to the PNC effect in neutron capture (see sec. 3.1). This mechanism can provide a 

regular sign parity-violating contribution, however its magnitude is about lo2 - lo3 times smaller than 

those measured in experiments. 

On the other hand, owing to a very complicated structure of compound states their mixing is of almost 

random character, and the items of the sum (8) give uncorrelated contributions to it. Since the contri- 

butions of several nearest levels are important, the energy denominator in n is of the order of the mean 

level spacing D between the states of the same angular momentum and parity (D N l-100 eV). 
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The matrix element (1/2+vlW11/2-) contains the wave functions of compound states \Ir, (q, = 11/2-), 

or 11/2+v)). Each of them is a superposition of a very large number of simple basic states @iv which 

can be chosen as products of particle-hole excitations above the ground state of the nucleus: 

\E‘,=CCiipi 9 (10) 

with a normalization condition xi Cj = 1. The residual strong interaction mixes the basis states 

strongly within some characteristic energy interval IW N MeV, so that the number N of principal 

components, i.e., those giving the main contribution to the sum (10) and to the normalization condition, 

can be estimated as 

N N % N IO4 - 10s . (11) 

Since mixing of the basis states within Fapr range is almost complete, the contribution of a principal 

component to (10) is estimated as Ci N l/e. By the same token each of the principal components 

noticeably “participates” in about N compound states spread over the FWr interval. 

The matrix element between two compound states is 

(Q!llWlU,) = CCi(“C~‘(iaiIWl@j) . (12) 
ij 

Suppose W is a single-particleoperator W = &(ctlWl/3) a p at a w h ere a, p are the singleparticle states, 

and at, a are the creation-annihilation operators. For given (Y and /3 the matrix element (@ilWl@j) is 

not zero if Qi and @j differ by the state of one particle only: I@i) = aLapl@j)a Thus, if, say, i is fixed 

there is only a small number q (q - l-10) of different j contributing to the sum (12). Therefore the 

sum contains N qN nonzero items. Their typical magnitude is 

CiCj($ilWl@j) N &$W 7 

where W is a typical single-particle matrix element. Since different items in (12) are incoherent, the 

total can be estimated as @ times each item: 

(13) 

Therefore, the matrix element between the compound states is suppressed by the l/n factor with 

respect to the single-particle matrix element. It is easy to see that estimate (13) is also true for a matrix 

element between a compound and a “regular” state, containing some small number of components ai. 

In the general case one should use N = max{Ni, Nr} in (13), where Ni,z are the numbers of principal 

components in the \ki,s states. 

The mixing n of the two nearby compound states is given by 

(14) 

Thus, the dynamical enhancement factor produced by mixing of compound states is 0, and its 

magnitude can be about 101-103. The idea of this enhancement was first suggested by Haaa et al (1959) 



430 V. V. Plambaum and G. F. Gribakin 

and discussed by Blin-Stoyle (1960), Shapiro (1969), Sushkov and Flambaum (1982), Kadmensky et al 

(1983), Flambaum and Sushkov (1984). 

We must say that the real situation is more complicated, and (13) slightly overestimates the weak 

interaction matrix element between the compound states. The point is that the PNC interaction W 

induces transitions between single-particle states of equal angular momentum and opposite parity. These 

states usually belong to different nuclear shells and are separated by the energy interval AE = ~0 N 

5-10 MeV > Ilpr. This means that the matrix element of W between the principal components @i and 

@j of the close-lying compound states is zero (Zaretsky and Sirotkin 1983, 1987, Kadmensky et al 1983) 

and we have to take into account the contribution of distant components to the compound states. The 

perturbation-theory estimate tells one that this contribution is suppressed by a factor of I’,/AE, since 

Plpr character&s the strength of the residual strong interaction in the system. Thus, instead of (13) 

we obtain 
9 Ispr W,,NW --) 

J- N AE 

and the mixing of the nearby compound states by the weak interaction is given by 

712 (15) 

In sec. 2.1 we present an accurate statistical calculation of the matrix element between compound 

states. 

Combining (9) and (15) we obtain the following estimate for the spin asymmetry P of (8): 

p N 3 w+Iw1/2-) l 
Tp E--E+ 

!Q &VW F x (104 - 106) , 
-kR AE W-3 

where we put Wf AE N F aa a typical value .of the PNC effect in the absence of any enhancement. 

Therefore, the mechanism of compound state mixing in the pwave resonance fully accounts for large 

PNC asymmetries observed in experiments. 

1.2 Criteria of Enhancement 

Note that a strong residual interaction is necessary to have dynamical enhancement of weak interactions. 

For example, a dense spectrum of many-body states emerges in the ideal gas of noninteracting particles. 

However, the energy interval between the states Qi and Qj which can be mixed by the interaction W is 

the single-particle interval AE (since other particles are ‘spectators”). We must turn on the residual 

strong interaction V between the particles, which admixes the distant component Oj to the compound 

state closest to @i, thus making the weak mixing (4) of nearby compound states possible. On the 

other hand, neither “chaos” nor “ergodicity” of the compound states is necessary to produce certain 

enhancement. We use these properties to develop a statistical theory and simplify our calculations. 

However, the enhancement can appear even in the case of a relatively small residual interaction V, or 

in a system with a sparse spectrum and no chaos. For example, using the perturbation theory in V we 

can estimate the weak mixing between the nearest compound states as: 

(rkllW\k2) N (QllWl@j)(@jlVl*2) 

EI - Ea (4 - E2)(E2 - Ej) ’ 
(17) 
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where 14s) contains only the principal components of IS,). If V is stronger than the minimal interval 

between the opposite parity levels Er -Er we can have some enhancement in comparison with the direct 

weak mixing of distant states ($IWl@j)/(Ei -Ej). It is known that there is no repulsion between levels 

of opposite parity. This means that for some fraction of levels one can always have E+ - E_ a D, 

which makes the enhancement possible even for V 5 D, when there is no chaos. However, to have 

enhancement for each level we need V > D, and consequently a strong mixing of the components and, 

probably, chaos and ergodicity in the space of N principal components. 

There are also more sophisticated conditions of enhancement. For example, to obtain estimate (15) we 

assumed the Breit-Wigner localisation of the components (the contribution of distant states decreases 

as I’,JAE). However, in, say, the Band Random Matrix model the localization is exponential, i.e., 

the admixture of distant components is exponentially small (see Section 2.2). Thus, to ensure sizeable 

admixtures of distant components their direct mixing to the principal components of compound states 

by the residual strong interaction V is necessary. We discuss this question in detail in sec. 2.2. One more 

case with no dynamical enhancement for an arbitrary strong residual interaction is given by a model of 

Random Separable Interaction. Superlocalization (the number of principal components N N 1) which 

takes place in this model is due to strong destructive interference effects (Appendix B). 

Besides the capture cross-section asymmetry one can study other PNC effects in neutron optics: the 

rotation of the polarization plane around the momentum vector of the beam 4, or the longitudinal 

polarization of the initially unpolarized neutron beam a. Analogously to (16) both effects can have 

very large magnitudes in the vicinity of a p resonance (Sushkov and Flambaum 1980a, 1981a, 1982): 

4, a N (10-3-10-2)I/~s, where 1 is the neutron path in the media, and ls is the attenuation length: 

ls -1-5 cm (of course, one can not have 1 much greater than 1s). Although, 4 and a are usually several 

times smaller than P because of the neutron elastic scattering, which decreases the attenuation length. 

1.3 Other Reactions: Radiative Capture, Fission. fl Classification of 
Amplitudes 

The method used in the previous section to estimate the contribution of compound state mixing to the 

parity-violating neutron capture amplitude can be applied to classify the amplitudes of other processes 

involving compound states (Flambaum and Sushkov 1984). The chief parameter of this classification is 

fl> 1. It allows one to find out dominant reaction mechanisms, and express the relative contributions 

of different reaction amplitudes in powers of fi. 

Besides the matrix elements, the expressions for reaction amplitudes contain energy denominators 

E - E, + $I”,, where EC and Fe is the energy and width of a compound state. These denominators are 

N times smaller than the typical single-particle energy AE N ~0 N Iwr N MeV: 

1 r D 
1 N 

E-&+;I’,=5 E-E,+;I’, GN 
D. 

1 

E - E, + ;I?, c ’ 

Since the amplitudes are to be classified according to powers of the large parameter fi, we are not 

concerned with other parameters (e.g., l?wJwg). Th e rules for estimating the amplitudes are: 
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(i) Each vertex (neutron capture, electromagnetic, weak, etc.) contains the factor l/a, where N = 

max{N,, Nti}, and N,, N,) are the numbers of principal components of the nuclear states coupled in 

the vertex. In the ground state N, = 1 and near the neutron threshold N, N MeV/D. 

(ii) Every summation over the intermediate compound states ]c) (the Green function) gives the N, factor 

and the resonance energy dependence D/(E - & + fIc). The latter can provide an extra, resonance 

enhancement of up to D/r,. 

We should stress that the above rules produce a root-mean-squared estimateof the amplitude. Of course, 

fluctuations can change the relative magnitude of the amplitudes. Nevertheless, the fi parameter is 

very large and the probability of a fluctuation which would violate the fi hierarchy is very small. 

To see how this classification works let us consider the process of neutron capture once more. By 

means of the optical theorem the total cross section can be expressed in terms of the forward-scattering 

amplitude as follows: 

0 = ;Imf(O) . 

For slow neutron scattering (kR < 1) the scattering amplitude f(0) can be presented as 

119) 

where fc is the s-wave potential scattering amplitude, 7# (4 and i7e) are the amplitudes of neutron 

capture into the s and p compound states (proportional to the amplitudes T, and Tp of sec. 1.1) 

normalized so that 7p)’ = I’?), 7$“)* = I$“), W, is the (imaginary) PNC matrix element coupling 

the s- and pwave compound resonances, and g is the factor due to averaging over the spin projections 

of the target nucleus (the rules for calculating reaction amplitudes are given in Appendix A). The f 

sign before the parity-violating term in (20) refers to neutrons with different helicities. Equations (19), 

(20) enable one to calculate the PNC cross section difference cr+ - cr- and the neutron spin rotation, 

proportional to Be(f+ -f-) [see eq. (121)] at arbitrary (yet low) energy, including the thermal point (see 

experiments by Forte et al 1980, Vesna et al 1980). Amplitude (20) can be presented in the following 

diagrammatic form: 

& +L&- --&A--- (21) 

where the single line denotes the single-particle neutron states, the double line corresponds to the 

compound states, and the cross is the weak interaction vertex. 

Let us first compare the potential and resonant s-wave scattering amplitudes. The resonant term [the 

second one in (20), or the second diagram in (21)] contains the neutron capture vertex (l/o), the 

neutron emission vertex (l/a), and the Green function of the compound state (ND/(E - E, + ;I’,)), 

which yields 

f 
LJ 

ns - 
E - E, + ;r, ’ 

(22) 

Therefore, the resonant scattering amplitude has zero order in powers of fi, just as the potential 

contribution. Indeed, it follows from the square-well model and experimental data (see, e.g., Bohr and 
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Mottelson 1969) that between the compound resonances at (E - J??,( N D ) I. the ratio 

&,‘zLOO5_,5 
f. ka D . ’ 

(a = - fo is the potential scattering length) is d t e ermined by the parameters other than m. 
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The parity-violating contributions to (20), (21) contain three vertices ( 1/N3/s) and two Green functions 

(N3), and their estimate is 

fPV N fi D 
D 

E - E, + fr, E - Ep + ;I?, ’ (23) 

Therefore, this amplitude is fl times enhanced with respect to the parity-conserving resonant ampli- 

tude (22). One can see that other PNC amplitudes, e.g., 

s L 

3 P 
(24) 

and the diagrams obtained from (24) by changing the order of vertices, or by swapping the s and p 

states do not have the fl enhancement. These diagrams describe the PNC mixing of the single-particle 

neutron states, or the single-particle components of compound states (the so-called valence me&a&m). 

It has been first considered by Zaretsky and Sirotkin (1983), and will be discussed in sec. 3.1. 

The diagrams shown above form a convenient language of describing the interaction of a neutron with 

compound states. For example, the second and third diagrams in (24) account for the resonance increase 

of the neutron wave function due to virtual capture into the compound states. Note that all-order 

summation of the series of diagrams is equivalent to redefining the parameters of compound resonances 

(positions, widths, etc.), which are anyway taken from experiments. Using this approach Flambaum and 

Sushkov (1984) showed that resonance formulae for PNC effects are applicable at the neutron thermal 

point where the effects are 3 to 6 orders of magnitude smaller than those measured on-resonance. An 

alternative approach to the general description of PNC effects in neutron scattering based on Feehbach’s 

projection formalism (Feshbach 1958, 1962) was suggested by Lewenkopf and Weidenmiiller (1992). In 

this approach the operators P and Q project the total wave function onto open channels [single-particle 

s and p states, thin lines in (21), (24)], and closed channels (compound states shown with rectangles). 

In their notation 2”; corresponds to the PNC diagrams in (21), T$i! corresponds to (24), and TFz, 

T;s describe neutron capture by the weak interaction (not shown here). 

Let us now turn to the diagrams describing the (n,7) reaction: 

(25) 

The flrat of them (&) corresponds to the direct radiative capture of the neutron into the final com- 

pound state f. It contains one vertex of the electromagnetic interaction, hence, it is proportional to 

l/fi. The second diagram (A,) d escribes the same process proceeding via the intermediate com- 

pound state c. It contains the neutron capture vertex (l/a), the Green function of the compound 
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state N,D/(E - EC + ;I’,), and the photon emission vertex (l/m, so A, oc fl. The ratio 

shows that even in the off-resonance situation (IE - EC1 N D) the resonance mechanism in the (n,~) 

reaction dominates for the transitions into the complex final states (Nf > 1). The direct and resonance 

contributions become comparable only for the transitions into the ground state and those close to it 

(Nj N 1). 

The dominant contribution to the parity-violation effects in the (n, 7) reaction comes from the diagrams 

with the weak mixing of compound states: 

(27) 

The first diagram contains the neutron capture vertex (l/m), the weak interaction vertex (l/a, 

the photon emission vertex (l/a), and t wo compound state Green functions (Nj), which yields 

APVN Nc d- D D 

E-Ec+;I’, E-Ed+& ’ 

Therefore, PNC effects in the (n, 7) reaction display the same factor of dynamical enhancement fl N 

lo’-lo3 as in the neutron capture. The second diagram in (27) contains the weak mixing in the final 

state, and can be estimated ss 

-fi D. Df 
E-&+;r, E-u-Ej,+$‘j, 7 

where Dj is the meau level spacing at E N Ej and w is the photon energy. Since Nj << N, this 

contribution is much smaller then Apv (28). Besides (27) th ere is a number of other parity-violating 

diagrams with the weak mixing of single-particle states, or with direct electromagnetic capture vertices, 

either not enhanced or even suppressed as I/@. 

It is instructive to consider a particular example of the *17Sn (n, 7) reaction studied experimentally by 

Danilyan et al (1976), and Benkoula et al (1977). The transition into the final O+ state of the “‘Sn 

nucleus takes place from l+ and l- compound states by means of Ml or El 7 emission. Taking into 

account the dominant parity-conserving and parity-violating contributions one obtains the following 

total reaction amplitude: 

(O+~Ml~l+)(l+~T.ln) + (o+~E1~1-)(1-lWl1+)(l+~~,~rz} 

E - E+ + ;I’+ (E-E- + $‘_)(E - E+ + fl?+) ’ 
(30) 

where In) is the initial neutron state. We assumed in (30) that the neutron is captured into the s-wave 

resonance (this is true for low energy neutrons if their energy is not too close to a pwave resonance). The 

circular polarization of the photon P, and the asymmetry parameter of the photon angular distribution 

(W(0) = 1 + acosB) due to interference of the two terms in (30) are given by 

P,=a=2Fte 
(1-IWIl+) (O+IElll-) 

E-E- (O+IMljl+) > ’ (31) 
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It is worth noting that the energy denominator in this formula contains the difference E - E_ rather 

than E+ - E_, aa in (16). This gives a possibility of an additional resonant enhancement of the mixing, 

if IE - E-1 < IE+ - E-1, its magnitude being IE+ - E_I/IE - E-J. In this estimate we assumed 

(E - E-1 > r, and neglected the pwave neutron capture. The numerical estimate of the effect is 

(Sushkov and Flambaum 1982): 

]a] N 8 x 10-d a . 
I I 

This value is in reasonable agreement with experimental data, if one assumes I El/Ml I - 1. Such value 

of this ratio is not too surprising for frequencies far from the maximum of the giant El resonance. It 

appears also that several compound resonances contribute to the parity-conserving Ml transition in 

the case of “sSn. However, in principle, there is a possibility of kinematical enhancement in (31), if 

lEl/MlI > 1. 

The (n, 7) reaction was the first one where parity-violating nuclear forces were observed [see, e.g., review 

by Abov and Krupchitskii (1976)]. A detailed theoretical consideration of the problem can be found, 

e.g., in Flambaum and Sushkov 1985, where all possible correlations due to interference of the El aud 

Ml ~-transitions for the s- and pwave neutron capture are calculated (there are 8 P-odd and 9 P-even 

correlations). Their behaviour upon averaging over the final state is also examined, and according to 

it the correlations in the integral y-spectrum are divided into three classes. Note that a formula which 

contained the enhancement of the circular polarization of r-quanta near a pwave compound resonance 

was presented by Lobov (1970), although the possibility of this enhancement was not stressed in that 

work, and a standard estimate, P7 N lo-‘, was obtained, similarly to what one obtains at the thermal 

point or in an s msonance. 

Another class of experiments where PNC effects have been observed is nuclear fission by polarized 

neutrons (Danilyan et al 1977, Vodennikov et al 1978, Andreev et al 1978, Petukhov et al 1979, Vesna 

et 01 1980, see also references in Sushkov and Flambaum 1982). The quantity measured in these 

experiments is the asymmetry of emission of the light fragment with respect to the neutron spin (W(0) = 

l+a cos 8, for unpolarised nuclei). The most surprising feature of this phenomenon is that the correlation 

Q . pf between the neutron spin and the momentum of the light fragment is a manifestation of parity- 

violating forces in the motion of a heavy particle: the nuclear fragment consisting of 1Oz nucleons. 

Another fact which needed explanation was the apparent survival of the effect in spite of a very large 

number of final states of the fragments. If the sign of the effect depended randomly on the final state of 

the system, as, say, in the (n,7) reaction, the asymmetry measured for all final states at once would be 

strongly suppressed. A theory of this effect was considered in Flambaum and Sushkov (1980), Sushkov 

and Flambaum (1981a,b, 1982). The process of fission goes through a small number of intermediate 

collective states, fission channels. The P-odd correlations, as well as the usual P-even ones, are formed 

at this “cold” stage of the fission process due to mixing of opposite-parity rotational states by the 

dynamically enhanced weak interaction. Thus, the effect does not vanish after averaging over the final 

states of the fragments. 

The main parity-conserving and parity-violating contributions to the reaction amplitude are given by 
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where the circle denotes the cold stage of fission. Similarly to the (n, 7) reaction, the first amplitude in 

(32) contains the neutron capture vertex (l/m, the Green function of the compound nucleus (NJ, 

and the fission amplitude (l/m’, so that the result is independent of N,: 

The estimate for the second (parity-violating) amplitude in (32) 

contains the fi dynamical enhancement factor. Thus, one obtains the following rough estimate for 

the asymmetry parameter a: 

a-JN,F D 
E - EC, + ;r,, 

w10-~-10-3. 

This value is indeed close to those obtained experimentally for the 233U, 23sU and 239Pu nuclei. Note 

that there is a resonant energy dependence near the opposite parity (pwave) compound resonance EC, 

(fission is dominated by the s-wave resonances EC). 

A common feature of all PNC effects considered above is the existence dynamical enhancement, pro 

portional to fi, when the parity-violating amplitude contains the weak mixing of compound states. 

Of course, such enhancement should not be confined to nuclear processes only, but must be a generic 

property of all many-body systems of interacting particles with dense spectra of states (compound nu- 

clei, rare-earth and actinide atoms, molecules, clusters, spin systems, quantum dots in solids, etc.) For 

example, the existence of dynamical enhancement has been recently demonstrated in numerical calcu- 

lations for the rare-earth atom of Ce, and ‘B, 9Be nuclei (see sec. 2.2). This enhancement originates 

from a high spectral density of the excited states, or, equivalently, from extremely small energy spacings 

D between them. Indeed, the distance between the levels decreases exponentially with the number of 

excited particles n (D o( e-*“), since the total number of possible states (number of combinations) 

increases exponentially. In such a system the mixing of compound states by some weak perturbation is 

proportional to fi 0: l/&J, i.e., is exponentially enhanced. This is possibly a quantum-mechanical 

analogue of the exponential divergence of trajectories in classical chaotic systems. 

In a macroscopic system the density of states is infinitely large, although no enhancement has been 

observed so far (if we neglect the famous puzzle of biological asymmetry of the world). There are 

‘The factor l/a in the f&on amplitude describes the admixture of the wave function of the cold deformed nucleus 
in the wave function of the compound state c. This factor gives a reasonable estimate of the fission widths of abov+barrier 
resonances: l’f N (l/N)(l/r) N 0.1-l eV, where l/r - 
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several reasons for suppression of the enhancement, e.g., finite state widths, effects of temperature, finite 

energy resolution. Interestingly, the examination of the latter produced an unexpected result: averaging 

of random-sign PNC effects does not necessarily lead to their suppression, and a certain “violation” 

of the Central Limit Theorem takes place due to unusual statistical properties of the compound-state 

mixing (see sec. 4). 

1.4 Hamiltonian of the Nuclear PNC Weak Interaction 

The nucleon-nucleon PNC interaction can be represented by the following effective Hamiltonian: 

wab = &$(gab@a pbl 6(ra - rb)} + g:b(ua x ab)Va6(ra - rb)] , (35) 

where @,+b, ro,) and po,b are the (doubled) spins, the coordinates and the momentum operators of the 

nucleon8 a and b [protons (p), or neutrons (n)], m is the nucleon mass, { , } is the anticommutator, 

and gob, gLb are dimensionless constants. They take into account the renormalization of the Fermi 

weak interaction by the strong interaction (ab = pp,pn,np,nn). The form of the contact interaction 

(35) written in the lowest, first order in p/m follows from the P-odd transformation properties of the 

potential. This interaction dates back to the work by Feynman and Gell-Mann (1958). The constants gob 

can be, in principle, considered as phenomenological parameters, similar to those of the Landau-Migdal 

parametrization of the strong interaction. On the other hand, the Hamiltonian (35) can be derived as 

a contact limit of the one-boson-exchange interaction (see, e.g., Desplanques et al 1980, Dubovik and 

&&in 1986), which takes into account z-, p and w-meson exchange. In this case gob are expressed in 

terms of the weak (fr, h:, hz) and strong meson-nucleon interaction constants and meson masses, with 

an account of the long-range and exchange nature of the interaction and the nucleon-nucleon repulsion 

at small distances by means of the parameters W, and W, (McKellar 1968, Lobov 1980, Flambaum et 

al 1984a,b, Adelberger and Haxton 1985). The values of these constants were considered in a number 

of works (see papers cited above and references therein). It is necessary to note that by using Fierz 

transformation exchange matrix elements of the contact interaction (35) can always be reduced to the 

direct ones, and thus included in the definition of the g&, constants. Then the Hamiltonian W& will 

have only direct matrix elements. This convention is used throughout the paper. 

If one considers the interaction of an unpaired valence nucleon with the core of paired nucleons, the 

interaction (35) produces the following single-particle parity-violating weak potential: 

wo = z(blW.blb) = 
b 

(36) 

where the sum is carried over all core nucleons b, and p(r) is the nuclear density normalized ss 

_fp(r)d% = A (A > 1). Th e constants go of the potential (36) are given by gs = sg, + $g,, 

gn = fsns -I- S&n, and can be expressed in terms of the weak meson-nucleon coupling (see references 

above; below we present the result of Flambaum et al 1984a,b): 

gs = 2.0 x 106Wp [ 176+6 - 19.5h0, - 4.7h; •t 1.3h; - 11.3(/&Z + h;) - 1.7!$] ) 

gn = 2.0 x 105W, [-118& - 18.9h; + 8.4h; - 1.3h; - 12.8@0, - h;) + l.lh:‘] . 
(37) 

Using the “best” values of fn, h: and hz from (Desplanques et al 1980) together with W, = 0.4 and 

W, = 0.16 [these values are based on the calculation of PNC nucleon scattering by ‘He (Dmitriev et al 
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1983, Flambaum et al 1985), and agree with those obtained by McKellar 1968 and Lobov 19801 yields: 

g,, N 4.6, g,, N 0.2. The smallness of gn is caused by the mutual cancellation of the ?r- and pmeson 

contributions. It should not be taken too seriously because of the large uncertainties in the values of 

constants used to calculate go. Sometimes a different form of the weak potential (36) is used: 

w = $T,f(r)~ 7 where f(r) -P(~)/PO , 
G 

E = zpog = 1.0 x 1o-sg ) 

and po is the average nuclear density. In this case e,, N 4 x 10-s and E, ,$ 1 x lo-‘. 

The potential (36) is believed to play a leading role in various nuclear PNC effects [see, e.g., calculations 

of the nuclear anapole moment (Flambaum and Khriplovich 1980, Flambaum et al 1984b, Haxton et al 

1989, Bouchiat and Piketty 1991)]. Indeed, w contains a coherent contribution of A nucleons. However, 

it was noticed (Zaretsky and Sirotkin 1983, 1987, Kad mensky et al 1983) that the matrix element of 

(36) between the principal components of compound states close to the neutron threshold is zero. The 

point is that for a pseudoscalar operator (36) (o]w]p) # 0 only for the single-particle states ~2, p 

of different parity and identical angular momentum (e.g., sllz and p&. It is known (see, e.g., Bohr 

and Mottelson 1969) that such orbitals belong to different nuclear shells. They are separated by the 

energy wo N 5-10 MeV, which is greater than the spreading width of the principal components PWr N 2 

MeV. Therefore, the matrix elements of w between the compound states must involve distant, small 

components, which can be described as a perturbation-theory admixture to the principal components 

due to the strong residual nucleon-nucleon interaction. This mechanism can be described as the induced 

parity-nonconserving interaction (IPNCI) ( see sec. 2.3). Its magnitude is proportional to the strength 

of the original PNC potential (36), and it directly couples the principal components of the compound 

states. It will be shown in sec. 2.3 that this two-body interaction is an order of magnitude (- A’j3) 

stronger than the direct two-nucleon PNC interaction (35), and that the IPNCI has a different spin and 

isotopic structure. 

There is another effect which influences the strength of the nuclear PNC potential. Even if the constants 

goa of the PNC nucleon-nucleon interaction (35) were known precisely, the PNC potential of the nucleus 

w would be different from that of (36) with constants given by (37). This happens due to rcnonnalization 

of w by the residual strong interaction. Similar effect changes the magnitude of the parity and time- 

invariance violating (P, T-odd) nuclear potential, These questions are considered in Appendix D. The 

P, T-odd potential is renormalized by the momentum-independent part of the strong interaction. The 

renormalization of the PNC potential is produced by the momentum-dependent spin-flip component 

of the strong interaction. The latter increases the gr,,, constants with respect to their initial values 

(37). The size of the renormalization depends on the constants of ?r- and p-meson exchange underlying 

the strong interaction. It turns out that the z-meson exchange contribution alone is large enough 

to generate instability (a pole) in the nuclear response to the weak potential. Thus, the question of 

magnitude of the nuclear PNC potential seems to be related to the question of stability of the nucleus 

against z-meson tensor forces, and in particular, to the problem of ?r condensation in nuclei. 
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2 Matrix Elements Between Compound States 

It has been shown in the Introduction that there are several enhancement factors (kinematical, dynam- 

ical, resonance) which increase the observable PNC effects in nuclei by up to 6 orders of magnitude 

with respect to the basic strength of the weak interaction (1). The most universal of them is dynamical 

enhancement (see sec. 1.3). This factor emerges when the weak interaction mixes nearby compound 

states, and is estimated as fi w lo’-103, where N is the number of principal components of the 

compound states. However, facilitating the experimental observation of PNC effects, the same “mecha- 

nism” greatly complicates the calculation of the effect. Moreover, it makes any calculation of the effect 

for a particular resonance in a given nuclei simply impossible. Gf course, the energies and widths of 

the compound resonances which appear explicitly in the formulae describing the effect [e.g., (8)] can 

be found experimentally. The main problem then lies with the matrix elements (c]W]c’) between the 

compound states. 

According to the statistical theory of compound resonances this matrix element is a Gaussian random 

variable, and its values are uncorrelated for different c,c’. Thus, the aim of the theoretical work 

is to calculate the r.m.s. value of this matrix element. The latter can be directly compared with 

experimental results of Bowman et al (1990) and Frankle et al (1991). In contradistinction with previous 

experiments, the measurements of the parity-violating asymmetry P in these works were performed for 

series of 17 p resonances in n+ 2ssU and 23 p resonances in n+ =sTh (about one-third of them are 

expected to be pi/z resonances, which produce high P values), and provided the r.m.s. PNC matrix 

elements: fl = 0.582::: meV in a3QU, and m = 1.39tz:g meV in 233Th. These values are in 

agreement with a crude estimate: m N (H’,/n)(I’,/AE) N 1 meV for N N I'JD - 10’. 

Here W, N (1 eV) x gs N 4 eV is a typical single-particle PNC matrix element (see, e.g., Flambaum 

1993, Flambaum and Vorov 1993). However, one could get much more precise information about the 

nuclear PNC weak interaction from an accurate theoretical calculation of m. We should mention 

that besides the above quoted number Frankle et al (1991) produced an unexpected result: the values 

of P turned out to be positive for all 7 p resonances, where the effects were greater than 2~. This might 

mean the existence of a large regular contribution to the PNC asymmetry, produced e.g., by a certain 

degree of coherence in the compound resonances. We postpone the discussion of this question until sec. 

3. 

Several approaches have been suggested to calculate matrix elements between compound states. Urin 

and Vyazaukin (1991) expressed the mean square matrix element in terms of the strength function of a 

cold nucleus, and calculated the latter semiempirically in the framework of “temperature mechanism”. 

Johnson et al (1991) based their calculation on the the work by French et al (1988) and employed 

the assumption that the mean square matrix element of the PNC interaction is proportional to that 

of the residual shell-model strong interaction (see sec. 2.5). In the next section we consider the 

statistical theoretical method described in (Flambaum 1993, Flambaum and Vorov 1993, Flambaum 

1994a, Flambaum et al 1994). It can be applied to calculation of mean square matrix elements between 

compound states (chaotic eigenstates) in various many-body systems. 
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2.1 Statistical Theory 

The wave function of a compound state may be expressed as the sum over simple components l@i) 

which are many-particle excitations over the shell-model ground state IO): 

1s) = CCil@i), l@i) = &zpafas . . . IO) . (39) 
I 

Consider a single-particle operator (e.g., the weak potential): 

ti = C&&p = C h&j&0 , (40) 
a0 a@ 

where jop = aLap is the density matrix operator, and Map = (aItiI/J). The matrix element of the 

operator &i between the compound states \ki and @or, is given by 

M~z ~ (U,l~l~a) = CC,!')'Cj(')(Bil~lOj) , 
ij 

or 

(42) 

The magnitude of ~$1 determines the “weight” of the single-particle transition Q -t p Map in Mla. 

We suppose that in a “chaotic” compound state the mean values of the matrix elements (averaged over 

many compound states qi and Qr) are zero: 

(43) 

which is equivalent to the assumption of random and uncorrelated distributions of C’s: 

c!‘)=p=m=0, , 3 t 3 

Thus, the matrix element (41) is the sum of a large number of uncorrelated random items. According 

to the Central Limit Theorem, this makes the statistics of the matrix elements Gaussian (we indeed 

checked this, see sec. 2.2). Note that statistical independence of C,!*’ and Cj” is ensured by the fact 

that @i and $? are the states of different symmetry, e.g., having opposite parity. 

Our aim is to calculate the mean square matrix element or the correlator between matrix elements of 

different operators with the same selection rules (e.g., P-odd and P, T-odd interactions): 

M1aWa1 = c McdWp$)la . (45) 
00 

In (44), (45) we used the fact that transitions between different pairs of single-particle states sre 

uncorrelated: pap p+, - (lo) (“) - &,+,l~$)lr, which f 11 o ows from the statistical properties of the expansion 

coefficient in (39) for compound states (we check these properties in sec. 2.2): 
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(C’s are chosen to be real). The mean square component q is connected with the strength function 

introduced by Wigner (1955), 

,O”(E, i) = c C,!%(E - Ex) ) (47) 
A 

where i and X enumerate the basis states and the eigenstates, respectively. Averaging (47) one obtains 

Dp = C!')' E w(E.+ E I’ N) w I *I 7, . (48) 

Here D is the locally averaged level spacing between the states of given spin and parity: D-l = p(E) = 

& 6(E - EA), and the function w(Ei; E, I’, N) 1 C,!‘)’ (EA a E) has been introduced to describe the 

spreading of the component i over the eigenstates X. This function depends on the number of principal 

components N in the sum (39), the spreading width I and the energy Ei of the component, and on the 

energy of the compound state E (in fact, on their difference E - Ei)‘. In the simplest model description 

(Bohr and Mottelson 1969) W(Ei; E, I’, N) h as a Breit-Wigner (or Lorentzian) shape: 

1 P/4 
w(Ei; E, r, N) = E (E _ Ei)l + p/4 9 N=$. 

The spreading width T is connected to the mean-square off-diagonal Hamiltonian matrix element 

Vz by I = 27rVz/D, and the last relation in (49) follows from CiC,!“’ = 1, or, equivalently, 

Jw(Ei; E, r, N)dEi/D = 1. The strength function (49) al so appears as the solution of Wigner’s Band 

Random Matrix (BRM) model (Wigner 1955) for 1 << g Q b, valid at IEi - El < Db, where b is the 

bandwidth of the matrix. 

Using equations (41), (46) and (48) we obtain: 

where wl(Ei) P w(Ei; El, I’l, Nl) and ws(Ej) I w(Ej; Ez, l?l, Ns). Below we assume Ns 2 Nr (I’s/Ds 2 

I’,/Dl), i.e., the number of principal components among I@j) is greater than or equal to the number 

of principal components among I@i). The operator fioa = aLa, transfers a nucleon from the orbital 

Q to the orbital p. The matrix element (@jlfi~~lipi) is not zero for l@j) = cLo,l@j) only. Therefore, 

Ej - Ei N cp - ca E up, (cm and cp are the single-particle energies) and the summation over j at fixed 

i include8 only one state. We can use closure and simplify (56): 

. ..L t t t since pappflo = aoapapaa = aaao (1 - aJa/3) = A,(1 - Ap), where A, is the occupation number operator. 

Thus, we obtain 

Ip$,‘p = Cwr(Ei)ws(Ei +wp,)(@ilk(I -h~p)l@i) . (51) 
I 

m zWe neglect the dependence of r on i in the expression (48) for C, . Thii in justified when the number of “decay 
channel8 (off-diagonal matrix elements Hij # 0) of the basic component Oi is large, which makes the fluctuations of 
r small, eimilarly to the fluctuations of the radiative widths of compound states. However, there is a weak regular 
dependence of r on energy which can be eeeily taken into account. A numerical experiment for the atom of Ce (sec. 2.2) 
confirma this picture. 
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The matrix element (@;lA,(l - Ao)l@i) is equal to 1 if in the component @i the orbital Q is occupied 

and /I is vacant (this condition makes the transition CY -t /3 possible). In other CM it is zero. Since 

wi and wz in (51) are smooth functions of energy (they vary on a typical energy scale N I), the matrix 

element of the r&(1 - lip) operator can be replaced by its average value: 

Ml - q3))l = (%lfi,(l - izp)lQkl) . (52) 

The N sign is a reminder that the left-hand side is the local average value over \Ei states. Practically, 

when the number of components is very large, the fluctuations of ($IA,(l - Ao)l\ki) are small. 

Substituting this average into (51) and replacing the sum over i by the integral over dEi/Dl we obtain: 

This result can be written in the following form: 

lp~;‘12 = (~41 - qd)~Da@~r rz, A) , 

where we defined 

(54) 

@‘i,Pz,A) E k-Jw(E.;&,Pi,N,)w(Ej +wp.;&,I’r,N?)~ , (A I Ez - El - qp) . (55) 

The above definition is consistent if w(Ei; E, I’, N) d e en p d s on the difference Ei - E. One can easily 

check the following property of the function 6: 

J @I’,, rz, A)dA = 1 , (56) 

and obtain for the Breit-Wigner model strength functions (49) that 

also has a Breit-Wigner form. Due to (56) one may call 8 a “spread” C-function [if I’i,z -t 0, then 

J(P,, rr, A) + b(A)]. 

Using (44), (54) we can now calculate the mean square matrix element between compound states: 

IWZP = mh312(%41 - np))& b(rl,r2,Ez - EI --up,,) , 
a0 

(56) 

where the summation is carried out over the single-particle orbital8 a and p. If the number of excited 

particles is large we can use Fermi-gas formulae for the occupation numbers: 

Ml - %9)) = n(4(1 - n(d), n(e) = 
1 

I + e@-r)lT . 

The temperature T and the chemical potentials (Fermi energies) p,,, /J,, for protons and neutrons can 

be found from the standard conditions: 
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where E is the compound state energy, 2 and N are the proton and neutron numbers. Equations (58)- 

(90) allow one to do computer calculations of the mean square matrix elements between compound 

states. Note that in the case of interacting particlea the ideal-gas equation (59) could be refined. The 

simplest way to do this is to introduce spreading widths of the sir&particle states, which smooth 

the Fermi step even at T = 0. One can also use a more consistent approach in the spirit of the 

Landau theory of Fermi liquids and take into account the dependence of the interaction energy of quasi- 

particles on temperature. The energy of the system with respect to its ground-state energy E - & and 

the renormalized quasi-particle energies 2, [to be used in (59)] are then given by: 

E - Eo = C dn, •t k C V,pbn,Gnp , (51) 
0 axp 

i, = ca t C V&np , (62) 
P 

where bn, = n,(T) -n,(O), and Vmp is the matrix element of the effective twobody interaction (e.g., 

the Landau-Migdal strong interaction). 

For the two-body operator 

P = ; c a~a#Y,~]P]~J)a.$z~ S ; c &~K,p7aa,ea , 
a076 @l6 

the mean square matrix element can be obtained in a similar way: 

(53) 

- Kp6&wp(l - n,)(l - %))dh @lJW - qqap) , (64) 

where w s Ez -El, and w+,,,p = c, + c6 - e, - co is the energy of the two-particle transition: CY, /3 + +y, 6. 

We cau also calculate the correlator CMW between matrix elements of two operators M and W with 

identical selection rules: 

One can easily see that ]CMW] = 1 if th e matrix elements Wap and Mop are proportional to each 

other (i& = const x Woo), or if there is only one dominating single-particle transition, say, 8 + p 

(M*, > Mpp and W, Z% WLlp for all a # S, p # p). Usually there are several important single 

particle tranaitiona near the Fermi surface (q N 10). If there are no special reasons for the coherence 

or cancellations one could expect ]C,ww] N l/d N 0.3. However, in the most interesting case of a 

P-odd and a P,T-odd interactione there are pairs of opposite sign contributions. Indeed, the matrix 

elements of the weak (PNC) interaction are imaginary: Wp, = W$ = -Woo. The matrix elements of 

the P,T-odd interaction are real: Mprr = Mao. Therefore, we have pairs of opposite sign terms: 

WorBM,&$?12 + Wp,Ma,&$,,)12 = WaoMoa (,,,‘I2 - l@12) 0~ 4 - np) - 4 - na) . (66) 

This partial cancellation makes the correlator small (]CMW] 5 0.3), which means that in practice the 

matrix elements of the P, T-odd and the P-odd weak interactions are statistically independent (see sec. 

2.4 and Appendix C). 
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Note that equations (58), (59) for the matrix element Mip have simple interpretation. The transition 

a + /I takes place if the orbital a is occupied and p is vacant. Thus, the factor nLl(l - np) selects the 

transitions near the Fermi surface. In the limit Ii + rs + 0 d transforms into a conventional C-function. 

Therefore, it reflects the “energy conservation” for the quasistationary states with finite widths ri, 

ra. The h operator “favours” the transitions between the compound states with the energy difference 

E2 - El I w close to woo, where wp, = cp - co is the energy difference between the single-particle 
. 

orbital8 coupled by M. In the case of w = wsa, 

(67) 

where Map is the single-particle matrix element (we used (57) to make this estimate). Ftecall that 

N2 1 Nr. Therefore we see that the result of the statistical calculation (58) agrees with the rough 

estimate (13) made in the Introduction. Far from the “resonance”, at ]w - wp,] > I there is an extra 

suppression factor I’/]w-wpa] (in the Breit-Wigner model). Th’ is suppression is especially important for 

calculations of the weak matrix elements between nearby compound states, where w = 0, wpol N 5-10 

MeV 1 I w 2 MeV (see also discussions in Zaretsky and Sirotkin 1983, 1987, Kadmensky et al 1983). 

Starting from eq. (50) and using closure to sum over j (we assumed Ni 5 Ns) we arrived at eq. (54) 

‘e matrix element of the density matrix operator. However, starting from for the mean squar 

and summing over i first (for Ni x Ns, or Ni 2 Ns) one would come to a different answer: 

]&1]2 = (np(l - n,))2D1@, r2,w - wPll) . 

Equations (54) and (68) are identical if the following relation is valid: 

(68) 

(%(l- Q))lD2 = (q(l- %4)2~1 * (69) 

This can be checked, e.g., in a model where a number of particles are statistically distributed over a 

larger number of orbitals. However, the approximate Fermi-gas formulae for the occupation numbers 

(59) violate the identity (69). This violation is not important for the calculation of ]M1s12 from (58), 

because of the summation over cy,p and since Di a Ds for Ni M Ns (this happens for the weak 

interaction matrix elements where EI w E2, l?i M I’s). Also, for Ni N Ns one can use a symmetric form 

of the result [half the sum of (54) and (SS)]: 

Ipb'81'1'= Ml -~LYw2r2 + (4 -%))zDlrl 

~A[(w -wpo)2+ (rl + r2)2/4] 
(70) 

In the case of wsa > I, w w 0 eq. (70) coincides with the perturbation theory result [equations (30)(33) 

and (27) of Flambaum (1993)]: 

1 a 
lP$)I2 = $$(l - no))1 + $+up(l -n& ) 

a 

if one recalls that I = 27r]V12/D, and the admixture of the distant component ]@j) = o~u,]Qi) (@i is 

one of the principal components of \E‘i) to as is V/was. 
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For the sake of completeness we also present formulae for the mean diagonal matrix elements: 
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(71) 

(72) 

Let us summarize the results of this section. Using the statistical approach formulae (X?), (64) for the 

mean square matrix elements between compound states have been obtained. The answer is expressed 

in terms of the parameters of the compound states (N, I’), the single-particle energies (~~a), and the 

orbital occupancies [n.Jl - np), these can be calculated using the Fermi distribution]. In order to apply 

eqs. (58), (64) one also needs to know the function b, which depends on the strength functions of the 

compound states components and has a model Breit-Wigner representation (57). Although, this model 

may suit to the description of the principal components, its validity for the distant, small components 

is questionable. This point is extremely important for correct calculation of the PNC matrix elements, 

since the weak PNC interaction mixes the principal components of one compound states with the small 

components of the other, and t&e uersa [see sets. 1.1, 1.4, and the discussion after equation (67)]. It 

will be shown in sec. 2.3 that by taking into account the residual strong interaction a4 effective induced 

parity-nonconserving interaction, which mixes the principal components of the compound states can be 

introduced. 

The statistical approach presented above relies heavily on the properties of compound states, such as 

those given by eqs. (46), (49). These properties are expected to be common for various many-body 

systems, if the twobody interaction is strong enough to produce “chaos” in the dense spectrum of 

excited states. In the next section we discuss the results of numerical calculations of chaotic eigenstates 

of the Ce atom (Flambaum et al 1994), as well ss those of nuclear shell-model calculations by Horoi et 

al (1994) for I2 nucleon9 in the (sd) shell, and by Auerbach and Brown (1994) for ‘Be and ‘B. This 

allows us to check the assumptions usually made in statistical theories of compound states, to study 

the behaviour of the strength function beyond (49), to check the validity of the mean square matrix 

element calculation, and to demonstrate the existence of enhancement of small perturbations. 

2.2 Numerical Experiment: Compound States in Atoms and Nuclei 

It is a well known fact that rare-earth atoms have very complicated spectra (Martin et al 1978), and 

exhibit Wigner-Dyson statistics of energy levels at excitation energies above 2 eV (Camarda and Geor- 

gopulos 1983). These atoms have several electrons in open shells and the structure of corresponding 

eigenstates is expected to be similar to that of compound states in nuclei. On the other hand the 

number of basis configurations in atoms is much smaller than that in nuclei near the neutron threshold. 

This makes atomic calculations much more feasible and realistic, and allows one to control the results 

against the experimental spectra measured at all energies from the ground state well into the compound 

states region. 

The Ce atom (2 = 58) contains 4 particles in open shells. There are 7 orbit& involved: 4f612, 4fri2, 
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Ci 

Figure 1: Odd and even J = 4 eigenstates of Ce. Shown are the eigenstates’ components Ci in the basis 

of @Ji states vs the energies of the basis states Ei G Hii. 

h/l, %/a, %/ia ~PI/S, '-h/z. We studied J" = 4-, 4+ manifolds, which contained 260 and 276 

states respectively. The Hamiltonian matrices Hik = (@Jijhl@Jk) were calculated using the basis of 

8Ji states constructed of the Hartree-Fock orbit&. Statistical analysis of the matrices showed that 

the dependence of the off-diagonal matrix elements Hik upon i and Ic is almost random. Since there 

are 4 particles coupled by the two-body interaction about 40% of the matrix elements are zeros. The 

distribution of the nonzero matrix elements can be approximated by P( Hik) K IHik I-1/2e-I*"llv, where 

V = 0.12 eV is the characteristic value of the off-diagonal matrix element. We observed that larger 

matrix elements are mainly concentrated along the main diagonal thus imposing a band-like structure 

on the matrix with a bandwidth b N 80 ( see Flambaum et al 1994, Gribakina et al 1995 for details). 

Therefore we can compare our results with predictions of the band random matrix model (Wigner 1955). 

The average spacing between the basis state energies Ei z Hii is D N 0.03 eV, which is much smaller 

than V. This means that basis states are strongly mixed by the residual interaction V. Indeed, the 

eigenstates 19~) = Ci Ci(‘)IQJi) are “chaotic” superpositions of large numbers (N N 100) of basis states 

with E = 0 (see Fig. 1). 
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Ei (ev) 

Figure 2: Fitting p with w(Ei; E, F, N) for the 80th even eigenstate. The least-square Breit-Wigner 
(solid curve), squared Breit-Wigner (dash-dot line), and interpolation exponential (dashed curve) fits 
are shown. 

To apply the statistical approach of sec. 2.1 we need to know the strength function (48), or the 

distribution of the mean-square components w(Ei;E,r,N). This also gives the number of principal 

components N and the spreading width I. In order to find them we performed local averaging of C,? 

over 19 neighbouring eigenstates. A typical result of this procedure is shown in Fig. 2. Since each of the 

bins used to calculate p contains about 10’ components from 19 eigenstates, fluctuations of about 10% 

are to be expected. The observed rate of fluctuations agrees with the existence of a smooth curve w(Ei) 

behind the histogram shown. In Fig. 2 we show the least-square fit of the q histogram with a model 

Breit-Wigner function w(Ei;E + AE,I’,N) of (49) 3. This fit yields N = 118 and I’ = 1.64 eV. The 

latter value of the spreading width is in good agreement with the model estimate: I’ = 2rVz/D N 2 

eV. By fitting q for other eigenstates in the spectrum we found the energy dependence of N and F 

(see Flambaum et al 1994 for details). 

Despite an overall reasonable agreement of the Breit-Wigner fit with cone may notice that the latter 

shows faster decrease at the wings of the central maximum. Note that at IE-Eil > r the approximation 

(49) reproduces the first order perturbation theory result c N- &r (it also requires IE- Eil ( Db in 

the Wigner’s BRM). If the Hamiltonian matrix has a band-like structure the coupling of states outside 

the band happens in higher orders of the perturbation theory, which, of course, display a faster decrease 

‘AE is introduced to account for a regular low energy displacement of the eigenvalue with respect to the maximum 
of q, which ia a mzmifeutation of uncompeu.sated level repulsion near the lower edge bf the spectrum. It correspon& to 

the second order perturbation theory energy shift AE = xi &. 
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with energy. For example, the BBM model (Wigner 1955) predicts a modified exponential drop’: 

w(E;;E,I’,N)o:exp{-2[ln(~e-‘J~)}, where E=y, q=&. (74) 

To check this and to estimate the quality of the fit two other approximations have been tried. Introducing 

the shape function f(s): w(Ei; E + AE, r, N) = kf(~), where E 1 Ei-TSAE, they are characterized by 

f(s) = (1+4aZ)-’ (squared Breit-Wigner fit), and f(e) = exp (1 - dm) (interpolation exponential 

fit), while f(e) = (1 +4s2)-* corresponds to the Breit-Wigner fit (49). The squared Breit-Wigner shape 

takes into account the fact that outside the bandwidth the coupling of states happens by means of the 

next, second, order of perturbation theory. A detailed statistical analysis shows that the quality of the 

fits is almost the same around the maximum. However, at the tails the drop of the Breit-Wigner curve 

is too slow, whereas that of the exponential one is too fast. 

To make this feature more obvious c is plotted in Fig. 3 using semilogarithmic scale. It is clear that 

the decrease of @ at IEi - El > r is much steeper than that predicted by the Breit-Wigner model. 

However, good agreement with the asymptotic formula (74) is observed in a certain energy range. The 

exception is a prominent high-energy shoulder for the numerical c values due to the perturbative 

mixing of some distant configurations. Therefore, we see that whereas the Breit-Wigner model for 

w(Ei; E, r, N) correctly describes the principal components of the eigenstates, the mixing of distant 

states (small components) is more complicated. It depends on the structure of the Hamiltonian matrix 

(the existence of an effective band a), and should rather be handled by means of the perturbation theory. 

These results are in agreement with the (sd)-shell model nuclear calculations (Horoi et al 1994, Zelevin- 

sky 1994). They showed that e decreases faster than the Breit-Wigner curve and much slower than a 

Gaussian one. We would like also to quote from another nuclear study (French et al 1988) which stressed 

that ‘spreading5 due to interactions between configurations which are very far apart in energy must not 

be treated by statistical methods, these being appropriate only for strongly interacting subspaces. The 

proper procedure is to ignore such interactions or treat them in the lowest-order perturbation theory 

(which itself supplies a criterion to distinguish strongly from weakly interacting configurations)‘. 

One of the main goals of the numerical experiment on Ce was to check the statistical approach to 

calculation of the mean square matrix element [formula (54)]. Having in mind to calculate the matrix 

elements of a parity-violating pseudoscalar operator like that of (36), 1 e us consider the simplest zero- t 
1 

rank reduced density matrix operator ~~,j,n,r,j = C, pnljm,ntl’jm = C, &,,,a,,l,j,,,. Then one obtains 

instead of (54), (68): 

(p$$,#j)2 = { 
(%lj(l - ~))IDz J(w2,4 , (a) 

- 
(n+lrj(l - $$))sDi 6(ri, rs, A) , PI 

(75) 

where A = Ez - El - w,ti,jpfj, and nsij is the occupancy of the alj orbital, given by the expectation 

value of the operator Anlj = C,,, a~,jmu,ljm. 

In Figs. 4 and 5 the statistical-theoretical r.m.s. matrix elements obtained from eq. (75) are compared 

‘This formula is different from the asymptotic solution (35a) in (Wigner 1955), since the latter is incorrect. The 
derivation of the correct expreaeion (74) is given in (Flambaum el al 1994). 
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Figure 3: Semilogarithmic plot of the window-averaged c for the J” = 4+ levels: 60th (open triangles), 
70th (open squares), 80th (open hexagons), 90th (solid triangles), 100th (solid squares), and 110th (solid 
hexagons). The asymptotic behaviour (74) with V = 0.114 eV, D = 0.032 eV, and b = 80 (q = 0.16) is 
shown by solid curve. Dashed line is the Breit-Wigner approximation (49) (N = 120, F = 1.8 eV). 

with those obtained by locally averaging the true matrix elements between the eigenstates. The com- 

parison made for a number of single-particle transitions nlj - n’l’j’ generally confirms the validity of the 

statistical approach of sec. 2.1 to calculation of the matrix elements. One may notice that in a number 

of cases the matrix elements obtained via the statistical approach reproduce quite subtle features of the 

curves from the direct numerical calculations. There is also a reasonable overall agreement between the 

two answers: (75a), and (75b). Some of the data indicate that a linear combination of the two formulae 

(75), or (54) and (68), might often yield a better result. 

We should add that we also examined the statistics of the eigenstate components, normalized within 

each bin of Fig. 2 as Ci/fi, and that of the matrix elements P,,,~,~,,,~ (x4o between the compound states. 

We observed that with the excitation energy increasing the eigenstates become “more chaotic” (larger 

N’s), and the above mentioned statistics tend towards Gaussian limit. 

bet us now consider the admixture of the state \E‘A to the state Q,, due to the effect of a perturbation 

&. The magnitude of the admixture is given by: 

(76) 

According to the estimates made in sec. 1.1, this quantity must be dynamically enhanced. The dynam- 

ical enhancement factor for the Ce levels at 2-3 eV is estimated at fl N 10. The numerical model 
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Figure 4: Comparison of the numerical calculation of the matrix elements (psS1,2,sP,,2 [(hli)Oy2 (j = l/2, 

J = 4) between chaotic states with the results of the statistical theoretic2 approach. ‘Upper graph: 

window-averaged ma.trix element from the numerical calculations. Lower graph: obtained from eq. 

(75a) using the Breit-Wigner approximation for w(Ei; E, N, I?). 
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Figure 5: Comparison between the direct calculation (solid triangles) of the r.m.8. matrix elements of 

the reduced density matrix operator (ptxjo r [LX] l’) and the results obtained from formulae (75a) (solid 

curve) and (75b) (dashed curve) using the Breit-Wigner approximation for w(Ei; E, N, I-‘). Left column: 
odd state A = 80; right wlumn: even state p = 80. The figures wrrespond to the following transitions 

nlj - n’f’j: a,b - 6pr/r - 6~1/2; c,d - 6~112 - 6pl/r; e,f - 5&/r - 4f&/2; g,h - 4fsfr - 5dbl2. Dotted curves 
in figures a and b show the results for the squared Breit-Wigner w(Ei; E, N, I’). 

wnsidered in this section enables us to verify the existence of dynamical enhancement. As an example, 

we calculated the mixing coefficients between the 21-70 odd levels and the l-140 even levels using the 
1 . . -0 

==w op-br M = P~,~,~~~,~. For each of the 50 odd levels the 140 mixing coefficients n (76) were 

calculated, and we chose the maximal of them. Usually it corresponded to the mixing of the odd level 

with the closest even one. The distribution of the resulting 50 values of n is presented in Fig. 6. 

A simple analytical approximation can be derived to describe the distribution of n. If one considers the 

mixing of states of different .I” manifolds, it is a reasonable assumption that the spacing between the 

nearest levels IE@) - @)I obeys Poissonian statistics (no level repulsion). Assuming further that the 
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numerator in (76) has a typical magnitude of Ms, one obtains the following probability density: 

f(q) = !Ee-“l” 
7f2 ’ (77) 

where qs = MO JD gives the typical magnitude of mixing, and D is the average spacing between nearest 

levels from the different manifolds. It is worth noting that the distribution (77) has an infinite mean 

v = 00, since the corresponding integral diverges as J dr,~/n. Th’ is means that the number of large values 

of 7 is large. The probability to observe n 2 71 is P(n > Q) 11 ns/ni (provided 71 >> ~0). The model 

distribution (77) is used in Fig. 6 to fit the histogram, producing 7]0 = 1.15 eV_‘. 

To demonstrate the existence of enhancement, let us find out the magnitude of the single-particle mixing 

nQ, which one might expect in a sparse, “regular” spectrum of a system with one valence particle. In this 

case the matrix element of &,1sp1,2 is equal to 1, and the mixing coefficient is nSr, = l/~~~,,,s~~,~ N 0.5 

eV_‘. Thus, we see that the characteristic mixing r]s = 1.15 eV_’ is greater than nSP by a factor of 

2.3 (dynamical enhancement). The dynamical enhancement factor in our example turned out to be 

smaller than the potential value of fi II 10. This can be understood from (75), since both 8 and 

the occupancy factor in it are smaller than their maximal values. A very important feature of Fig. 6 

is that some particular values of r/ exceed nSP by one or even two orders of magnitude. These large 

values are due to fluctuations in the energy denominator of n (76). This gives a possibility of very 

small denominators, and hence, very large mixing (statistical enhancemenf see sec. 4). The average 

value of enhancement corresponding to the set of data in Fig. 6 is s/n,,r N 13, mostly due to statistical 

enhancement. 

There was a special nuclear shell-model calculation of the light nuclei sB and sBe devoted to a search for 

dynamical enhancement of the weak interaction (Auerbach and Brown 1994). Using OS, Op, IsOd, and 

lflf oscillator orbitals and the WBT interaction of Warburton and Brown (1992) they obtained 647 and 

3266 J” = l/2-, l/2+ levels respectively. Then, the admixtures of 500 even levels to 2040 odd levels 

produced by the weak potential w = crap were evaluated. As expected, the single particle mixing in 

this system is very small: q* N 2 x lo-‘. The typical mixing of compound states no = r.m.s.(w)/D was 

found to be 13 times larger, which confirms the existence of dynamical enhancement in this system. The 

authors say that there is a qualitative agreement for the dynamical enhancement factor with the estimate 

fl N 10. We should note that the data in Table 1 of (Auerbach and Brown 1994) demonstrates also 

the effect of statistical enhancement, particular values of admixture exceeding pSP 100 times (the median 

enhancement of about 30). Unfortunately, no comparison with statistical theory for matrix elements 

between compound states is presented. 

Finally, we would like to mention other important results obtained by Horoi et al (1994). They 

demonstrated the similarity between the information entropy of individual eigenfunctions Sx = 

- Ci(Ci”)’ ln[(C))2] and the thermodynamic entropy found from the level density5. They also showed 

that despite the strong nucleon interaction the occupancies of the single-particle orbitals agree with 

the Fermi-Dirac distribution and there is a strong correspondence between chaos and thermalization, 

including a consistent way of defining temperature for the chaotic many-body system. In fact this may 

‘We should mention that Flambaum et ol(lQQ4) showed that in Ce the entropy localization length LA z 2.075exp(Sx) 
(Casati el al 1990) of compound states is related to the number of principal components by L& N 1.4iV~. 
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Figure 6: Distribution of the maximal mixing 71 = max, { I&$$p,,,/(E(“) - E(‘))I}, (p = 0 - 140), for 

the 50 odd levels A = 20 - 70. The histogram is fitted by f(n) = non_2 exp(-no/n) with ~0 = 1.15 eV-‘. 
The results of the x2-square test for the first 4 and 10 bins are: x2(3) = 0.45, x2(9) = 6.21. Also shown 
is the magnitude of the single-particle mixing t/v = 0.5 eV-‘. Five 17 values of 50 fall beyond 7 = 10: 
n = 12.5, 20.4, 37.7, 41.8, 98.0. 

be viewed as a justification of our numerical approach to the calculation of matrix elements between 

compound states in nuclei [see eqs. (58)-(64) and sec. 2.41. 

2.3 Induced Parity-Nonconserving Interaction 

This section is based mostly on the results of Flambaum and Vorov (1993,1995a), and Flambaum 

(1994a). Similar results were later obtained by Johnson and Bowman 1995 within the framework of a 

doorway state approach (see sec. 2.5). The magnitude of PNC effects depend on the weak interaction 

matrix elements between compound states. There are two sources of the PNC effects: the single-particle 

weak potential w (36), which describes the interaction of a nucleon with the weak mean field of the 

nucleus and the residual two-particle weak interaction W (35). In principle, the matrix elements of w 

and W should be calculated with respect to the true eigenstates of the strong interaction Hamiltonian. 

However, in practice some truncated set of basis states is used to describe physical states at excitation 

energies smaller than the gap between single-particle shells. For example, describing nuclear compound 

states and the parity-violating mixing of them it is natural (Johnson et al 1991, Flambaum and Vorov 

1993) to take only the principal components into account. The number of these components is already 

10’ in compound nuclei. The principal components have energies close to the energy of the compound 

state, dominate the normalization sum and are built of the valence-shell (open) orbit&. As is known, 

the latter do not contain opposite parity orbitals with the same angular momentum, which can be 

coupled by the single-particle weak potential w. Thus, the matrix element of w between the compound 

states is zero in the principal-component approximation (Zaretsky and Sirotkin 1983, 1987, Kadmensky 
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et al 1983). 
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To calculate the matrix element of w correctly one has to take “small” components into account, 

i.e., consider the transitions between the single-particle orbital8 cy,p of opposite parity and identical 

angular momentum, belonging to different shells. Therefore, for the P-odd (or a P, T-odd) interaction 

]wp,,,q - cp] N 5-10 MeV > P. We have seen in sec. 2.2 that the Breit-Wigner approximation (49) 

for Ci(xp is practically not applicable at the tails, where ]&, - Eij N JupaI > r. However, one can easily 

find the necessary admixture of the small components Qi using the first order perturbation theory in 

the residual strong interaction V: 

(78) 

where rkx is the principal-component part of the compound state, and the sum runs over the distant 

components not included in $x ((@i]4x) = 0). N ow we can calculate the matrix element of w between 

the close opposite parity compound states 9~ and Q,: 

E-Ei ’ (79) 

where Ex w E,, I E. 

The single-particle weak potential (36) cau be simplified, if we use the approximation of constant density 

p(r) N po inside the nucleus: 

where [ = %O, 
2P% 

2Jz 
Po=s’ 

and g = g,,, g,, and 4 = Q, 6, depending on the nucleon considered. Further simplifications are possible 

if we use the relation 

P = im[Hoio, rl , (82) 

where [. . .] is the commutator, and Ho = p2/2m + U(r) is the single-particle Hamiltonian of the nucleus 

[writing the commutator we neglected the spin-dependent part of the strong nuclear potential U(r)]. 

Then the first term in the right hand side of (79) can be transformed as follows: 

c ci'X'(siIIHo,r](~k)(OkIVl~r) = c (‘) _ Ci (4 - Ek)(giIrl~k)(~klvl~r) I - 
2 PWI@d , 

ki 
E - Ek ki 

E - Ek 

where we used the expansion of $J_ in terms of its principal components 8i: ]$A) = Ci C,“‘]&i), replaced 

El-Ek with E-Ek in thenumerator, since IEi-El N r < IE-E&J for the principal components i, and 

used closure to sum over k. Proceeding similarly with the second term of (79) we can express the matrix 

element of w between the compound states via the matrix element between their principal-component 

parts: 
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where the sum runs over the nucleons (in fact only the nucleons near the Fermi surface contribute to 

this sum, see below). Now we can define the induced parity-nonconserving interaction (IPNCI) 

which describes the effective coupling of the principal components of compound states due to the weak 

potential w. 

We should note that in deriving formula (83) for the IPNCI some approximations were used (the constant 

nuclear density, and spin-independent Hamiltonian Ho). When doing numerical calculations these 

approximations are not necessary. Instead, one can consider the weak potential w as a perturbation. It 

can be taken into account in the single-particle orbitala: (6) = ICY) + & ]d)(a’]w]~)/(~~ - e,,). Thus, 

we can express the result in terms of the residual twoparticle strong interaction V renormalized by the 

weak interaction ( Vm~~6c1 c (c$?~V~C’~~G) = (@Vl;i$)): 

where W,~I E (cr]w]a’), etc. The effective P-odd two-body interaction VpNa enables one to express 

the parity-violating matrix element between the compound states [see eq. (64)] in terms of the matrix 

elements (85) between valence-shell single-particle orbitals. Using (80), (82) one can show that in the 

constant density approximation (85) is the matrix element of the VwNC1 operator (84). 

The approximate analytical expression (84) is convenient to study the coordinate, spin, and isospin 

structure and the strength of the IPNCI. It will be shown that the IPNCI is an order of magnitude 

stronger than the residual two-particle weak interaction W. To find the explicit form of the IPNCI, the 

Landau-Migdal parametrization of the strong interaction can be used: 

V(l, 2) = cqr* - rz)[f + f’v2 + hula2 + h’(7172)(UlU2)] , (86) 

where c = r2/pFm = 300 MeVxfm3 is the universal Migdal constant (Migdall967) and the parameters 

f, f’, h, h’ are in fact functions of r via density dependence, e.g., f = fh - (f.. - f&~(r) - p(O)]/p(O). 

Values of fip and feX characterize the strength of the interaction inside the nucleus and on its surface, 

respectively). The interaction (86) dates back to the Fermi liquid theory by Landau (Landau 1958). 

The numerical values of the parameters widely used for heavy nuclei are (see Migdal 1967, Brown 1971, 

Khodel and Saperstein 1982): fh = -0.075, feX = -1.95, fk = 0.675, f:, = 0.05, hi, = h, = 0.575, 

and hL = hh = 0.725. 

Calculating the commutator in (84) one obtains: 

i c [&u.r,,V] = 2 CW(rl - rz)[(h'- h)(n, - ns) rl + (~2 x a~) 
4=1,2 

+ (h’ - f’)(r2 x nLr1 * (~1 - a2)l , (87) 

where & is defined by [ = to + &r+, and rX = -l(+l) is the isospin projection for protons (neutrons), 

so that & = (6 - Q)/2. The first term in (87) induces pn +.pn transitions, while the second one, 

pta(np) + r&m). For contact interactions, the second term (which is in fact the exchange term to the 
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first one) can be reduced to the first term by means of the Fierz transformation (see, e.g., Okun 1982), 

yielding 

V’PNC’(1,2) = t 6(ri - r2)(7iZ - rzZ) ~1 . (~2 x a~) - Qrp(np x a,)6(r, - r,) , (88) 

where 6 = 2C(&I - &J(fl - h) = $ $ S(g, - gn)(h - f’) 9 

We stress that this expression is valid within the nucleus only (recall that & a t a p). When using this 

expression one has to assume that the exchange term pn + np is excluded. However, the conventional 

choice of the parameters of the Landau-Migdal interaction assumes the same. This means that the 

second term in expression (87) for the IPNCI should simply be omitted (to avoid double counting) and 

the final expression for the IPNCI includes the pn - pn interaction only. Therefore, the constant in the 

IPNCI (88) should be given by 

& = 2(& - &)(h - h)C = 4 t& 55 
3 m Jz (9P -9db 7 (89) 

where h, = h - h’ is the constant of the residual strong proton-neutron spin-flip interaction. The 

problem with the definition of the IPNCI constant arises from the fact that the Landau-Migdal inter- 

action is a phenomenological effective interaction, rather than the true ab initio strong interaction. For 

example, it contains some fictitious spin dependence coming from the Fierz transformation of the ex- 

change term for the spin-independent interaction CS(rl - rz). However, this fictitious spin dependence 

does not contribute to the IPNCI, since in the case of an initial spin-independent interaction the Fierz 

transformation gives h’ - h = f’ - h = 0. Therefore, only the ‘real” spin dependence of the strong 

interaction (e.g., due to z-meson exchange) contributes to the IPNCI. 

It is possible now to compare the IPNCI (88), (89) with th e initial two-nucleon weak interaction W 

(35). These interactions have different isotopic and coordinate structure (VpNC’ contains the radius- 

vector r instead of the momentum p, or the derivative V). Using the nuclear radius R = rOA1i3, where 

rs = 1.15 fm N pF* is the internucleon distance, we estimate r N R, pp N PFR N A’i3, and 

vIPNC1 Qr 
- - 7 - PFr 

W 
w AlI3 . 

;;;PF 
(90) 

For heavy nuclei where neutron-nucleus PNC effects have been measured the nucleon number is A N 

114-240. Thus, the IPNCI (88) is an order of magnitude stronger than the initial two-body weak 

interaction W acting within the valence shell. The numerical results for matrix elements of VIPNC’ 

between valence-shell states in the Th-U region and those of the initial interaction W are presented 

in Appendix C, Table 2. Their comparison on the whole confirms the estimate (90). It is worth 

mentioning once more that selection rules (change of parity and conservation of the angular momentum) 

forbid matrix elements of the single-particle weak potential between the valence orbitals presented in 

Table 2. Therefore, the IPNCI and the residual two-body interaction W are the only sources of parity 

nonconservation in the compound states within the “principal component” approach. The equations 

expressing the root mean square matrix element between compound states in terms of the matrix 

elements of VpNC1 and W from Table 2 were presented in sec. 2.1. 

Of course, the explicit form (88) of the IPNCI based on the approximation (83) is semiquantitative. In 

particular, due to the smallness of h - h’ in Q, corrections to (88) may be relatively large for particular 
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matrix elements. Especially large corrections may come from the interference term (proportional to 

gpg,,), when calculating the mean square value (64) of the weak matrix element (85) between compound 

states. This quantity is a sum of products of the matrix elements between nucleon orbitals: 

The coefficients before gi and gi in this sum are positive, and the result is stable. On the other hand, 

the coefficients before the interference term proportional to gpgn are not necessarily of the same sign 

and the result tends to decrease after the summation (in comparison with the terms proportional to gj 

and gi). Therefore, the result for the mean square matrix element is proportional to g,’ + gi with a 

somewhat smaller coefficient before gpg,,, rather than to (gp -g,,)2 [ aa 1 would appear from the strength ‘t 

constant Q (89) of the approximate IPNCI (SS)]. 

Numerical calculations of the r.m.s. matrix elements between compound states show that the contribu- 

tion of the IPNCI (88), (89) is about 7-12 times greater than direct contribution of the initial two-body 

weak interaction W (35), thus confirming the estimate (90). 

It should be emphasized that formulae (84) and (88) for the IPNCI have been obtained using pertur- 

bation theory considerations [see eq. (78), (79)]. Indeed, the IPNCI (84) is of the first order in residual 

strong interaction V. The results of the all-order treatment are presented in Appendix C. However, the 

“self-consistency” (RPA) iterations w + VpNC’ + w + 6w + VpNC’ t 6VpNC’ + . . etc. of the VpNC1 

obtained from the momentum-independent strong interaction (86) would not change the result, since 

VpNC’ (88) does not contribute to the single-particle weak potential of the core (6w = (VpNC1),, = 0). 

The situation changes if one takes into account the momentum-dependent corrections to the Landau- 

Migdal interaction. In this case, the summation of the series produces an additional enhancement 

factor N 1.5 (see Appendix C). This enhancement in fact corresponds to the renormalization of the 

single-particle weak potential w by the momentum-dependent nuclear forces (Flambaum and Vorov 

1994). This renormalization is even stronger if one uses the “ab initio” strong interaction in the form 

of (X $ p)-exchange (Appendix D). 

Similarly to the IPNCI, one can consider the induced P, T-odd interaction. However, it turns out that 

the latter has the same structure and strength as the initial two-body P, T-odd interaction (Appendix C), 

and does not display the A’f3 enhancement (90). The single-particle P, T-odd potential is renormalized 

by the main velocity-independent component of the strong interaction, which reduces the corresponding 

strength constants vp and 71, by a factor of N 1.5-1.8 (Appendix D). 

2.4 Application of Statistical Theory to Calculation of Parity and Time- 
Invariance Violating Effects in Nuclei, and Comparison with Exper- 
iment 

The statistical approach to calculating mean square matrix elements (sec. 2.1) and the notion of the 

IPNCI were applied by Flambaum and Vorov (1993) to evaluate the PNC weak mean square matrix 

element for 2ssTh. The numerical calculations were performed using a single-particle baais of states 
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obtained in the Woods-Saxon potential with the spin-orbit interaction: 

(91) 

where f(r) = (1 t exp +)-I, 1 is the orbital angular moment, UC(r) is the Coulomb correction for 

protons: UC(r) = %$ (1 - $9 I” 5 R, and UC(r) = T, r > R, R and a being the nuclear radius 

and the difisity parameter. The numerical values of the parameters were taken according to Bohr and 

Mottelson (1969) for rssTh: they are close to those established for heavy nuclei like lead to reproduce 

their single-particle properties. 

The mean square PNC matrix element w2 was calculated by means of formula (64), using the B&t- 

Wigner approximation (57) for b, and the parity-violating two-body interaction VpNC1 (85). In the 

latter the residual strong interaction V was chosen in the Landau-Migdal form (86), with the constants 

depending on radius via p(r) = p(O)f(r). Note that the exchange matrix elements in (64) should be 

omitted if we use the Landau-Migdal interaction, since exchange is already taken into account in this 

contact interaction by the appropriate choice of f, f’, g, and g’. The single-particle weak nuclear 

potential UJ (36) was used. The single-particle occupancies were calculated from (59) at T = 0.6 MeV. 

This value of temperature was obtained to satisfy conditions (60) for the excitation energy E equal 

to the neutron separation energy. It is convenient to present the r.m.8. matrix element m in the 

following form: 

where C,, C,,, and C, are the contributions to the sum (64) from the squared proton, squared 

neutron and interference terms, respectively, and the factor E = l/n reminds one about the 

suppression of the matrix element between compound states. For gp = 4 and gn = 1 equation (92) 

yielded m = 2.08 meV, in good agreement with the experimental value 1.39?::$ meV for 2ssTh 

(&ankle et al 1991). On the other hand, we can use the experimental X@ and the calculated value of 

C, to determine the value of gp (assuming that gl > gi). The result is: gp = 2.67+::‘$. Having in mind 

that there is some error in the statistical calculation of fl, we can say that this value is in agreement 

with the theoretical value gr = 4. The only essential assumption made in the above calculation of m 

was that concerning the distribution of the components (49). As far as the uncertainty in the value of 

fl is concerned, the two estimates: fl = e (for D = 17 eV in 2ssTh and Tmpr M 2 MeV), and 

flzJ$i$i , give approximately the same answer fl N 4.3 x lo2 [I$‘) and I’$“) above are the 

width of the single-particle s or p resonance (Bohr and Mottelson 1969) and the neutron width of the 

compound s or p resonance respectively]. 

The valence mechanism takes into account the weak mixing of the single-particle components (in 2ssTh, 

4s and 4p neutron states). Its contribution can be estimated as 

wd N $(4s]u~]4p) N $g,,O.8 eV 1: 2 x 10T3 meV . (93) 

Thus the statistical, compound-resonance contribution is lo3 greater than (93) .due to the extra fl. 

Similarly to the calculation of the PNC matrix element m Plambaum and Vorov (1995b) calculated 

the r.m.8. matrix element of the P,T-odd interaction [Appendix C, eq. (C22)] and the wrrelator 
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C( W, WPT) (65) between the P-odd and P, T-odd matrix elements for sssTh. They obtained: 

m = 0.20 q meV , 

where n is the characteristic constant of the P,T-odd interaction (C15). The ratio of the PNC and 

P, T-odd matrix elements is dm/m N 0.17/g. This is explained by the fact that Wm does 

not have the A’f3 enhancement, whereas the W does (see Appendix C and sec. 2.3). This result can 

have important consequences for the experimental search for P, T-odd forces: the naive estimate of 

the magnitude of a P,T-odd effect as that of a PNC effect times n/g must be reduced by an order of 

magnitude. The correlator 

]C(W, WPT)] 1! 0.1 

turned out to be small, in agreement with earlier estimates [see eq. (SS)]. 

(95) 

2.5 Other Approaches to Calculation of Matrix Elements Between Com- 
pound States 

2.6.1 The doorway state approach and the IPNCI. 

The doorway state (or collective O- resonance) approach becomes more and more popular in calculations 

of PNC e&&s. It was first used by Kadmensky et al (1983) t o estimate the matrix elements of the 

weak interaction between compound states [ten years later this idea was m-examined by Flambaum 

19931. Auerbach (1992) and Auerbach and Bowman (1992) used it to estimate regular valence-type 

contributions. Recently Johnson and Bowman (1995) adopted this approach to derive equations for the 

IPNCI (SV,, in their notation). 

The main assumption of the doorway state approach is that the spin-dipole O- state ID,,) cx C, u..r,]p) 

(actually, two states with isospins T = 0 and T = 1) built on the compound state p dominates the 

PNC matrix element between the two compound states X and CL: 

Pl4l.r) = Pl4)(~,lwl~) . (96) 

Of course, one can always construct a state ID,,) cx w]c() to make (96) valid. However, this state is not a 

stationary, and even not a quasistationary state, i.e., it can not be treated using the stationary pertur- 

bation theory. One can interpret the “energy” of this state as an “average” energy in the perturbation 

theorv sum: 

(97) 

where w p = ED, - E,,. Starting from this point two ways of calculations are possible. To obtain the 

results of sec. 2.3 one need to use the commutator relation p = im[H, r], and then 

WPIP) = (~A~~[~~rll~) = (ED, - JU~UAM4 . 

Applying the doorway state assumption: ]Dl)(Dr]ur]~) = ur]p) and eq. (79) we come back to eq. 

(84). Johnson and Bowman (1995) used an oscillator relation p = imwr, where w is the oscillator 

pvW frequency. Therefore, SV-w differs from V~NCI of eq. (84) essentially by the factor w/w,,. Basing 

on experimental data Johnson and Bowman (1995) take w,, = 1.25~ in the isoscalar channel, and 
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w,, = 3w in the isovector channel, and explained this shift as produced by a renormalization of the weak 

potential by the strong interaction. There is an apparent disagreement between the damping of the 

PNC interaction obtained by Johnson and Bowman (1995) and its enhancement due to renormalization 

by the (momentum-dependent) residual strong interaction (Flambaum and Vorov 1994). It results from 

the two facts. First, we believe that similarly to our eq. (D4) there should be another term in eq. 

(A.2) of (Johnson and Bowman 1995), which cancels the first term if the contact-type residual strong 

interaction is momentum independent. Thus, no renormalization takes place in this approximation (see 

discussion at the end of sec. 2.3, and Appendix D). Second, the weak potential is indeed renormalized 

by a momentum-dependent part of the residual strong interaction which was taken into account in 

(Flambaum and Vorov 1994) and was omitted by Johnson and Bowman (1995). However, a complete 

agreement between the two approaches can be achieved. Indeed, using the doorway language one can 

calculate the renormalization of the weak potential of the nucleus in the following way. Due to the weak 

interaction w the ground state of the target nucleus IO+) gets an admixture of IO-) E IDo): 

l(j) = lo+) + @lo-) = lo+) + T IDto)(Dw:~lw’O+) ) (98) 

where t = 0,l distinguishes the isoscalar and isovector doorways. The mean strong field in the state 

16) differs from that in IO+). Th is d ff i erence is a correction to the weak potential w: 

620(l) = ~w,1((0+lv(1,2)lD~o)(Dto/w(O+) + (o+lwlD~o)(D~olv(l,2)lo+)) , (99) 
t 

where the matrix elements of V(1,2) are taken over the target nucleons (variable 2). Then, us- 

ing the commutator or oscillator relation between p and r one obtains the analytical expression 

(6w m ([v,C.fla . r,]),,,) for the correction to the potential. The latter can be introduced into an 

equation like (D13) (Appendix D) to obtain the renormalized potential self-consistently (“all-orders” 

treatment). Another possibility is to introduce corrected values of the frequencies wtc into eq. (99) 

based on experimental data for the O- excitation strength function. 

It is worth stressing once more that the method of Johnson and Bowman (1995) is a different technical 

approach to calculate the action of the single-particle weak potential w within valence shell configura- 

tions by means of the induced two-body interaction, and there is much similarity between their analytic 

results for 6VzLEay and that for V~NCI (sec.2.3). Comparing these approaches, we do not see why the 

use of the commutator relation between p and r is less accurate than the oscillator relation (which is, 

in fact, a particular case of the former). 

2.5.2 Model space and statistical spectroscopy approach. 

An alternative approach to calculation of the r.m.s. parity-violating matrix elements between compound 

states was suggested by Johnson et al (1991) ( see also Johnson and Bowman 1995) based on the 

statistical spectroscopy methods of French et al (1988). Th e main assumption is that the mean square 

PNC matrix element MZ can be taken to be proportional to that of a schematic interaction Uz: 

M2 = CY;(&)~ . (100) 

The constant o”p is calculated as 

a2 = wvpv)2 
P Tr(Uz)2 ’ (101) 
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where the trsces in the numerator and denominator are evaluated in a given model space. It is supposed 

that o$ should be insensitive of the specific choice of states over which the traces are taken, so that, 

e.g., plane waves [Johnson et al 1991, Johnson and Bowman (1995)] can be used. The value of @= 2.6 

keV2 for 23QU is taken from (French et al 1988). Within the latter the mean square matrix elements 

are evaluated using ensemble averaging techniques and scaling properties (q cx D). We should note 

that there is some similarity between this approach and that of sec. 2.1. For example, in the non- 

interacting particles limit eq. (51) of sec. 2.1 (w i,r are proportional to delta functions if the matrix 

element is calculated between single-configuration states) is equivalent to eq. (12) of French et al (1988). 

The interaction of particles is taken into account by French et al 1988 by calculating a convolution 

of non-interacting particles strength densities with a bivariate Gaussian describing the spreading of 

configurations. The operator U2 in (French et al 1988) is a residual shell model interaction in the form of 

a surface delta function. Johnson et al (1991) replaced it by an ordinary delta function ZJ2 = g6(ri - r2) 

with g = 26 MeV fm3 when calculating the trace in (101). Using the one-body weak interaction 

w = (C, + C%~~)up based on the meson-nucleon weak constants from Desplanques et al (1980) they 

obtained it4 = 3.07 meV for 23QU. A slightly larger value of M = 3.24 meV is obtained when the 

two-body piece were added to V pv6. The experimental value of A4 for 23QU is 0.58f~:~~ meV (Bowman 

et al 1990). 

The drawback of the procedure outlined in eqs. (loo), (101) is that different operators have different 

selection rules. For example, U2 has nonzero matrix elements between principal components of the 

compound states, whereas the one-body PNC potential w does not. This makes oc dependent on 

the choice of the model space, i.e., if one restricts it to the principal components only, og = 0 for 

Vpv = w. Moreover, even if a large model space is used to calculate the traces in (lOl), the result will 

be different to the average over nearby compound states (the latter is measured in experiments). Indeed, 

eqs. (58), (64) are sensitive to the position of the maximum of the distribution of the corresponding 

matrix elements (via w-dependence of the spread delta function 8). This means that ai in (100) (local 

averaging) can be strongly different from o$ in (101) (average over all model space). Consequently, 

the M values of Johnson et al (1991) ignore a factor like l?,/~s N l/5. However, the accuracy can be 

substantially improved by using the IPNCI which acts in the subspace of principal components. In this 

case the factor I’.r~/ws N l/5 does not appear which justifies the application of eq. (101) to cW’~~~($!. 

This was done in the recent work of Johnson and Bowman (1995). 

3 Regular Contributions to PNC Effects 

Statistical nature of dynamical enhancement of weak interactions in compound nuclei considered in sec. 

1.1 and employed in the calculation of the mean square matrix element (sec. 2.1) implies randomness 

of matrix elements of weak interaction between complicated states of opposite parity. Therefore one 

would expect the random sign of the corresponding PNC effects, e.g., the asymmetry (2). Recent Los 

Alamos experiments (Rankle et al 1991) show, contrary to this expectation, that neutron capture into 

p-wave compound resonances in 2ssTh leads to the asymmetry of the same sign for all 7 resonances 

where the effect is greater then two standard deviations (other resonances are probably p3/2-resonances 

6Note that these numbere (Johnson and Bowman 1995) ore about three times greater than those quoted in Johnson 
et al 1991 due to numerical errore in the Iatter. 
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where the effect must be zero). Its magnitude can be character&d by the average of P@ over these 

7 resonances 

B = (P@yiz) = 0.3(flO%). (102) 

Note that this value is much larger than B = 0.08 f 0.06 of Bowman et al 1992 obtained by means 

of statistical analysis for all p resonances which accounted for both random and regular contributions. 

Despite the fact that the experimental data obtained for other nuclei does not show strong deviations 

from randomness, the results for ‘mTh initiated a lot of theoretical activity (Flambaum 1992, Bowman 

et al 1992, Auerbach 1992, Lewenkopf and Weidenmiiller 1992, Gudkov 1993, Auerbach 1994, Auerbach 

et al 1994, Hussein et al 1994, Flambaum and Zelevinsky 1994). None of these works gives a reliable 

explanation of the regular effect comparable in magnitude with the random effect. Nevertheless, the 

review would be incomplete if we simply ignore them. 

3.1 Valence Mechanism 

Near the neutron threshold there is only one component in the compound state which has an exit 

into the continuous spectrum. This component (valence component) corresponds to the unexcited 

target nucleus wave function times the neutron wave function. The valence component gives a regular 

sign contribution to the parity-violating effects since the coefficient C’s before this component in the 

compound state (10) or (39) appears in the expression for the PNC amplitude twice: the first time in 

the capture amplitude Ts,p IX Cp), and the second time in the weak interaction matrix element, i.e., 

fPV 0: c,. 

There have been many calculations of the valence contribution (see Zaretsky and Sirotkin 1983, 1987, 

Olkhovsky and Zaichenko 1983, Desplanques and Noguera 1984, Noguera and Desplanques 1986, Flam- 

baum 1992, Bowman et al 1992, Koonin et al 1992, Lewenkopf and Weidenmiiller 1992). Below we 

present a simple analytical derivation of the valence contribution as per Flambaum (1992) and discuss 

briefly the recent results of other authors. 

The parity-violating part of the scattering amplitude is 

fPV = - $(vMi) > (103) 

where \kf and \Ei are the wave functions of the system, corresponding to the scattering waves at large 

neutron-nucleus distances. Outside the nucleus the wave function 8 of the system is a product of 

the target nucleus wave function and the neutron wave function $. The behaviour of the continuous 

spectrum wave function II, in the region with zero potential is determined by the scattering phase shifts. 

For Icr < 1, but r > R (k is the momentum of the neutron), it is more convenient to express this wave 

function in terms of the scattering amplitudes. Close to a pi/r-wave compound resonance the neutron 

wave function is 

pc’ = einx* + $-& - [l+~+i~(~.o)(~.nr)]X*, (104) 

where x* is the spinor corresponding to the right or left hellcity of the neutron: u . nkx* = fx*, 

nk = k/k, and n = r/r. The s-wave and pi/r-wave scattering amplitudes are given by 

(105) 
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where a is the potential part of the scattering length [compare with the parity-conserving part of (20)], 

and the extra i factor for the pwave amplitude is written out explicitly in this section [see eq. (104)]. 

Note that the wave function (104), (105) contains the contributions from all compound resonances 

including the distant ones. 

To calculate the valence contribution to PNC effects one has to know the neutron wave function inside 

the nucleus, where it is strongly distorted by the interaction with excited nucleons. There are two ways 

to overcome this problem: 

1. Using commutator relations we can transform the weak interaction Hamiltonian into the surface 

form and use the wave function (104) which is “exact” outside the nucleus. 

2. We can match the wave function (104) with a solution for the neutron in the average nucleus 

potential. This solution can be approximated by the nearest to E = 0 single-particle discrete state or 

resonance wave function (49+ and 4~~1, in 2ssTh). 

Let us start with the commutator method. Using p = im[H, r] and neglecting spin-dependent terms 

(e.g., the spin-orbit interaction) in the Hamiltonian H of a nucleon in the nucleus, we can decompose 

the weak potential w (36) into the following sum 

w = wo+i, wo = i$[H, pa. P] , 

where r?l is proportional to p’ = dp/dr (it comes from the commutator [H, p]) and peaks at the surface 

of the nucleus, and g is the nucleon weak interaction constant (g,, in our case). For the sake of simplicity 

a spinless spherical target is considered. The interaction wo does not contribute to fpv (103). Indeed, 

the wave functions Qi and \Ef correspond to the same energy. Therefore, the matrix element of the 

commutator with the Hamiltonian (ws o( [H, pa . r]) is zero ‘. In the simplest model of the constant 

nuclear density p = p&(R - r), and p’ = -p&(r - R). Introducing w = c?, into eq. (103) and using 

the wave function (104) one obtains the valence contribution to the PNC forward scattering amplitude 

(103) and the resonance asymmetry of the capture cross section: 

4 Gg, 
fPV(O) = ~fP,,,jf~Pll , 

0 = %Imf(o) = $Im(f,,,, + ~PV) , 

(107) 

(108) 

P"d = 
p p 4Ggn 

U+--(T- 

o,++Q;-~~~~ 
(109) 

Note that if we use an experimental amplitude f., the valence contributions from all compound reso- 

nances are taken into account, since all of them contribute to f. (105). Typically, fd N -R, e.g., for 

23sTh between .J resonances 1 + Ref,/SR = 0.42 (Mughabhab et al 1981). Comparing (109) with B 

(102) one can see that P”,J is almost lo3 times smaller than that derived by averaging over 7 resonances. 

Bowman et al (1992) derived the average asymmetry (P) ( see eq. (117) below) by separating single- 

particle components in the sum over compound resonances in eq. (8) (distant-state interpretation). 

‘Of coum, thii matrix element is not zero when mixing of distant single-particle states ie considered, ee in sec. 2.3. 
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Let us show how to obtain their result from eqs. (103) and (104). Following their work we assume 

that inside the nucleus the single-neutron component is dominated by a single-particle resonance or a 

bound state close to the neutron threshold. The wave function of the state with E M 0 has the simple 

asymptotic behaviour r-‘, where 1 is the orbital angular momentum of the neutron. Therefore, this 

wave function can be easily matched with the corresponding component of the wave function (IO4), and 

the neutron wave function inside the nucleus is given by 

where pr(r) is the single-particle resonance wave function, f = fS, or f = fpllo for the s- or pi/Z-waves 

respectively [see eq. (105)], and f” is the single-particle resonance scattering amplitude 

In the above e, and cp are energies of the single-particle resonances, and Id, Ip are their neutron widths: 

r. E 7,” = 2k/Rm, and rp = 7; = 2k3R/3 m in square-well model and Mottelson 

The parity-violating for the from the resonances ns n’p over 

target 0+ state is with the term in (20): 

7~(O+nslW10+n'p)yp 
eM + fr,,p - enlp + ;rnsp) = 

4ikf~r(O+nslW(O+n’P)f& 

787P 
7 (112) 

where we used (111) to express the result in terms of f ‘s’. Now we can use (103), (108), (110) and (112) 

to find the resonance part of the valence contribution to the PNC forward scattering amplitude: 

fPV(0) = 
4ikf,fp,,,(OtnslW10tn’p) 

7 
787P 

p _ 4kRe(f,)i(O+nslWlO+n'p) 
ma- 

787P 

(113) 

(114) 

= 2fimRe(f,)i(O+nsjWIO+n’P) 

k 7 (115) 

where in the last expression we used square-well model 7d,P. The wave functions of the single-particle 

states ns and np are normalized to unity over the nuclear volume. In the case of n+232Th, 4s1j2 and 

4pi/s are best candidates for these states. 

Suppose that the s-wave amplitude fb is saturated by one single-particle resonance ns: 

fa = -& _ crs+ q . ns 2’ (116) 

Then in the case 1E - e,l > I’? the asymmetry (114) turns into 

p 
IGS 

= 2y’ (nslwln’p) 
7p i(E - ens) * 

(117) 

This result in fact coincides with that in the absence of compound states. Indeed, it can be obtained 

from (8) by simply replacing the compound states with the single-particle resonances: l/2- + n’p and 

1/2+u + ns, and assuming that there is only one single-particle s-resonance nearby. We should note 
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that inclusion of more than one ns-resonance into (117) using one amplitude 7, (as done by Bowman 

et al (1992)) would be incorrect, since distant single-particle resonances have different amplitudes yI. 

The calculations in the square-well model and the more refined ones (Flambaum and Vorov 1993) using 

the Woods-Saxon potential with the spin-orbit correction give close values of the weak matrix element 

for a3aTh: 

(4si/z]r~u(4pi/z) N -ig,O.9 eV . W) 

If one takes E - ~4~ = -1.7 MeV, as in (Bowman et al 1992), the value of the PNC effect (117) is 

P,, = 1.2 x 10-3g* 
\i 

y . W) 

This value is in reasonable agreement with (109). A similar result obtained by Bowman et al (1992): 

B = 2.9 x 10e3g, is larger since the weak interaction matrix element has been overestimated by extending 

the nuclear density p in the weak Hamiltonian (36) beyond the nuclear boundary (they put p = const) 

and using large-size oscillator wave functions. Note that formulae (107), (109) and (113)-( 115) include 

contributions from all compound s-wave resonances, whereas (117) includes only those from distant 

states. 

Lewenkopf and Weidenmiiller (1992) considered the valence mechanism within the Feshbach projection 

formalism. They take into account the weak mixing of the s and p neutron valence components and ex- 

plicitly include the interaction of the pwave component with compound resonances [second diagram in 

(24)]. The authors believe that this interaction gives rise to a specific barrier penetration enhancement. 

However, their numerical result, B = (0.25-0.75) x 10v3g,, is in agreement with (109). This is not sur- 

prising because the “experimental” amplitudes (105) include the above interaction exactly. Therefore, 

there seems to be no grounds for any special barrier enhancement except for the usual kinematical one. 

Koonin et al (1992) performed numerical calculations of the PNC asymmetry in the P-wave neutron 

capture. They used an optical potential method to calculate the neutron wave function, and to determine 

the corresponding value of P (2). The optical potential method corresponds to averaging of the true 

neutron wave function over compound resonances. Therefore, the result of Koonin et al is in fact 

($ - a;)/($ + a;) rather than (P). This method can be quite accurate for the valence PNC 

amplitude in the range of overlapping resonances or between the resonances. However, it is not so good 

for the calculation of the effect at the resonance, since the neutron wave function does not satisfy the 

correct boundary condition given by the asymptotic form (104), (105). Thus, the result of Koonin et 

al can be viewed only as an order of magnitude estimate of the valence contribution at the resonance. 

Surprisingly, their numerical value B = 0.3 x 10s3g, is very close to that of eq. (109). 

In some of the works discussed above the authors claim that they can explain the observed average value 

of the effect. However, this would require g,, N 300, [E N 3 x 10e6]. First of all this value of gn, which 

is in fact the coefficient of renormalization of the Fermi weak interaction by the strong interaction, 

looks unreasonably large (see, e.g., eq. (37), or estimates by Koonin et al (1992), which yield ]gn( 5 1). 

This value of g,, is also excluded by the experimental data. Firstly, the statistical contribution to P 

is compatible with g,, N 1. Secondly, there are measurements of PNC effects in nuclei with sparse 
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compound resonance spectra, such as lz4Sn (Forte et al 1980), s”sPb (Abov et al 1989), and others. In 

these nuclei the dynamical enhancement factor is small and one can extract some limits on the valence 

contribution directly. For example, Forte et al (1980) measured the angle of spin rotation for thermal 

neutrons in ‘24Sn: 

d(‘24Sn) = (0.48 f 1.49) x lo-’ rad cm-’ . 

The angle of the neutron spin rotation is given by (see, e.g., Stodolsky 1974) 

(120) 

where Ns is the density of atoms, and 1 is the neutron path. Using fpv from eq. (107) or (113) one can 

obtain a limit on the strength of the neutron weak potential: 

ISA 5 1, or 1.51 5 1 x lo-’ . (122) 

Thus, the contribution of the valence mechanism can account for less 1% of the observed average PNC 

effect in 232Th. 

3.2 Correlations among Compound State Components and the Quasi- 
elastic Mechanism 

Valence mechanism takes into account the contribution of the compound state component where the 

target nucleus is not excited. We can call this an “elastic” contribution. Different compound resonances 

give a coherent contribution to the PNC amplitude in this “elastic” process. However, the coherence 

can not be lost completely after the first neutron-nucleon collision inside the nucleus. Moreover, there 

is a process in which the s-wave capture and the p-wave capture continue to work coherently. If after 

the first collision the s-wave neutron is transformed into the pwave, its strong field acting on the target 

nucleons is given by the matrix element (PlVls). Th e t ransition of a pwave neutron into the s-wave 

produces the same strong field (slV[p). Th er ef ore, similar target nucleus states can be excited in the 

pwave and s-wave compound resonances. This possibility of creating a certain degree of coherence 

among the compound state components was considered in (Flambaum 1992, 1993). The estimates 

showed that the above described “quasielastic” contribution can hardly exceed the valence one. 

However, the question of correlations between “chaotic” compound states should be considered more 

carefully. To derive the expression for the dynamical enhancement factor and matrix elements between 

the compound states (sets. 1.1 and 2.1) it was assumed that: 

1. When the residual interaction is strong (much greater than the level spacing) the number of 

principal components N is large. This produces the enhancement factor of fl. 

2. The components C,“’ [eq. (39)] of compound states are statistically independent: C,!‘lCj(‘) o( 

&jbXp. 

At first sight these assumptions seem very natural. However, they are not necessarily true. There 

is some correlation in the components imposed by the orthogonality condition. More importantly, 

the number of “independent variables” (different two-body matrix elements of the strong interaction) is 

proportional to Ni, where N, is the number of single-particle orbitals, whereas the number of expansion 
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coe&ients C$l is Ns, and increases exponentially with the number of orbit&. Thus, strictly speaking, 

they cannot be statistically independent. If the correlations are of the order of l/N they can of course be 

neglected. In Appendix B we consider the example of a system (random separable residual interaction) 

where the result is quite opposite, and the above assumptions are maximally violated: 

1. N N 1 at arbitrary strong residual interaction, and consequently, there is no dynamical enhance- 

ment of perturbations. 

2. Ci(‘%~) cc 6ij, i.e., the components of a given eigenstate are uncorrelated, whereas @‘)C,!“) N 

Ci(‘\)’ (X # ~1 are nearby eigenstates), which means very strong correlations between close eigen- 

states. 

These strange properties result from very strong interference effects taking place in this model. If we 

imagine that a real compound nucleus were described by a similar model, it would be very easy to 

explain the sign correlations of PNC effects for different resonances observed in Th (Frankle et al 1991). 

3.3 Doorway States and Giant Resonances 

Auerbach (1992), and Auerbach and Bowman (1992) suggested to use doorway state approach to 

calculate the regular contribution to the PNC asymmetries. They assumed that the spin-dipole O- state 

ID,,) built on a compound state 1~) dominates the PNC matrix element between the two compound 

states X and ~1 [see eq. (96)]. This assumption combined with the extraction of the regular valence-type 

contribution from the equation for the PNC asymmetry (8) gave the following result: 

p 
D 

_ 2% (0+~~l/2lwl0+~‘Pl/2) 

% i Wn 
7 (123) 

where wn is the excitation energy of the O- spin-dipole doorway IDJ (- 7 MeV). This result looks 

similar to the valence contribution (117) and cannot explain the size of the average effect observed in 

=‘Th. 

3.4 Two-particle One-hole Doorway States 

Recently Hussein et al (1994) suggested that the sign correlation effect in the PNC asymmetry in Th 

can be explained by a contribution of a non-collective 2p - lh doorway [regular contribution of such 

states was also mentioned by Flambaum (1992)). They assumed that parity violation occurs through 

the coupling of a pwave doorway to a nearby s-wave doorway, and obtained the average value of P: 

(P) = -gz , 
P 

(124) 

where M is a characteristic ‘weak” matrix element between p and s doorways, AE is a characteristic 

energy distance between these doorways, and -&,, Tn. are neutron decay amplitudes of the doorways 

(kinematically 7n,/rD, N l/lcR). Hussein et al claim that this mechanism can reproduce (P) = 0.08. 
However, we believe that they strongly overestimate the 2p - Ih contribution. The only source of 

enhancement for this mechanism in comparison with the valence mechanism is a higher density of the 

2p - lh states with respect to lp states. However, Hussein et al do not take into account that this also 

reduces the weak interaction matrix element. More importantly, the spreading width of the 2p- lh state 

is not smaller than that of the lp state (Flpr N 1 MeV) since the number of possible final states for the 
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decay of the former is not smaller. Thus, a relatively small spacing between 2p- lh states (D N 30 keV) 

does not give any enhancement at all, since the corresponding denominator is AE N ID + iPrpr( N 1 

MeV. Even after using M = 1.0 eV and AE = 50 keV the result of Hussein et al is not large enough, 

and a statistical fluctuation has to be assumed to further increase the ratio r&/y& by a factor of 

about 4. The probability of such fluctuation is quite small. Indeed, it cannot be achieved by small 70, 

(in this case other doorways will give larger contributions to the pwave capture amplitudes), and the 

probability of large Tn, is exponentially small for a Gaussian distribution. It seems easier to believe 

that all 7 PNC asymmetries in Th have the same sign due to a fluctuation. Our conservative estimate 

of the 2p - lh contribution (124) d oes not exceed that of the valence mechanism, mostly because of a 

large spreading width in the denominator AE. 

3.5 Rotational Doublets 

The experimental pattern of the target of 232Th gives a hint that this nucleus, and consequently the 

compound nucleus 2ssTh, might be a special case due to some peculiarities of its structure as compared to 

“normal” deformed heavy nuclei like 2ssU, which apparently exhibits random PNC asymmetry. Indeed, 

Th isotopes display strong octupole correlations (Bohr and Mottelson 1974, Leander 1982, Otsuka 1986, 

Nazarewicz 1990, Jolos and von Brentano 1994). Octupole deformations lead to the existence of nearby 

rotational parity doublets. Such doublets are known to play crucial role in PNC effects in nuclear fission 

by polarized neutrons (Flambaum and Sushkov 1980). It was suggested by Auerbach (1994), Auerbach 

et al (1994), Flambaum and Zelevinsky (1994) that th ese doublets can produce regular PNC asymmetry 

in Th. Below we use the approach of the latter work. 

Let us assume that static octupole deformation is already present in the first (ground state) potential 

well of Th. However, this assumption is not critical. At excitation energies near the neutron threshold, 

the nuclear wave function in the space of the deformation parameters certainly has a significant portion 

of large octupole deformation, ,& N 0.35 (Pashk evich 1984, Bengtsson et al 1987, Cwiok et al 1994). For 

sufficiently strong deformations, the use of adiabatic approximation is justified. This allows one to write 

down the nuclear wave functions as products of the orientational D-functions and the wave functions of 

internal motion Ix) (Bohr and Mottelson 1974). In the case of axial symmetry the projection K = In 
of the total angular momentum I onto the axis of symmetry n is conserved and can be used to label 

the wave functions Ix) = la, K). In th e neutron capture by a spinless target we are interested in the 

states with (K( = l/2. For a given intrinsic state with K # 0 the presence of octupole deformation, or 

of any other deformation which is axially symmetric but has no symmetry with respect to reflection in 

the equatorial plane, leads to the rotational doublets with definite parity II = *l, 

IQKI”M) = ($$)l” [D~,&P,~P,o)(~, K) + H(-~)~+~D~_,(~,~,o)J~, -K)] . 
The energy splitting of the doublet states implies that there is a physical interaction which couples 

the “right” and “left” configurations la,fK). 0 ne can imagine various particular mechanisms of this 

coupling, e.g., tunneling of an excess cluster. In the case of K = l/2 the Coriolis force acting in the 

first order can be sufficient to generate this coupling, similar to the decoupling parameter in normal 

spectra of odd-A deformed nuclei (Bohr and Mottelson 1974). 
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Since the likely energy splitting within the doublet is of the order of’several keV one can expect that 

mixing of the opposite parity doublet states by the weak interaction is much stronger than mixing of 

the single-particle orbital8 separated by MeV energies. However, a direct mixing of the states (125) 

with the same intrinsic structure and opposite II is possible only if the weak perturbation W violates 

time-reversal symmetry as well aa the parity (Sushkov and Flambaum 1980b). Indeed, the mixing 

matrix element can be expressed in terms of the intrinsic expectation values of the weak interaction, 

(&I-“MlW(aKI”M) = $z,KIWJn,K) - (a, --KIWIa, 4)) . (126) 

Since W is a pseudoscalar, the matrix element (a, KIWIa, K) should be proportional to the intrinsic 

pseudoscalar K. On the other hand, it means that this quantity, together with K, changes its sign 

under time-reversal which would contradict to the T-invariance of W. One can see from (126) that 

only a T-odd interaction leading to the opposite sign of the two matrix elements in brackets can mix 

the doublet states directlys. Th us, mixing of the doublet should be mediated by another (“normal”, 

P, T-even) interaction H’ leading to non-adiabatic admixtures of different configurations lb, K’). For 

instance, this could be the interaction already mentioned as a source of the energy splitting within the 

doublet. The interaction H’ influences PNC in the first order via the matrix elements (a, -KIH’Ib, K) 

which appears in the P-conserving mixing matrix element 

(aKZ”MIH’lbKI”M) = IIA,,&,-KIH’lb,K) (127) 

with the amplitude AIK depending on the nature of the interaction H’. When both H’ and W are 

taken into account the total rotational function (125) acquires an admixture of opposite parity, 

laKI”M) + laKI”M) = laKI”M) + ?+JKI-“M), (128) 

where 9 is the mixing amplitude: 

U&K 

s=-2E-E_n b 
c (a, -WW, Wb; W+; W 

E - Eb 3 (129) 

E is the neutron energy, and the rotational energy splitting of the doublet b in the denominator of (129) 

has been neglected. The mixing v is directly related to the observed PNC asymmetry (8), 

r$=’ 
P=2 F”’ 

$ 
(139) 

If the splitting of the doublet states laKZ”M) is caused by the same interaction H’ it also can be 

expressed in terms of the amplitude AIK, 

En - E-n = ~~AIK(u, -KIH’la, K) . (131) 

In this case the resulting PNC admixture (129) at the resonance energy E % En does not depend on 

AIK. 

Note that in the sum (129) the numerator contains two matrix elements and both of them are suppressed 

as N l/a for the generic compound wave functions a and b. Therefore, the contribution of the closest 

*Note that for a P, T-odd interaction a direct mixing within the doublet is not forbidden which can be of some interest 
for the problem of search for parity and time-invariance violating nuclear forces. 
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states with the energy difference about D in the compound nucleus is not dynamically enhanced. 

However, one can consider the contribution of distant states b. If the product of the matrix elements 

peaks for the states b at the distance of Eb - E N w from the resonance, one can apply closure to obtain 

9 = 2HArx(a, -KlH’Wa, K) 
u(E-E_~) ’ 

and, in the case (131), at E M En we come to the remarkably simple result 

(a, -KIH’Wla, K) 
‘,’ = ~(a,-KIH’Ja, K) ’ (133) 

Thus, in this scheme one can expect the admixture amplitude of the order 7 N W’P/w, where W’P is a 

typical single-particle matrix element of the weak interaction, WQ’ N 5 eV. For the Coriolis interaction 

as H’, the transition energy w between the deformed single-particle orbit_& with Am = fl is of the 

order of 100 keV, which yields an optimistic 7 N 5 x 10S5. It can be compared with the mixing 

between the compound states of opposite parity ~comp N m/D N 10v4, which means that the regular 

contribution of parity doublets should be considered quite seriously. 

The mechanism presented above is based on the assumption that the pear shape of the nucleus and 

the related doublet structure persist at required excitation energies. If this is the case, the complicated 

intrinsic states are superpositions 

la, fK) = c @‘)I@;, fK) 

of simple quasiparticle configurations IOi, fK) with amplitudes 

Then the matrix element in (133) contains a regular contribution 

(134) 

C@’ independent of the sign of K. 1 

(a, -K(H’WIU, K) N C C,!“)‘(@i, -KIH’WlOi, K) . 

As shown in (Flambaum and Zelevinsky 1994) the ratio (133) b e t ween the PNC matrix element (135) 

and a similar expression for the doublet splitting (131) can be calculated explicitly using the statistical 

approach of sec. 2.1. 

4 Statistical Enhancement and Behaviour of PNC Effects 

upon Averaging 

Considering PNC effects we so far assumed that the energy of the system E is a well defined quantity. It 

meant, e.g., that studying the spin-asymmetry in neutron capture one could tune the neutron energy to 

the presonance and obtain the corresponding kinematical enhancement, together with the dynamical 

one. Consequently, the energy resolution was supposed to be better than the level spacing D and the 

resonance width I’. The mixing of opposite parity levels by the weak perturbation is inversely propor- 

tional to the energy distance IE+ - E-I between them (and the overall magnitude of the dynamical 

enhancement is proportional to l/a). A s is known the level spacings decrease exponentially with 

energy, which, in principle, gives rise to a possibility of observing very large dynamical enhancement 

factors. However, it is likely that when the level spacing becomes very small, it would no longer be pos- 

sible to resolve individual resonances, and the measured quantity would be an average of the effect over 
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many resonances. This situation is quite possible not only for neutrons or other particles (photons, pro- 

tons, etc.) of higher energies, but also in other reactions (e.g., chemical reactions). Considering it is also 

important for answering the question: what happens to the dynamical enhancement of perturbations 

when the size of the system grows towards macroscopic limit? 

The compound-state (dynamical) mechanism of enhancement implies that the effects for different reso- 

nances are random variables with zero mean (or a very small mean value produced, e.g, by the valence 

contribution; the rotational doublet mechanism discussed in sec. 3.5 for Th seems to be a rather spe- 

cial case). Thus, one faces an interesting and vital question: Can the statistical in nature dynamical 

enhancement of perturbation survive averaging over a large set of compound states? At first sight it 

seems impossible, since the effect has random signs for different resonances, and its magnitude should 

therefore decrease as n-‘/z, where n is the number of resonances. This is a well-known consequence of 

the Central Limit Theorem (CLT) of the probability theory. However, the larger the set of compound 

states involved in averaging, the more probable it is to find a pair of opposite parity levels with a very 

small energy separation (there is no level repulsion between the levels of opposite parity). Hence a very 

large value of the effect can be achieved for a particular pair of levels, thus making the average effect 

large! 

Consider the average value of the effect X given by the following sum over individual resonances involved: 

x = Xi 
-1 

n (136) 

where zi is the contribution of the ith resonance. Its characteristic magnitude is x, a D-‘, where 

D is the mean level spacing between levels of opposite parity. In the sequence of n levels there is a 

large probability to find a spacing of I,!?+ - E-1 N D/n, which makes some zi N nz,, and therefore 

produces a typical value of X N z,, not decreasing with n. These arguments give one an indication 

that dynamical enhancement can survive after averaging. This fact indeed contradicts the standard 

CLT, and is connected with a peculiar statistics of the PNC effects (the corresponding probability 

density behaves as f(z) II a/x2 at z Z+ ze, if the states’ widths are neglected, and thus has an infinite 

variance). In some sense this means that there is an additional statistical enhancement, manifesting 

itself in measurements done with poor energy resolution. Below we present an accurate derivation of 

this statement and consider its applications to different reactions and possible experiments [details can 

be found in (Flambaum and Gribakin 1994)]. Th e c osest 1 analogue of this effect is, probably, Ericson 

fluctuations in the differential cross sections of nuclear reactions (Erikson and Mayer-Kuckuk 1966). 

Random variables with similar peculiar statistics also emerge in the problem of anomalous diffusion in 

disordered media (Bouchad and Georges 1990). 

4.1 Probability Distribution of a Single-Resonance PNC Effect 

Any parity-nonconserving effect results from (and is proportional to) the mixing of states of opposite 

parity. The mixing coefficient is 
Wik 

qik = Ei _ Ek ’ (137) 

where E;,Ek are the energies of the resonant states, and wik is the weak interaction matrix element 

between them (compare with eq. (4): i can be included in the matrix element to make it real). The 
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formula for the PNC effect also includes capture or emission amplitudes, and a sum over the resonances. 

The result can be presented in the following general form [see, e.g., eq. (S)]: 

where Es is the opposite parity level nearest to the ith state, and the primed sum represents similar 

contributions from the mixing with other states. Repulsion between opposite-parity levels emerges only 

in the second order of the weak interaction and hence can be neglected. Thus, the probability to find 

Eo in the AE vicinity of Ei is simply proportional to AE (for small AE) that makes the probability to 

find large values of ri relatively large. Random matrix theories show (see, e.g., Brody et al 1981) that 

the probability density for the interacting energy levels Ek is 

P&E,,..., Ek, . .) oc n IEk - Ejl . (139) 
k<j 

It means that the probability to find the second level in the same interval AE around Ei is very small: 

P c( AE3. Therefore, the possibility to obtain large values of 2; is determined exclusively by the first 

term in eq. (138). 

Let us introduce a new variable Yi, 

yi = Xi - T’Bik = & 

which gives the contribution of the nearest level mixing. The probability density for y c Yi is 

HO = 1 f&)&W (Y - A/E) d&A , (141) 

where c E Ei - Eo, fo is the probability density for the interval E, which depends on the mean level 

spacing D in the {Ek} manifold, g(A) is the probability density of A I Ai. It is quite easy to obtain 

the behaviour of fo(y) at both small and large y values: 

fo(Y)l?/+o = s(O)R 9 where w = 1 (E(~D(E)~E , (142) 

fo(Y)I ; y-em = 7 , where a = fn(O)m = fo(O)/g(A)IAJdA . (143) 

At large y the contribution of the admixtures of the distant states in (140) can be neglected, so one can 

put z = y. It means that the probability to find large values of the effect is given by 

f(x)lz-co = $ * (144) 

Although the distribution f(x) is properly normalized [Jf(x)dx = 11, its mean Jz_f(z)dz can only be 

calculated as the principle value, and its higher moments including the variance J x2f(z)dz are infinite. 

All we need from f(s) is its asymptotic behaviour at large x. 

considerations to find out more about its actual shape. It is easy 

spacing between nearest opposite-parity levels is given by 

_fD(&) = D-’ 1; pD(s)'fs , (145) 

However, we can use some model 

to check that the distribution of the 
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where P,(S) is the level spacing distribution in one manifold. Note that the probability to find large 

values of z does not depend upon a particular shape of Pn(S). Indeed, due to the normalization 

condition for P,(S), fo(O) = D-‘, and the constant a = IA(/D in (144) represents some characteristic 

value of the effect x. As is known, PO(S) can be described by the famous Wigner formula 

p&q = z$““l4D . 

It follows then from eq. (145) that the distribution of .r is Gaussian: 

f~(e) = D-‘e- n-2 /Da , where E: E 2 = D2/2x . (147) 

The g(A) distribution depends on a particular effect considered. For the mixing coefficient q (137) A is 

the matrix element of the weak interaction (Ai = Wio E w) between compound states, and should have 

Gaussian probability density 
e-w1/2w; 

g(w) = -J?j=-& . (143) 

The calculation of the integral (141) with the functions from (147) and (148) yields the so-called Cauchy 

distribution for the nearest-level mixing coefficient u 

fo(q) = i -$---+ , 
dz% WI 

c 
where plc = 7 = E, , (149) 

where qc is the characteristic magnitude of mixing. At v > Q the function fo(v) turns into (144) with 

a 1 TJx. 

Using r) as a model variable we can examine the contribution of other levels, given by the primed sum in 

(138). For example, if we assume that the effect is produced by mixing of level i with the two opposite- 

parity neighbouring levels Ei and Ez [q = wl/(Ei - El) + wz/(Ei - I&)], the probability density can 

be written as follows: 

4 e-+4 P&l 
fb?) = /g--- 

+ &2) 
D 

6 ( Wl w! 
q - - - - 

(cof~~+sinip)cos(osin$~ 
82 > 

dwldwzd&ld&z (150) 

fi r/r 

= -’ [f(ux,~+sin~)2+~COsZ(Psin2rp]2 ’ ‘loa 0 

where 1)0 = we/D = q,/@. It is easy to check that (150) has the same asymptotic behaviour as 

(149). Another way to take the contribution of other levels into account is to consider them in the 

“picket-fence” model [Bunakov et al (1990) used it to find the distribution of a P-even, T-odd effect]. 

Within the latter all & levels except the nearest to Ei are assumed to be equidistant and separated by 

D spacing. This yields 

(151) 

(152) 

In Fig. 7 we compare distributions (149), (150), and (152). One can see that they differ only around 

the maximum and quickly achieve the same l/q’ asymptotic behaviour as 7 increases. We should stress 
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Figure 7: Probability densities for n in the nearest level [eq. (149), solid line], two neighbouring levels 
[eq. (150), short-dashed line], and “picket fence” [eq. (152), long-dashed line] models for r,10 = 1, 

nc = 6. Note the identical asymptotic behaviour of f(n) at large n. 

once more that the asymptotic behaviour of the probability density of z (138) or 9 is determined by 

the nearest-level mixing only. 

Mathematical expressions describing real PNC effects usually contain products or ratios of several 

amplitudes. Therefore, the probability densities for these effects are different from eq. (149), even in 

the two-level approximation. For example, the difference between the capture cross sections for neutrons 

(protons, photons, etc.) of positive and negative helicity (7), or the photon polarization rotation (121), 

are proportional to the product of the two opposite parity capture amplitudes (Y and p (s-wave and 

pwave neutrons, El and Ml photons, etc.), times the weak matrix element w divided by the energy 

denominator. In the two-level approximation the expression for the effect is 

Assuming that o, p, and w are independent Gaussian random variables, one can obtain the probability 

density for 4 in the following form: 

where &(r) is a modified Bessel function, and & = 2r,rcosPs/x = &~oa&/D. The asymptotic 

behaviour at 4 > #E coincides with (144), and of course, holds in the many-level case too. 

The expression for a relative PNC effect, e.g., the spin asymmetry (8), looks like 

p+. (155) 
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It is a product of two factors (the kinematical factor K = o/p, and the mixing coe%cient 7 = w/e). 

Each of them is distributed according to the Cauchy law [eq. (149)]. A s a result the probability density 

for the relative effect p is 

where pc = KJ,Q = 00 2 . 
l% co 

(156) 

The probability to find large values of p decreases very slowly, aa lnp2/p2, since there are two possibilities 

to obtain large p: /3 + 0, or c + 0. 

The distributions discussed above describe effects induced by mixing of states belonging to different 

manifolds, e.g., opposite parity states in the PNC or P, T-odd (violating both parity and time-reversal 

invariance) effects. However, some effects can be produced by mixing of states which have the same 

parity. The levels in this case repel each other, thus suppressing the probability to find large values of 

the effect. An example of such effect (T-odd and P-even fivefold correlation in neutron capture) was 

considered by Bunakov et al (1990). The probability density of the effect has the asymptotic form: 

(157) 

The variance of the distribution (157) is still infinite, however the relevant integral diverges very weakly, 

as lnt at t -+ 00. In the case of a finite level width I the variance was calculated in (Bunakov et al 1990). 

It is proportional to In(D/I’). It should be noted, however, that this purely “statistical” consideration 

may not be correct for the matrix element between close levels with identical exact quantum numbers 

due to existence of some approximate quantum numbers, e.g., the isospin (T), or the total orbital 

momentum (L) . 

4.2 PNC Effect Averaged over Many Resonances and the Role of Com- 
pound State Widths 

As we have shown in the previous section, the probability densities f(z) for PNC effects typically satisfy 

the following conditions: 

f(r)I1+oa = ; 5 9 (153) 

J 
f(r)& = 1 , T = 

J 
zf(z)dz = 0 . (159) 

Note that the second condition in (159) can always be achieved by subtracting the regular contribution 

x + x - Z, and the corresponding integral exists only in the principle value sense. Suppose one knows 

the statistics of the on-resonance effects xi. We need to find out, what is the size of effects one might 

expect measuring some averaged quantity X (136), or, in a more general form, 

X = 5BiXi 9 where 2 Bi = 1 , (160) 
id i=l 

where 0i are the weights which depend on the energy resolution function [0i = 0(1/n)]. If the variances 

U! of fi(xi) were finite the CLT would tell us that as n + cc the distribution of X turns into a Gaussian 

one: 

K(X) - & exp (-&) , where @‘A = $e?4 - 0(1/n) , (161) 



476 V. V. Plambaum and G. F. Gribakin 

producing typical effects X of about a;/6 n, i.e., ,/ii times smaller than in a single-resonance measure- 

ment. However, the variance of the distribution (158) is infinite. Thus, the standard CLT is inapplicable, 

and the answer has quite a different form: 

where X, = 2 &z, . 

i=l 

The derivation of (162) is given in Appendix E together with the residual term which estimates the 

convergence of F,,(X) to its limit. The most striking feature of F,(X) is that contrary to (161) the 

distribution (162) does not narrow as n increases. This means that in spite of the random signs of effects 

for different resonances one would obtain averaged PNC effects of about the same magnitude as those 

for individual resonances: X, N 2, [there is a certain suppression of the kinematical enhancement factor 

in some cases (sec. 4.3), but it has nothing to do with the statistical suppression due to the random sign 

of the effects for different resonances, which would take place if ri had finite variance distributions]. 

To apply the CLT (162) to real physical effects we need statistical independence of the effects ri 

for different resonances. Strictly speaking this is not true, because the energy levels are correlated. 

However, when the number of resonances n is large, and since the average is dominated by a few of 

them [see the reasoning after eq. (136)], it is quite improbable that these Uimportant” ones are close 

to each other (when the level spacings D+ and D- in even and odd level sequences are different it is 

also “impossible”). Therefore, there is a small parameter of about l/n which allows one to consider the 

effects for different resonances as independent variables. 

Below we briefly discuss the limit theorem for some other distributions with infinite variances. The 

probability density for the relative PNC effect (156) displays the following asymptotic behaviour: 

In this case the width of the distribution of the average effect X increases slowly (a Inn) with n. With 

logarithmic accuracy 

K(X) = ; A. 
n2X2 

X,z:ln,-. (164) 
c c 

This means that the typical value of the average relative PNC effect increases with the number of 

resonances where the effect has been measured (a conclusion opposite to the standard CLT). This 

seems to happen in the present measurements of the PNC effects in neutron capture (Alfimenkov et al 

1981, 1983, Masuda et al 1989, Bowman et al 1990, Frankle et al 1991). We should also mention the 

distributions of effects caused by mixing of levels repelling each other [see end of sec. 4.1, eq. (157)], 

where the asymptotic behaviour of the probability density is: f(r) N zz/]z]“. In this case the Fourier 

transform of the F,,(X) probability density is 

X2W2 
Rn(w) = exp -* ( 1 In 

2n 
- + const 
44 I) (165) 

The difference with the standard CLT here is only the logarithmic term in the exponent. This term 

shows that the width of the distribution decreases as w instead of the standard l/fi. 
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So far we neglected the widths of the compound states mixed by the weak interaction. It is easy to see 

that this supposition is crucial for the validity of eq. (162). When the fmite widths are taken into acconnt 

the mixing coefficient (137) can not be greater than N w/I’, since l? determines the smallest value of the 

denominator. This restriction becomes essential for the average effect X when the “probable” minimal 

interval ]E+ - E-1 N D/n becomes of the order of I’: D/n - r. In the many-decay-channel case the 

fluctuations of the compound state width are usually suppressed and the possible magnitude of the 

mixing coefficient is indeed limited. In the case of a single-decay-channel domination the fluctuations 

of the width are usually large. However, a simultaneous vanishing of the interval e and the width I 

leading to a very large mixing is quite improbable. Therefore, in principle, finite widths make the 

variance of the probability distribution of the mixing coefficient finite. For small widths I’ < D this 

variance is very large [a (I'D)-* for mixing of opposite parity levels (Flambaum 1985), and cc ln(D/P) 

for the same parity levels (Bunakov et al 1990)], and in practice it does not have any physical meaning, 

if the number of resonances involved is n < D/r (D/I' - 300 f or compound states near the neutron 

threshold in non-fissionable nuclei). Indeed, the probability to find a pair of mixing levels separated by 

E N I’ interval is very small in this case (- d'/D), and the widths can be simply ignored. However, 

the widths must be taken into account for n 2 D/I', or if one is interested in the probability of finding 

very large effects 1x1 > J&D/(h). 

Quantitatively the results for the finite width look as follows. The variance of 2 becomes finite and at 

I’ a D it is given by 
?rz p-- 
Dr . W) 

Of course, this means that the l/z’ asymptotic behaviour of f( ) z is violated if finite I are taken into 

account, and there is a certain “cut-off” in f(z) at large z. The variance of the average effect X (136) 

is now finite as well: 

(X’), N g * (167) 

At n < D/I' its square root is much greater than X,, the characteristic width of F,(X) (162): X, = 

x,= ?rxfD- ,/-- A D . Thus, F,,(X) retains its Cauchy form (162) for 1x1 < $Xc. Therefore, as a 

manifestation of the finite state widths, we obtain the following interplay of the infinite-variance (162) 

and conventional (161) versions of the CLT for the probability density F,,(X) of the average effect X: 

D 
for 1 < n < - : 

r 
El(X) = ; & , IXl<$X,, xc=2Tc=q, W3) 

for n >> s : F,(X) = exp [-&I 
$isL’ 1x1 5 a ) (X”), = ; = g . (169) 

4.3 PNC Effects Integrated over the Initial State Energy 

Let us now show that real PNC effects averaged over the energy of the initial state can be indeed 

expressed in terms of the sum X (160) of individual resonance contributions. Such situation takes 

place when one cannot resolve individual compound resonances. In (Flambaum 1985) the mean square 

values of energy-averaged PNC effects were roughly estimated (the aim was to separate possible regular 

mechanisms of the effects). However, as has been shown above, when the number of resonances involved 
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is not too large: n < D/I’, one has to consider the probability distribution of the effects, since the mean 

square value of the effect is too large [cc (Dr)-*/‘I, and is not observable. 

All PNC effects occur due to interference of some opposite parity amplitudes (s wave and p wave for 

neutrons, El and Ml for photons, etc.). The influence of energy averaging on the magnitude of a PNC 

effect depends on whether this interference happens in the capture channel or in the decay channel. 

Thus, we can divide all PNC effects into different classes. 

PNC effects due to interference in the decay channel. In this case the consideration can be limited to 

one dominating capture amplitude (s wave for neutrons, El for photons, etc.). Examples of the corre- 

sponding PNC effects are: the u. pf correlation between the neutron spin and the momentum of the 

light fragment in nuclear fission, a similar correlation in the (n,r) reaction, the circular polarization 

of the emitted 7 quanta, and other correlations of the third class, according to the classification of 

Flambaum and Sushkov (1985). The amplitude for a reaction of this type which leads to some final 

state If) looks like 

(170) 

where T, is the capture amplitude, Af, and Bfp are the decay amplitudes from the opposite parity 

compound states 1s) and Jp), and Wp, is the weak matrix element coupling these states. The relative 

magnitude of the PNC effect near an isolated s resonance is given by [compare with eq. (31)] 

p = & (171) 

Here we do not specify any coefficients depending on the angular momenta of the resonances since 

they depend on the particular reaction under consideration. They can be found, e.g., in (Sushkov and 

Flambaum 1982, Flambaum and Sushkov 1984, 1985), see also Appendix A. 

In order to find the integral value of the PNC effect the squared absolute value of the amplitude (170) 

has to be integrated over the energy E: 

>.I .: f* * 
2 (E-E,, !&)& TE, + fr#) 

A:,fTd:BfpWpJ. 

,z, (E - E,I - $,,)(E - E, + ;r.)(E - ~~ + ;rp) + ‘L ’ (172) 

where B(E) is a smooth energy resolution function of the characteristic width A, normalized as 

JB(E)dE/D, = 1, so that C,B(E,) = 1. The term quadratic in W has been omitted from eq. (172). If 

I’ < D the dominant contribution to the integral (172) is given by the diagonal terms s = 9’. Assuming 

that the number of s-resonances inside the integration interval is large, n N A/D, > 1, and omitting 

some common factor we obtain the following result for the integral effect: 

~~aIA,.121T.12 + ~hEa~;B$$T;2r ) + c.c.] = JAf812JTa12 (I +x) , (173) 
p 2 a P 
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where 6, = 0(&J,), and X determines the relative magnitude of the integral effect: 

X=~R&, x, ‘c&[E -E ::(r +r)] ’ 

PI 
= 

IA~.121T,12 ’ 
I-WIZI’ = ~WL,121T.IZ . , 

(174) 

(175) 

The squared amplitudes IT.]’ can be replaced by the capture widths I’?) (e.g., I-‘$“), for the neutron 

capture), and lAf,lZ by the partial decay widths rid): 

IT,lalA,,12 = Ce,gI’f)I’F , 
s 

where g is the statistical weight of the resonances. The value of VP. is usually real (fission is an exception). 

Equation (174) shows that X is the weighted average of the single s-resonance contributions x. [compare 

the expression for z. with eq. (138); th e width l? = r. + rp is introduced into it by Ei -+ E; + if, and 

taking the real part]. Thus, the probability density of the integral PNC effect X at n < D,/I’ is given 

by [see eq. (168)] 

f(X) 2 i &’ 
~lvp*l x,=-. 

DP 
(176) 

Note that expression (174) for z, differs from the iingle-resonance relative effect p (155) by the factor 

IAf~121T,12/lAf,IZIT,I”. The mean value of this factor is unity. However, the presence of the A,, 

amplitude in the denominator of p [a in (155)] g’ Ives an extra possibility for p to be large [the ln(pl/pi) 

factor in the distribution (156)] and slightly changes the CLT. As a result the expected value of the 

average (integral) effect depends on the method of averaging. The distribution of the average over the 

single-resonance effects slowly widens with n [eq. (164)], w h ereas the distribution of the energy average 

tends to its limit (176). 

PNC e&&s due to interference in the capture channel. Let us start from the calculation of a PNC effect 

in the total capture cross section: the difference of the cross sections for neutrons (protons, photons, 

etc.) of positive and negative helicity. The capture cross section a(E) is obtained from (19), (20): 

o(E) 0: Im C ITA += K-J2 
a E-E,+;r, p E-E,+;I’, *g (E -~~$~s~~w~~ i.rp) * 1 (177) 

If one neglects the kinematic dependence of the amplitudes T,, Tp and integrates (177) over the energy 

interval A > D,, Dp, the third sum, which is responsible for the PNC effect, vanishes (the integration 

contour can be closed in the upper half of the complex plane leaving out all the poles of this term). It is 

easy to explain the reason for this vanishing. The expression in question has opposite signs at E = E, 

and E = Ep and the contributions of s and p resonances cancel each other. However, the quantity 

measured experimentally is not the cross section itself, but the number of neutrons passed through the 

sample, or the neutron spin rotation (121), w ic is expressed in terms of Befpv(0). In s resonances h’ h 

the attenuation length is too short for any neutrons to be detected in the end. Thus, the s-resonance 

contribution (E = E,) is totally suppressed, and no cancellation happens. 

Below we present some estimates for the magnitude of the energy-averaged PNC effect: the difference 

between the positive and negative helicity neutron numbers N+ and N-. The number of neutrons passed 
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through the sample of length 1 is N = Nsexp(-on,&, where Ns is the initial number of neutrons, and 

ns is the concentration of atoms in the sample. The neutron number difference then is 

N+ - N_ = No (e--’ - e--‘@‘) N -Noe-'(a+ - a_)noi , 
(178) 

where Q = (cr+ + u-)/2 is the average cross section for neutrons with different helicities. The relative 

difference of the neutron numbers integrated over the energy distribution 8(E) of the projectiles is given 

by the ratio 
N+-N- -=- nslJ(a+ - a_)eSuW’B(E)dE 

N++N- 2 J e-U~rO(E)dE * (179) 
The difference u+ - u- is large near p resonances only, where it is expressed 

asymmetry P (8): 

u+-u-=2P,u,(E), Pr,or’p+-“r- 22x5 
W rg 

apt + up- a Tp E. -Ep 

in terms of the spin 

7 PO) 

where a,* and up(E) are the pwave capture cross sections dominating in u at E = Ep. In the case of 

I’ < D (well separated resonances) the total cross section can be presented as u = us + up, where u. 

is the cross section far from the p resonance. The integral in the numerator of (179) is replaced by the 

sum over p resonances, the integral in each of its items being calculated over some energy interval Ap 

containing the resonance (l?, < Ap < Dp): 

N.+-N_ 
N++- 

nol~, Ppe-oo~‘~ up(E)“pw’dE 

e-ooml J B(E)dE 
= -CPpi 1 eexp [-%I B(E): 

P 
4 

P 

(181) 

I - c PpqpBp E czpep ) 
P P 

where qp is defined by eqs. (Ml), (182), 0, E B(E,), zp I -Ppqp, lo = l/usns is the attenuation length 

far from the resonance, and the normalization JB(E)dE/D, = 1 has been used. 

Now we can apply the CLT to the X = C, zpO, variable from eq. (182), where 

A 
‘p=-‘pqp= E,_E, d L+c’Bps, 

qp = $zpexp(-gp) , 
UPP(EPY z,=-. 

P uolo 

(183) 

(184) 

The first term in the right hand side of (183) d escribes the mixing of the p resonance with the nearest 

s resonance [compare with eq. (138)], and produces the x -’ decrease of the corresponding probability 

density. The length of the sample 1 can be adjusted to achieve an optimal situation 5 = 1, qp = 

rI’,/(2Dpe). In this case the magnitude of the PNC effect is z, N P,I’/D (PC is a characteristic value of 

the single-resonance effect, I and D are the average width and spacing for the p resonances). Therefore, 

the PNC effect (178) in the integral spectrum is suppressed by a factor r/D, with respect to single- 

resonance effects, however, it does not decrease with the number n of resonances involved (poor energy 

resolution), as long as n < D/I’. It is necessary to add that of course the magnitude of the relative 

effect (179), or P in (180), is limited: IPI < 1. Therefore, there is another boundary maxIPI - nP, < 1 
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on the possible values of n in this case. Although, this limit is not important for the integral effect, 

where xe N 10V4, it can be essential if one calculates the average of the relative cross section differences 

Pr, which have typical values of about 10p2. This gives the limit n < 100. 

Integral PNC effect in elastic scattering and the “weak optical potential”. This case is somewhat inter- 

mediate between those studied above. On the one hand, the corresponding PNC effect (e.g., the cr. n 

correlation, where u is the incidental neutron spin, and n is the direction of the scattered neutron mo- 

mentum) is due to interference of the final state amplitudes [T,Yo~(ti, ‘p) and Z’rYi,(19, cp)]. On the other 

hand, it is kinematically suppressed as TJT,, since the s-wave scattering proportional to T,” dominates. 

The scattering amplitude taking into account the s-wave capture is given by [eq. (20), Appendix A] 

f(8) = fo - & c TP: ,p WP,T. 
(E - E, + $8) (E - Ep + frp) Cu.4 , 

1 
(185) 

8.P 

where the amplitudes are T, = f JJ, , p Tp = ii@?, and the simplest case of the zero-spin target 

is considered. For the longitudinally polarized neutrons u * n = cos 29. Folding the differential cross 

section with B(E) energy distribution yields 

The angular distribution of neutrons W(t9) is determined by the ratio of eq. (186) to its angular average. 

It is given by 

C, &G(&) $+‘a 

w(6) = ’ + ]fo12 + c, O,a,(E_,)$ ‘OS 19 ’ (167) 

where 

P*=2KeC 
Tp: ,1 wPa 

P T, [E. - Ep + $‘a + rp)] 
(188) 

determines the effect for a given s resonance. Introducing the contribution of the s resonance to the 

energy averaged cross section u, = o,(E,)*I’,/(PD,), we obtain 

(189) 

where 8 = ]f,-,]2 + C, u,0. is the sum of the potential cross section and the energy averaged resonance 

cross section, which are usually of the same order of magnitude. Thus, the angular dependence of W(t9) 

(189) is determined by the integral effect 

x=~d4, 
* 

2, = $Ps , 

which obeys the CLT (162). There is a certain kinematical suppression (T,/T.) for the effect in the s 

resonance, but, as in the case of capture, the effect does not decrease after averaging over the resonances. 

Kinematical suppression takes place in the potential scattering as well (the PNC effect due to direct 

interaction of the neutron with the weak potential of the nucleus). However, the potential contribution 
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(valence mechanism) does not show statistical enhancement, and the resonant PNC ef&ct dominates. 

Therefore, the PNC effect in the low-energy scattering should have giant fluctuations on the scale 

depending on the energy resolution (manifestation of the infinite-variance CLT). The magnitude of the 

statistically enhanced effect will be about fi N 10’ - lo3 times greater than the potential effect. As 

is known, the energy-averaged cross section ?Y can be obtained from the optical potential, since the 

fluctuations decrease as l/&i. Contrariwise, there is no “weak optical potential” for the PNC effects, 

since the size of the fluctuations is constant, and is much greater than the mean value (produced by 

the weak nucleon-nucleus potential). 

PNC effects in the integral spectrum of final states in (n, 7) reaction. These effects were observed by 

Vesna et al 1982 and calculated by Bunakov et al 1984 and Flambaum and Sushkov 1985. However, 

in this case the statistical enhancement of mixing in the final states competes with the dynamical 

enhancement due to compound resonance mixing in the initial state [see diagrams (27) and eqs. (28), 

(29)], and th e w o e h 1 q uestion deserves further investigation. 

Concluding this section we should remind the reader that all PNC effects are of interference nature. 

The results obtained above show that because of the peculiar statistics the interference effects does not 

necessarily vanish upon averaging. 

5 Is there a Limit for Enhancement? 

When the number of excited particles increases the interval between the levels decreases exponentially. 

A natural question arises: can the magnitude of dynamical enhancement increase up to infinity? The 

common sense tells us that it is hardly possible, since we apparently do not observe large PNC effects in 

macroscopic bodies where the spectrum of states is “infinitely” dense. (Strictly speaking this argument is 

not correct since a macroscopic body is not in a stationary state and does not possess exact symmetries). 

However, one can consider a system of variable size, say, an atomic cluster, and try to follow what 

happens with the enhancement factor when the number of particles increases. There are several reasons 

which can limit the enhancement factor. 

1. Widths of compound states. If the admixed state is quasistationary the energy denominator in the 

mixing coefficient is E - E, + iI’,/2, and its magnitude can not be smaller than I’,/2. This is a natural 

limit of the enhancement for fissionable nuclei where the width is comparable with the level spacing 

D. The width also becomes important in any nuclear reaction at higher energies. However, in atomic 

systems the natural (radiative) width can be extremely small in comparison with the atomic energy 

unit. 

2. ‘Spectator” degrees of freedom. There are certain degrees of freedom (vibrations, rotations) which do 

not participate in the weak interaction directly. However, these excitations have a very dense spectrum 

in molecules and clusters (recall that the rotational intervals in heavy molecules are M,,l/rn. N 10’ 

times smaller than the energy intervals between the electron states). At first sight one could conclude 

that only the interval between the electron states is important, and the interaction with rotations and 

vibrations (phonons) produces some effective width for electron states only, i. e., their contribution 
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to the enhancement is destructive. However, this is not true. The point is that one can construct an 

effective weak operator which mixes rotational or vibrational levels. For example, (Labzovsky 1978, 

Sushkov and Flambaum 1978, Flambaum and Khriplovich 1985) calculated the effective weak operator 

which mixes opposite parity rotational levels in diatomic molecules: Wp~o = a(je x I,,) . A,, where 

j, is the electron angular momentum, I,, is the nuclear spin, and A,,, is the direction of molecular 

axis. The effective interaction constant n is proportional to the electron-nucleus PNC interaction. Note 

that only the nuclear-spin-dependent part of the weak interaction and the nuclear anapole moment 

(parity-nonconserving magnetic multipole) contribute to it. The situation is even simpler in the case of 

P, T-violation, where the effective interaction is WPT = Xj, - A,,, + &I,, . A,,, . The effective interaction 

constant X, (X,) is proportional to the P, T-odd electron (nucleon) electric dipole moment, or to the 

electron-nucleon (nucleon-nucleon) P, T-odd interactions. This effective interaction can mix very close 

opposite-parity rotational molecular levels, thus enhancing PNC and P, T-odd effects in molecules by 5 

orders of magnitude in comparison with atoms. 

The density of rotational and vibrational levels in complex molecules and clusters is very high even at 

low excitation energies (where the radiative width, proportional to w3, is negligibly small). Therefore, 

there is a possibility of very large enhancement factors. It would also be interesting to consider the 

enhancement of parity conserving effects: violation of the adiabatic approximation for the rotation (due 

to the Coriolis interaction) and for the vibration in the energy range of high electron level density. 

3. Finite time of the process, collisional broadening, etc. These effects produce an effective width of the 

states and depend on particular experimental conditions. 

4. Poor energy resolution. As it was shown in Section 4, the averaging of a ‘random” PNC effect by itself 

does not reduce the magnitude of typical enhancement. However, there could be some “kinematical” 

reasons for suppression. For example, the PNC effects are large in Ml-electromagnetic transitions (due 

to the kinematical enhancement El/Ml), but the integrated photon-capture cross section is dominated 

by the El-capture where the effects are suppressed by the factor of Ml/El. However, one can find 

effects which are not suppressed kinematically. In nuclear reactions these are PNC effects in fission, 

some e&&s in neutron radiative capture, etc. There is also an example of such effect in atomic physics: 

the P, T-odd rotation of the polarisation plane of light (optical activity) in a gas placed in a longitudinal 

electric field (Sushkov and Flambaum 1978, Barkov et al 1988). This effect is proportional to the P, T- 

violating electric dipole moment (similar to the Faraday rotation in magnetic field, where the effect is 

proportional to the magnetic moment). 

6 Concluding Remarks 

There are several mechanisms which enhance PNC and P, T-odd effects in complex systems: 

I. Mnematical The amplitude admixed by the weak interaction is substantially big- 

ger than the main reaction amplitude (e.g., the admixed s-wave amplitude vs the main p-wave 

amplitude in neutron capture). 
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2. Dynamical enhancement. This enhancement is due to very small energy intervals between excited 

states in many-body systems. A naive estimate of this enhancement fi (N is the number of 

principal components) is usually an order of magnitude greater than its true magnitude. The cor- 

rect value should take into account particular dynamics of the system, e.g., the information about 

localization law for the components of the compound states, the properties of the perturbation 

operator (e.g., parity-violating operators in nuclei transfer particles from one shell to another), 

the single-particle occupation numbers, possible collective effects, etc. 

3. Resonance enhancement. In the absence of kinematical enhancement in the capture channel of the 

reaction one can “come” very close to the admixed state energy. For example, in the case of PNC 

in nuclear fission the main neutron capture amplitude is the s wave. The energy dependence near 

an opposite parity (pwave) compound resonance is given by D/(E - Ep + irp). If the distance 

to the p-wave resonance is much smaller than the mean level spacing D between the compound 

states, we have resonance enhancement of up to D/I'. Th is enhancement factor can be especially 

large for some PNC and F’, T-odd effects in neutron radiative capture where the resonance width 

P is small. 

4. Statistical enhancement. 

(a) Resonance statistical enhancement. As known the levels of two subsystems with different 

quantum numbers (say, opposite parities) do not repel each other. When one considers 

effects for n compound resonances there is a high probability that at least for one of them 

the distance to the nearest opposite-parity level will be very small IE, - EpI 2 D/n. This 

will make the contribution of this resonance about n times greater than the “typical” one. 

(b) Structural statistical enhancement. Relative values of resonant PNC effects usually contain 

ratios of the admixed amplitudes to the main one. Random fluctuations of the main (p-wave) 

amplitudes in the case of n resonances can make one of these amplitudes n times smaller 

than the r.m.s. one, producing the effect n times greater than the typical one. 

Statistical enhancement combined with dynamical and kinematical enhancement can produce 

maximal possible value of the effect (say, 100% parity nonconservation). Parity nonconservation 

at 10% level which corresponds to the total enhancement factor of lo6 has been already observed 

in Dubna and Los Alamos. Statistical enhancement is very important when considering the 

effects averaged over many resonances. Because of this enhancement the values of the randomly 

fluctuating effect do not tend to zero (proportionally to l/J5i as prescribed by the standard 

Central Limit Theorem of the probability theory) for measurements including n resonances at 

once. 

In this review we mostly considered nuclear physics applications. However, there are very interesting ap- 

plications of perturbation enhancement to other systems and phenomena: violation of “non-relativistic” 

conservation laws in rare-earth and actinide atoms, violation of adiabatic approximation in molecules, 

parity violation in chemical reactions, enhancement of external noise and “violation” of quantum me- 

chanics in atomic clusters, spin systems and mesoscopic systems, etc. For example, the idea of dynamical 

enhancement has been recently applied to such a “distant” physical phenomenon as Anderson localiza- 

tion. It was shown that the localization length in the two-body problem is strongly increased due to 

the enhancement of the interparticle interaction (Shepelyansky 1994, Sushkov 1994). 
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Appendices 

A Calculation of Reaction Amplitudes 

The rules for writing down reaction amplitudes near the neutron threshold have been formulated in 

(Flambaum and Sushkov 1984). Let nk = k/k be the direction of the neutron momentum k, I the spin 

of the target nucleus, J = I + j the momentum of the compound resonance, (Y the polarization of the 

neutron, and j = 1 + s the momentum of the captured pwave neutron. Then, 

(i) The amplitude of neutron capture into the s resonance is 

(ii) The amplitude of neutron capture into the p resonance is 

642) 

Here [-&)(E)Js = I’!“)(E) is th e 3 resonance neutron width, and [7$)(E)]’ = I’:)(E) is the neutron 

width corresponding to the emission of a neutron with momentum i (I’$“) = I’$$ + $js). 

(iii) The matrix element of the weak interaction between two compound states is (31Wlp). It is 

imaginary if we use the standard definition of the x,,, functions. 

(iv) The Green function of the compound nucleus is 

(v) The common factor for the scattering amplitudes is -1/2h. 

The additional factor i in the pwave capture amplitude is due to the phase of the free motion p wave. 

We consider scattering at kR Q 1, therefore the potential scattering phase is zero. It is shown in 

(Flambaum and Sushkov 1984) that there is an additional phase factor ei+ (4 N W/D, where 6I’ is the 

fluctuation of the total compound state width). However, this factor can be large only when the width 

fmctuations are large, e.g., if the fission channel is open. One can find the rules for the fission amplitudes 

in, e.g., (Sushkov and Flambaum 1981b, 1981c, 1982), and those for the emission (or absorption) of 

q-quanta in (Blin-Style 1973, Flambaum and Sushkov 1985). 

Let us illustrate the rules by writing several simple amplitudes. The forward elastic scattering amplitude 

near the s resonance is given by 

(A4) 
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After summation over J, and averaging over 1, one obtains the usual Breit-Wigner formula [the second 

term in the right hand side of eq. (20)] with g = (25 + 1)/2(21+ 1). Similarly, for the p resonance 

The expression obtained after summation over J, and averaging over I, 

1 gl$)(E) 
‘(‘) = -SE _ E 

P 
+ ir 

2 P 

646) 

the expression coincides with the third term in the right hand side of eq. (20), I’$“) = 72;: + 72;:. 

Finally, the parity violating forward scattering amplitude [e.g., the fourth diagram in (21)] is given by 

- &&r!“‘(E) E _ E’ + ir 
1 

, 2 8 (s’W’p)E - Ep + ;r, jj,m C C~~j,C:~)~~~,(nk)i7~‘(E) . (A7) 

After summation over Jz, averaging over I,, and adding the contribution of the third diagram in (21) 

we obtain 
I 2sr!“‘(E)i(slWlp)7~~~(E) 

fpv(o) = *i%(E - E, + $,)(E - Ep + ;rp) ’ 648) 

in agreement with the last term in the right hand side of (20). The f sign corresponds to the positive 

or negative helicities of the neutron. 

B Correlations Between Eigenvectors and Superlocalization in the Ran- 
dom Separable Interaction Model 

Assume that the off-diagonal matrix elements of the Hamiltonian matrix are separable: 

Hij = fvivj + CiSij 031) 

where t)i are random variables, and ci are the basis state energies, i = 1, N. In this case the number of 

independent variables N is much smaller than the number of Hamiltonian matrix elements NZ (as in a 

real physical system, see sec. 3.3). The Schrklinger equation HQA = E~@A, @A = Ci Ci(‘)@i cm be 

written in the matrix form: C HijC,!x’ = ExCi(‘), which yields 

where Q,j = C Cj(‘)Vj . (H3) 

Multiplying (B2) by vi and summing over i gives the equation for the energy Ex: 

The value of qA caa be found from the normalization condition: 

p!‘)” = 4Gf'F (,v: g2 = 1 . (B5) 
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If vi are independent random variables, vivj = q&ii, the signs of the coefficients I$) within one 

eigenstate are not correlated: 

036) 

The last equality is approximate since EA and q: depend on v. However, they are even functions of v 

[see eqs. (B4), (B5)], while th e coefficients C are odd functions of v [see eq. (BZ)]. Thus, C,(xlCj(xl = 0, 

if i # j. Consider now the correlator between two different eigenstates \EA and Q,: 

The signs of the normalization factors qx and q,, are not fixed by eq. (B5) and we can always make them 

positive. In any case, physical effects can contain q: only, since the compound state wave function always 

appears twice, say, in the capture amplitude and in the weak matrix element. Therefore, it is obvious 

that the correlator (B7) is not zero. Moreover, for close eigenstates (Ex w E,,) the coefficients Ci(xl 

and @“’ are almost equal, except for such i that Ex 5 ci 5 E,, where their signs are opposite. Thus, 

the random separable interaction model (RSIM) gi ves very strong correlations between the eigenvectors 

which have close energies. This can result in strong correlations between “observable” effects induced 

by a weak perturbation. 

Superlocalization of eigenstates in RSIM. Eigenvectors in the random matrix models or in real “chaotic” 

systems are characterised by large numbers of principal components N, which dominate the normal- 

ization condition. Very often N, < N, and it remains finite as N goes to infinity. N, is related to 

the spreading width F,nr and the mean level spacing D as N, N I’&D. It is usually assumed that 

Flpr is determined by the strength of the residual interaction which mixes different components Oi. 

Surprisingly, this assumption is not valid in RSIM. The number of principal components is N, N 1 for 

arbitrary strong interaction. Indeed, 

c(X)2 = df’4 t (EA - ~i)~ 
_ df2vi" 1 

D2 K2 ’ 038) 

where K = (Ex - ti)/Da The sum over i in the normalization condition (B5) converges as C $ and is 

dominated by few terms with 1Kl N 1 ( see Flambaum 1995 for detailed discussion). 

C All-Order IPNCI and Renormalization of the PNC and P,T-odd In- 
teractions in Nuclei 

Below we present the derivation of VwNC’ and the analogous induced P, T-odd interaction VIPT1 baaed 

on the unitary transformation technique presented in (Flambaum and Vorov 1995a, 1995b). Consider 

the nuclear Hamiltonian k in the form 

ri=&+P+bv+P, (Cl) 

where I& is the one-body Hamiltonian of the nucleons [see below eq. (82)], p is the residual two-body 

strong interaction, I@ is the PNC weak interaction (35), and P describes other possible interactions, e.g., 

coupling to an electromagnetic field (the hatted operators refer to the many-body system). Considering 
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the PNC interaction of valence nucleons one should distinguish the two contributions to it: the weak 

nuclear potential 6 (35) caused by averaging of the two-body interaction 6’ over the nuclear core (this 

interaction mixes nucleon states from different shells), and the residual two-body weak interaction 

:ti:&-(I@),=&-& (C2) 

which directly couples the nucleons in the valence shell. :*: and 6 are analogues of the residual strong 

interaction p and the strong nuclear potential V(r). 

Let us start with the case when $’ is switched off. Using (80), (81) and (82) one can show that in 

the constant-density approximation w = i[a[Ho,r], and the action of the weak perturbation of the 

single-particle orbital $. is described as 

where a = i&r. Accordingly, the matrix element of any operator 0, including the Hamiltonian, can 

be calculated by using the unperturbed wave functions %’ and the transformed operator d: 

(*~]8]*~) = (Ql]e%e-“]qJ 1 (Ikx]d]‘EJ N (QA]~ + [6,6]]q‘,), (C4) 

where ed is the operator of the corresponding unitary transformation with the one-body anti-Hermitian 

operator ir = C. i&par.. The correct choice of the transformation corresponds to the total compensa- 

tion of the single-particle P-odd potential in the Hamiltonian: e”Z?e-“: C + [a, $1 = 0. The effect of 

this potential is now included into the renormalized operators d rather than the wave functions 4. 

Let us switch on the strong interaction 6’ and find the corresponding operator ed (we will see below 

that the operator a differs from d mainly due to the renormalization of the weak interaction constants 

by the residual strong interaction p). The transformed Hamiltonian looks like: 

i!Z=eAi+e-A=&+Q+6+:ti: +P+[A,ri,]+[A,P]+[A,~] (C5) 

where we have used the decomposition (C2) and neglected all terms above the first order in the weak 

interaction. To obtain the effective two-body P-odd interaction acting in the valence shells we should 

find the operator A which would compensate the single-particle P-odd contribution in eAfieA6. The 

last term in (C5) is a two-body operator. Let us apply the decomposition (C2) to the last term in 

(C5): [a, 6’1 I ([A, $‘I),,+ :[A, e]: , The first, one-body term is the average over the paired nucleons, 

and the second one, :[A, Q: , which yields zero under such averaging, is the effective induced two-body 

interaction: 
$“Nc’ =:[A, q]: , (PNC’) corc = 0 . ((33 

If we impose the following compensation condition: 

6j + [A, &] + ({A, &We = 0 , cc71 

the transformed Hamiltonian would take the form 

fi = I& + P+ :I+: +?PNCI + P + [A, $1 ) (C8) 

with no single-particle P-odd potential. Thus, there are three sources of the parity nonconservation in 

k (CS): 
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Table 1: Comparison of the matrix elements of the induced parity-nonconserving interaction between 

the valence-shell orbit& with the matrix elements of the original two-body weak interaction in the 

Th-U region. 

Matrix elements * (eV) 

CY P -Y 6 
J vIPNC’ b 

vagyj c w 
d 

@i&J 4-&J 

%9/a 

29912 

%9/z 

%9/2 

%9/2 

l&l/Z 

l&l/l 

&l/2 

h/2 

Ih9/2 %/2 I.&/2 3 0.067 0.082 0.009 

&/2 %,/2 l.i15/2 4 0.033 0.062 0.001 

lhg/z %/2 IAs/ 5 0.035 0.048 0.012 

lb/2 %/2 lh/2 7 0.029 0.043 0.016 

h/2 lb/2 h/2 8 0.043 0.082 0.001 

lb/2 lb/2 l&p 3 0.144 0.184 0.007 

lb lb/z G15/2 5 0.130 0.165 0.016 

lb lb/2 l&/2 7 0.131 0.166 0.032 

lb/2 h/z h/2 9 0.172 0.218 0.027 

a Given in the table are the absolute values of the matrix elements between pairs of neutron-proton 
single-particle states (o@ and 67) coupled into the total angular momentum J. 
b The IPNCI (88), (89) bt o ained using the Landau-Migdal strong interaction (86). 
’ The IPNCI (C13) renormalized by the momentum-dependent component (ClO) of the Landau-Migdal 
strong interaction. 
d The initial two-body PNC interaction (35). 

The commutator [A,P] which gives a direct contribution of the PNC potential 6 to the matrix 

elements of the external field F: (Qkx(P + [A, P]]Q,.,) = (*x]@]Gr). 

The residual two-body weak interaction :r/ir: . 
ppNC1, which plays the same role as :I@:, but is enhanced in comparison with :I@: (see sec. 2.3 

and below). 

It is easy to check that if we use the Landau-Migdal interaction V (86), the operator A in the constant- 

density approximation is proportional to a: 

A = i[t_n . (9 

Indeed, the commutator [A, V] would then give eq. (87) with 6 replaced by [. The average ([a, cl),, in 

the compensation equation (C7) is zero because of the spin-isospin structure of (87), and it would follow 

from the compensation equation that the interaction constants [ coincide with their “bare” values 4 

(i.e., with those obtained without the strong interaction). Therefore, the VIPNC’ in this approximation 

is given by eq. (88), (89). The strength of this interaction was estimated analytically in eq. (90) to 

be N A’/’ times greater than that of the original weak interaction W acting within the valence shell 

(:I@: ). In Table 1 we present the matrix elements of VIPNC1 and W between the valence-shell orbitals 

calculated numerically by Flambaum and Vorov (1995a). 

The fact that i = 5 and the IPNCI above coincides with eq. (88) obtained by including the strong 

interaction in the lowest first order follows from the fact that the Landau-Migdal interaction (86) 
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does not renormalize the weak potential the nuclear weak potential w, unless momentum-dependent 

corrections to it are considered (Flambaum and Vorov 1994). The latter can be taken in the form 

v, = $1+ GnGw2) tie1 - 4, PI), Pz) , (C10) 

which originates from the n-meson exchange contribution to the nucleon-nucleon interaction. Its con- 

stants sre hi = -0.5, hi = -0.26 (Khodel and Saperstein 1982). Note, that only the terms contributing 

to the P-odd interaction renormalization are retained in (ClO). Spin-independent contributions to VI 

responsible for, e.g., the mass renormalization, are supposed to be taken into account by the choice of 

the constants C, m, and h. Introducing the operator a in the same form (C9) into the compensation 

equation with e -+ if + 4, one obtains from (C7): a 
wl + ilaar, & 

1 1 +&taP,p(r)) =0 7 (a=p,n), (C11) 

where K, = -$ [$(h f h;)& t $(h F hi)&], and a = p(n) corresponds to the upper (lower) signs 

(see Appendix D). In the constant density approximation, all terms in eq. (Cll) have the same operator 

structure and it is equivalent to an algebraic equation for the renormalized constants i. Since &, and 

the weak-potential constants g,, are proportional to each other [eq. (Sl)] the solution of eq. (Cll) is 

equivalent to the following renormalization of the constants g. + &: 

& = 6 {sp [1+ $(hi t hi)] - $7n(h1 - h:)} , 

Bn = & (sn (l-t- $@I + Xl] - $7?4hl - 41) 1 
ww 

where D = [l t $(hr t hi)] [l t $j(hi t hi)] - w 4NZ(h1 - hi)’ (Flambaum and Vorov 1994). Thus, the 

account of VI changes the IPNCI (88), (89) into 

VpNC’ = VrPNC1 + VvzNC* = 2(& - [r)(h) - h)Cr,(u, x u,)b(r, - r,) -I- VvzNC1 , (C13) 

where vmNC1 has the form of (84) with th e renormalized constants &,, in_ At hr, hi < 0 (see above) 

the renormalized IPNCI is enhanced: [ N 1.45. Numerical values of the corresponding matrix elements 

are given in Table 1. Another calculation of the weak potential renormalization based on the (z t p)- 

exchange strong interaction is presented in Appendix D. It produces even larger values of the weak 

potential constants j, 1. The second term in (C13) contains the velocity-dependent corrections: 

V$NCI = [A, &] = --${ (in - &J(hl - Q( riZ - rk)t{ri. (~2 x G(rl - r2),PlI,mI (Cl4) 

t [(& t &)(hi t h 
[ 

:~ir2) t i(in - &)(hi t h:)(ri, t Q.)] {UIPI t ephJ(n - 4) 

t$% -&)(h - h{)(n, - nz){u2p2 -mp~,~(n - 411) , 

where Ci/4tiF = Gijf (Sam). One can see that VsNCf is not enhanced with respect to the two- 

body weah interaction W (X4, except for the first term in the right hand side of (C14), which is the 

momentum-dependent correction to the IPNCI from eqs. (88), (89). 

Using the same approach as above the induced P, T-odd interaction can be considered. The two-body 

weak P,T-odd interaction WPaT can be presented in the form analogous to (35) [see, e.g., Flambaum 

et al (1986)]: 

%ub)Vd(ra - rb) t &,(ua x a){& - pb,6(r, - rb)}] , (CI5) 
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Table 2: Single-particle matrix elements of the P-odd and P, T-odd nuclear potentials. 

491 

Q B ca - ‘0 

2) 

PT 
% 

-PT 
%J 

WW WI WI 

proton states 

2Pll2 39$,” -8.44 -0.5OOg, - 0.7229, -O.O66n, - 0.078npI -O.O44n, - 0.052~~ 

24,/r 3p3/2 -8.73 -0.558g,, - 0.803g, -0.0509, - 0.073~~ -O.O33rl, - 0.048~,,, 

1g9/2 lG/, -11.05 0.5999, + 0.8429, o.112gpp + 0.129Q” o.o74rl, + O.O86rl, 

I&/, 2gsla -9.42 -0.5759, - 0.789g, -0.055~1, - O.O64rl,, -0.037~1, - 0.042~,,, 

neutron states 

3Pip 49111 -6.65 -0.452g,,, - O.SSOg,, -O.O35r],, - O.O12r), -O.O2On,, - 0.007~+, 

3p;;l, 2&/z 7.78 0.541g,, + 0.778g,, -0.071+, - O.O48rl,, -0.040~,, - 0.027~,, 

3P$, 3&/s -8.73 0.446g,, t 0661g,, O.O6On,, t 0.026~w 0.033?),, t o.o15n, 

2f;,, 3&/z -6.63 -0.539g.w - 0.773g,,r -O.O44q,,, - O.Ol?nar -0.024~,,, - o.oo9rlnp 

a Asterisks are used to mark the states closest to the Fermi energy. 

where q,&, nLb are the dimensionless constants which determine the scale of P, T-odd effects [very small, 

ss predicted, e.g., by the Kobayashi-Msskawa model, see Sushkov et al (1984)]. Similarly to eq. (36) 

the P, T-odd potential of the nucleus is given by 

where Q, = $npp t ~9pn, r), = +/nn t $*p. Limits on these constants were obtained from atomic 

(Lamoreax et al 1987) and molecular (Cho et al 1991) electric dipole moment measurements [see calcu- 

lations by Flambaum et al (1986)]. The matrix elements of the P, T-odd potential (C16) have the same 

selection rules as those of 20: 

A/=*1, Aj=O. (Cl7) 

Table 2 shows some of the matrix elements of w PT (C16) and w (36) between the single-particle orbit& 

in 10BPb calculated by Flambaum and Vorov (199513). Th e numerical calculations were performed using 

the Woods-Saxon potential (91). 

Table 2 shows that single-particle matrix elements of the P, T-odd potential are numerically suppressed 

(by about an order of magnitude) with respect to those of the P-odd potential, since wPT is proportional 

to the derivative of the nuclear density and is large only near the nuclear surface. By analogy with w 

the sin&particle states coupled by the P, T-odd potential usually belong to different nuclear shells and 

are separated by the energy of 5-10 MeV. Therefore, to study the effect of P, T-odd interaction within, 

say, valence shell one should consider the matrix elements of the twobody P, T-odd interaction (C15) 

directly coupling valence-shell orbitals. The effect of the one-body potential wPT can be described by 

means of the induced P, T-odd interaction (IPTI). It can be derived similarly to the IPNCI. 

The e.ffect of the perturbation wPT on the single-particle orbitals is now described as: & = e-‘&, 
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where 

a = -0aV , e = Gv ~(0) 
2Jzmu(o) 

N -2 x 10-s 7] x fm , (W 

[see eq. (D3)). Introducing the transformation of operators e*Oe-* and proceeding in a way similar to 

that for the P-odd interaction we arrive at the following effective P, T-odd operator: 

QmTr ,:[A, ?I: ) (P*PT1)com = 0 ) (CW 

and the compensation equation 

cPT t [a, &] t ([A, i’]),, = 0 , (CW 

which should determine the transformation operator A, and thus, the IPTI (C19). The explicit ex- 

pression for the IPTI can be obtained using the Landau-Migdal interaction (86). In this case A is 

proportional to a: A = - C, #,a,V,. Indeed, the commutator in (C20) yields: 

[A, V] = -C(f t f’7r72)[8”rurV16 + &azVz6] - C(h + h’7rr&icrsV16 + &a*VsS] 

-iC(h + h’71r2)(az x ur)(e,v, - &vz, 6(rr - rz)} . cc211 

where we use the notation V,6 = VJ(ri - rz) (a = 1,2). Contrary to the case of the P-odd interaction, 

averaging (C21) over the core nucleons gives a nonzero contribution to eq. (C20), which now reads as 

eq. (D6) and produces the renormalized values of the P, T-odd potential constants rj’r,% [eq. (D7)). One 

can see that the strong residual interaction reduces the values of the P, T-odd potential constants 1.5-2 

times and, thus, further suppresses the size of its matrix elements (6:; in Table 2). 

In principle, the commutator (C21) is the VIPT’ sought. It has the same operator structure as the original 

interaction WPT (C15), and contrary to the VIPNC*, is not enhanced with respect to it. Therefore, the 

P, T-odd interaction of nucleons in the valence shell is determined by the effective two-body interaction 

wPT= wPT+vPTI- 
cl7 - s& [[(%b - I?bChob)Qa - (7]ba - %~habkb]Va6(ra - rb) 

--i(ua x ub){(db •t %Chab)Vo - (db t fibChb)Vb, 6(ra - lb)) 

+C(%ca - $bQb)va[6(ro - rb)hb(Td]] , cc221 

where h, = h,, = h + h’, h,, = h,, = h - h’, the constants rja and t? can be found in Appendix D [eq. 

(D7)], the strong interaction constants f.b are defined in the same way as hab, and the fact that they 

depend on the radius has been taken into account. 

D Renormalization of the Single-Particle P-odd and P, T-odd Potentials 

This section is based on the work (Flambaum and Vorov 1994). Let us first consider the renormalization 

of the P, T-odd nuclear potential w PT. Using the fact that the shape of the density p(r) and the strong 

nuclear potential V(r) are are similar, one can present the P, T-odd potential (C16) as 

J’T w _ &uVCJ(r) = BuVU(r) , Pl) 

where n = Q or q,, and 0 haa been defined in (C18). The total single-particle potential acting on the 

nucleons is 

V(r) t wPT = U(r) -I- BuVU(r) N CJ(r + 0~7) . W 
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Thus, it is obvious that wPT perturbs the nucleon wave function & in the following way 

493 

+cx - 62 = &(r t 6a) = (1-t (?aV)&(r) = & + 64, . (D3) 

Accordingly, the direct correction to the strong potential can be written as follows: 

WI) = C[(a~.(2)lv(I,2)ld,(2)) + (~o(2)lv(1,2)la~,(2))] , (D4) 
D 

where l(2) = [Q(~), gl(+ r1t21] are nucleon variables (coordinate, spin and isospin), and the summation 

is carried out over the occupied nucleon states a. If the Landau-Migdal parametrization of the strong 

interaction (86) is used, only the direct terms should be considered. Equations (D4), (D3) and (86) 

than yield the following correction to the P, T-odd potential: 

UPT = - C J @r&(rz)[&u.Vz, V(rr, r2)l~a(r2) 
0 

= CB,(hth'~,~,)a,VI~D,12 = mvp, 
LI 

(D5) 

where 7 = C[B,:(h f h’) + B,z(h F h’)] f or p t ro ons (neutrons), p = Ca 1+,12, the proton and neutron 

densities are taken as pP = zp and p,, = $p respectively, and (u~)~~~ = 0 (the potential considered is 

created by paired nucleons). Now the self-consistency equation t&r = tupT $ UPT should be solved to 

find the actual strength of the P, T-odd potential: 

_ 
BUVU t ~u(o)uvlJ. (W 

where the first term in the right hand side contains the “initial” values of the P,T-odd interaction 

constants q, whereas GPT a 6’ and UPT a T contain the %nal”, renormalized values f. The solution for 

the pair of simple linear algebraic equations for the constants 6 is the following (Flambaum and Vorov 

1994): 

li, = +j {Q [I + C$(h t h’)] - C$fjn(h - h’)} N E ) 

?jn = $ {?jn [1+ C$(h t h’)] - C$rlp(h - h’)} N $ ) 
(D7) 

whereD = [ltCs(hth’)] [ltd~(hth’)]-C2~(h-h’)2, C = Cp/]v] = 4tF/3]u] = 5(I+]c]/eF)-i N 

1, and the well known relations have been used: 

2P$ 

PFm 
” IuI =eFtlel, 3 P=$, cF=G, 

where ]E( is the nucleon separation energy. 

Thus, the strong residual interaction reduces the values of the P,T-odd potential constants 1.5-1.8 

times. Note that the response of the nucleus to the P,T-odd potential (C16), (Dl) as a function of 

the interaction constants has poles (D = 0) at h = 6-l N -1 and h’ II C-’ N -1 (for N N 2). The 

positions of the poles differ from the instability points in the infinite Fermi system h = h’ = -1.5 (see, 

e.g., Khodel and Saperstein 1982, Pines and Nozieres 1966), since the interaction (C16) does not exist 

in the infinite system (w PT = 0 at p = con&). It is interesting that the P,T-odd interaction induces a 

spin ‘hedgehog” (u a r) in the nucleon spin distribution within a spherical nucleus (Flambaum 1994b; 
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such possibility was first noticed by R. M. Ryndin, see Khriplovich 1991). A simple calculation with 

the wave function (D3) gives the following proton and neutron spin distributions: 

up(r) = @pVpp(r), u,(r) = f%Vp,(r) . W 

The interaction UPT in eq. (D5) is, in fact, the strong interaction of the nucleon with the spin hedgehog 

[Csai+)l. 

Let us now consider the corrections to the weak P-odd potential w (36). In the constant nuclear density 

approximation its perturbation of the single-particle wave functions is described by eq. (C3), with f 

given by (81): 

In the general case (real density shape and the spin-orbit interaction taken into account) the correction 

to the wave function contains an extra spherically symmetric function &-Jr) (see, e.g., Khriplovich 

1991): 

a$, = -ia+( . CD111 

The P-odd weak interaction (36) also changes the spin distribution. It rotates the spin around vector 

r (see eq. (C3) by the angle [r and creates a spin helix (Zeldovich 1957, see also Khriplovich 1991). 

However, after the summation over the paired nucleons of the core this spin structure disappears. As 

a result, the Landau-Migdal contact spin-dependent strong interaction (86) does not contribute to the 

renormalization of the weak potential [because of the factor i in eqs. (DlO), (Dll) the contributions of 

(SA(2)lV(l,2)1~,(2)) and (~~(2)lV(l,2)lS~a(2)) cancel each other in (D4)]. This result looks natural 

since the only possible orientation of the spin in the spherical nucleus (u a r) violates both P- and 

T-invariance and can not be produced by a T-even weak interaction (36). It also explains why the 

“all-order” treatment of VpNC’ (Appendix C) gave the same result (84) as the first-order calculation 

in sec. 2.3. 

The correlation which is actually produced by the P-odd weak interaction is up. To obtain such 

structure the contact strong interaction in (D4) must depend on both the spin and the momentum of 

the nucleons (another possibility is provided by a finite range exchange interaction considered below). 

Using the momentum-dependent component of the Landau-Migdal interaction (ClO) one obtains from 

(D4), (DlO): 

0 = C / @rz$t(rz)[i&.rz, V,(ri, r2)1$,(r2) 

Oc 
= -gp4h +h, a 2 ‘7 7 ){UlPl, I&la) = K(clPlp + PQlPl) , 

a 
UW 

where K = -& [:&I f WP + fpJl7 hxn] f or ro ons (neutrons) respectively. The equation for P t 

the total P-odd nuclear potential is: 

G=w+iY, (D13) 

where tit and 0 contain the renormalized constants [ (I), and UJ is the original P-odd potential (36) 

[compare with eq. (Cll)]. Solving the corresponding pair of linear algebraic equations and using 

Cpml& = 2/3 one obtains the renormalized constants &, jn of the P-odd potential, eq. (C12). It 
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is worth noting that the poles (D = 0) in the response of a nucleus to the weak potential w cc up 

coincide with the boundary of stability of the Fermi liquid with the interaction (ClO): hi = hi = -1.5 

at N = 2 (boundaries of stability of the Fermi liquid with the Landau-Migdal interaction can be found, 

e.g., in Khodel and Saperstein 1982, Pines and Nozieres 1966). It looks natural, since the approximation 

p = conat has been used in the wave function (DIO)e. 

The interaction VI with hr = -0.5, hi = -0.26 does not cause instability. However, it acts in the 

direction of the poles and increases the P-odd potential: 

jr = 1.39, + O.l8g,,, I$, = 1.4g,, + O.l2g, . (D14) 

Therefore, the Landau-Migdal interaction V + V, [eqs. (86), (ClO)] does not produce critical changes 

in the values of the interaction constants of the P,T-odd and P-odd potentials. The corrections are 

of the same size as, e.g., the corrections to the Schmidt values of the magnetic moments. However, 

the Landau-Migdal interaction originates from the underlying (x + p)-exchange interaction which also 

generates tensor components. The account of the latter brings the nuclear matter much closer to the 

verge of instability against the P-odd perturbation. 

The (x + p)-exchange strong interaction is given by 

VX+P(l, 2) = -4z(7iTz) 
f2 (u1q)(u2q) 
--$ 

f2 (Cl x q1cf-Q x 9) 
c q2+mf +s 

P 1 qz+m; ’ (D15) 

where q is momentum transferred, m, (mP) is the pion (p meson) mass, f,” = 0.08 is the pion coupling 

constant, and $ is the p-meson constant ranging from 1.86 (weak coupling) to 4.86 (strong coupling) 

(see, e.g., Brown et al 1976, Speth et al 1977, Krewald et al 1988). When using Vn+p one should add 

the exchange contributions to (D4). The single-particle matrix element of the induced P-odd potential 

(&,~&) E fipU is then 

ftw = c (Aa,d$i - J$$%a) - c (Aed$i - Vc$%a) , (DW 
a, 0 0, P 

where V,J&‘a’y = S drf dri #,(l)p1~(2jVr’p(L Ph(‘@W) , Amp = ($Lllit~r14p), ad C, runs over the 

occupied nucleon states. He-writing the first two (direct) terms as the commutator, we obtain: 

~.u,Y = c p: d4 ~p)m) [iGu2r2, v”+p(l, 2,] &(2)$“(l) 
(I 

-cJdr: d9-Z &(l)+;(2) (iGuiriV’+‘(1,2) - v”+~(1,2)i~2u2r2) &(2)$,(I) . (D17) 
(I 

In the coordinate representation the potential V”+P depends on Iri - r21 and its commutator with A = 

i&w2 in (D17) is zero. On the contrary, the exchange terms are effectively momentum-dependent (due 

to the nonlocality of the potential) and yield a nonzero contribution to 0. To calculate the latter, the 

exchange terms in (D16) should be reduced to the form of direct ones, which can be done by substituting 

q + p1 - p2 (the nucleons are on the Fermi surface) and performing the Fierz transformation of the 

spin and iaospin tensor structures (see, e.g., Okun 1982). This yields 

V a+P _ Vt 
&~a - &w = J d$ dri llt(1)11~(2)V’(1,2)~,(2)~“(1) , w3) 

%Te.l&y (1993) independently obtained a similar result: the correction to the effective field ap diverge at the 
came point where the first harmonic of the Landau interaction hr(ai@z)(prpr) leads to an instability of the Fermi liquid. 
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where 
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“t17 2, = -2a (: - y) C[SUliUzj + (1 - UiUz)bij] 

x Z_ (pl - Pz)i(ii - Pz)j + c (Pi - P2)2&j - (PI - P2)i(PI - p2)j . 

[ 4 (P~-pz)~+mf rnz (PI - p2)2 + rn; 1 (D19) 

By means of (D18) the integrand in the exchange terms in eqs. (D16), (D17) is reduced to the commu- 

tator [i&zrz, V’(l,2)] and the meson exchange correction 0 to the P-odd potential acting on the first 

nucleon is 

fi+p = - ~(&42)I[~~~2~2, w, 2)llhm) . 

Calculating the commutator in (D20) LIZ using [rri,pzj] = is,, (02iozj) = Sij, one obtains d 

P 20) 

fis+p = X$J2)lK,u1(p1 - p2) 
(Pi - Pi)’ + rni - 3[(P!hP~~~2m:]2 1 I7A4~)) 

- Ftia(2)‘Kgu1(p1 - p2) (pl - p;)2 + m; - 2[(p;:$2~m;12] ML1(2)) , (D21) 

where K, = 6?r(fi/mz)(3 - TIT~)&, and Kp = 8?r(fj/mz)(3 - T~Q)&. The expression (D21) 

can be evaluated using the Fermi-gas approximation to parametrize the density of the core nucleons 

C, $:(2)$,(2), as is often done in such calculations [e.g., obtaining the “bare” nucleon P-odd potential 

(Adelberger and Haxton 1985)]. Equation (D20) then yields 

fi+p = K*+P2p,,up , CD221 

where the constant K”+P for the proton and neutron has the following form: 

Kntp = q (E,; + 2&;) , P Kztp = q (Lx; + 28;) , 
q=6s[$Wr(E)-;-$Wp($], (D23) 

and the nonlocality factors W (Wr,, + 1 for mr,p + oo) are W, ($) = 0.11, W, (fff-) = 0.69. The 

nonlocality effect is stronger for the pion due to its smaller mass (m, = 0.7 fm-’ compared to pi N 1.3 

fm-‘, while mp = 3.7 fm-l). The above value of W, is quite close to W, = 0.16 obtained for the 

nonlocality factor for the “bare” weak potential obtained in o-cluster calculations (Flambaum et al 

1984a,b, Dmitriev et al 1983, Flambaum et al 1985). 

Introducing @P (D22) into eq. (D13) instead of ti one obtains the following renormalized constants 

of the P-odd potential: 

&I = $ [& (1 - $k) + 2:$&l , 

Bn = $ [gr& (I - Sk) + 2:gpk] 9 
(D24) 

where Ic = Sqpm, and the determinant D is equal to D = (1 - $k) (1 - $k) - 4F1c2. The expression 

for q in eq. (D23) shows that the contribution of the pmeson exchange partially compensates the 

z-meson contribution, whereas the latter strongly pushes the solution towards the pole (D = 0). The 

condition D = 0 determines a curve (function of N/A) corresponding to the border of stability of 



Parity and Time-Invariance in Compound Nuclei 491 

a nucleus against the P-odd perturbation. For real nuclei (N/A N 0.5-0.6) the position of the pole 

corresponds to the critical value of k = k, 1: 0.67. The z-meson alone gives k = k, N 1 and produces 

an instability in the “shell-model” nucleus. The p-meson exchange reduces this value to k = 0.4 (strong 

p-meson coupling), which corresponds to enhancement factors j,,/gr = 1.6, &,/gp = 0.7 (for gr = 4 

and g,, 1: 0). Thus, g,, becomes comparable to g,,, even for a very small initial value of g,,. The weak 

p-meson coupling produces k = 0.7 N k, (“infinite” enhancement). Of course, the accuracy of this 

calculation is not sufficient to give a definite answer in this situation, since only the linear response 

has been considered, and fine effects like smoothing of the pion in nuclear matter (Migdal 1967, Fayans 

et al 1979) have been neglected, to say nothing of the uncertainty in the a and p coupling constants. 

Nevertheless, the above calculation indicates that that there is a possibility of strongly enhanced (D N 0) 

P-odd effects. 

Interpretation of this fact which results mostly from the strong r-meson exchange contribution, is not 

straightforward. It is obviously related to the problem of stability of the nucleus against the tensor ?r- 

exchange interaction. This question has been widely discussed in the literature (see, e.g., Brown 1971, 

Speth et al 1977, Khodel and Saperstein 1982, Negele 1982, Osterfeld 1992, and references therein), in 

particular, in relation to the problem of a condensation in nuclei (see, e.g., Migdal 1967, Fayans et al 

1979). The large enhancement factor is also naturally associated with the low-lying O- excitation (a 

node in D at finite frequency of the PNC field). The influence of the O- resonance on the PNC-effects 

was discussed by Kadmensky et al (1983), Auerbach and Bowman (1992) and Flambaum 1993. On the 

other hand, there is a recent evidence from z-nucleon scattering and deep inelastic scattering from 

nuclei that the formfactors of pion-nucleon interaction are probably very “soft” (cut-off parameter N 500 

MeV) (Thomas 1983, Bertsch et al 1993 and references therein, Pearce 1994). This greatly suppresses 

the pion field at small distances. There are two direct consequences. Firstly, the original “bare” P-odd 

potential constant gp may be reduced since the corresponding interaction contains two z-meson vertices 

at the basic level (whereas, g,., increased because the cancellation of the z- and p-meson contributions 

will no longer take place). Secondly, the renormalization of the P-odd potential by the residual strong 

interaction would be weaker. This will probably bring the renormalized constants &, back to the values 

(D14). Of course, it also makes the nucleus stable. 

E Central Limit Theorem for Distributions with Infinite Variances 

Suppose di (i = 1,. . . , n) are independent random variables with probability densities satisfying condi- 

tions (158), (159). Let X be the weighted sum of zi, 

x=~eisi) where kei=l. 
kl i=l 

(El) 

When the number of variables in the sum n increases, the weights behave as f?; = 0(1/n). Our aim is 

to find the distribution of X as n -+ cc. 

It is convenient to present f(z) in the form 
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11 h(t)& = l; zh(z)dz = 0 , (E3) 

J 
00 a2 E z2h(z)dz , (E4) 

where (E3) follows from (E2) and (159) , since thrfirst term in the right hand side of (E2) is normalized 

to unity. It is assumed that the integral (E4) for a2 converges. This condition is certainly fulfilled in 

all practical cases, where h(z) o( l/s4 (the next term in the l/z2 expansion). However, it is likely that 

the theorem can be proved without this restriction [compare with a very weak Liapounov condition 

required for the standard CLT (Ash 1970)]. Note that in principle all 2i can have different distributions 

fi(z), and consequently, different 2, E zd and ~2 I usi. 

Proceeding in a way similar to the proof of the standard CLT ( see, e.g., Ash 1970) it is convenient to 

deal with the Fourier transforms of the probability densities: 

S(w) = J_l e -‘“f(s)dz = e-&l + ll emiwzh(s)dz , (E5) 

~Jw) = J_“, eSiWX n ,Q[f,(li)dzi] = fi J(6iw) . OY 
i=l 

The Fourier transforms J in (E6) are functions of 8iw = O(l/n)w. Being interested in the large-n limit 

we can expand the second term in the right hand side of eq. (E5) [with w replaced by 0w] in powers of 

ew: 

J(eiw) = exp(-ZkeiIwl) + 11 hi(z)dz - i0iw J_I chi(z)dz - fs:w2 J_: c2hi(z)dz + O(0”) 

= eXp(-Z&OilWl - @u2iw2) + o(e”) . (E7) 

Let us introduce the weighted mean values of the distributions’ parameters zd and usi of the zi random 

variables: 

X,=f:Bish, C2 = nkBfc72i , 038) 
i=l i=l 

where the factor n in the definition of Es provides C2 = O(1) as n + co. If all 2; are identically 

distributed, then X, = z, and Es N us. Using eqs. (E6), (E7), and (E8) one obtains 

pa(w) = exp 
( 

-X,]w] + z 
> 

+ 0(1/r?) = 
( > 

1 - g e-xC1wl + 0( l/n’) 

= (l-~~)e-x~1wi+O(l,~2). (E9) 

F,(X) is obtained as the inverse Fourier transform of (E9): 

F,(X) = 5 x2tx2 --$&(&&)+0(W). (ElO) 

As n + co only the first term in the right’hand side’of eq. (ElO) iurvives 

E%(X)ln+, = b & . (El11 

This is the form of the CLT for distributions with l/s2 asymptitic behaviour. Note that if all fi(Zi) are 

Cauchy distributions [eq. (149)], then h(z) = 0, C2 = us = 0, and F,,(X) is also a Cauchy distribution 

for any (finite) n. If all zi are distributed identically and Bi = l/n the theorem proved is a particular 

case of the Levy-Khintchine theorem (see, e.g., Gnedenko and Kolmogorov, 1954), which specifies the 

limit distribution for a sum of independent random variables with f(z) o( l/]slfi (z + co) , 1 < p < 3. 
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