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Correlation-potential method for negative ions and electron scattering
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The relativistic correlation-potential method was used to calculate binding energies and fine-

structure intervals for Pd, Ba, and Yb negative ions and to investigate low-energy electron scattering
by Yb, Hg, and Ra atoms. The results for the binding energies are the following: 540 meV for the
58 state of Pd, 190 and 133 meV for the 6pqgq and 6p3yq states of Ba, and 36 meV for the

6p&~2 state of the Yb . A number of prominent p and d resonances are revealed in the scattering
phase-shift calculations. These p or d resonances lead to a phenomenon of 100%%uo polarization of the
scattered electron beam at appropriate electron energy and scattering angle. A criterion is proposed
to measure the strength of the nonlocal correlation potential and to evaluate its ability to create
a bound state: J G(r', r)Z(r, r')dr dr' ) 1 is the necessary condition for the formation of a bound
state. Here Z is the correlation potential and t is the electron Green's function at zero energy.

PACS number(s): 31.20.Tz, 34.80.Bm, 34.80.Nz, 03.65.Ge

I. INTRODUCTION

A number of calculations of electron affinities for
alkaline-earth-metal atoms have been carried out since
the first prediction [1] and discovery [2] of Ca —the first
negative ion of this series [3—10]. It has been shown
that all heavy atoms of the Ca group (Ca, Sr, Ba,
and Ra) have stable negative ions with ns2np configura-
tion. The existence of Sr and Ba ions was confirmed
experimentally by means of accelerator mass spectrome-
try [11].The previously accepted view that alkaline-earth
elements cannot form stable negative ions because of
their closed subshell structure was completely disproved
by both theoretical and experimental investigations.

There are two other atoms with closed subshells which
have stable negative ions —Pd and Yb, according to ex-
perimental observations [12,13] and a number of calcula-
tions [3,8,14,15]. The six atoms mentioned above appar-
ently exhaust the number of closed-shell atoms capable
of forming negative ions. They have this property due

to a strong correlation interaction between the atom and
the electron, which can be related to the large dipole
polarizability of the atom. All other closed-shell atoms
have relatively small static dipole polarizabilities, which
means that their interaction with an extra electron is too
weak to form a bound state.

In spite of strong evidence for the negative ions' ex-
istence, both experimental and theoretical data are far
from being complete yet. The electron affinity was mea-
sured for only two atoms of the six: Pd [12]and Ca [2]. As
for the Sr, Ba, and Yb, the corresponding negative ions
were observed [11,13], but none of the electron affinities
had been measured. Most of the electron-affinity calcu-
lations for atoms of this type were made for the ground
state only, and some of them were nonrelativistic. How-
ever, as was shown in [10] and [14], the relativistic effects
are very important. The p bound states of these nega-

tive ions have large fine structure, which is comparable
in magnitude with the electron affinity and for Ra [10]
and Yb [14] is even larger than the affinity. In both of
these atoms @3~2 states are revealed as resonances in the
continuum. It gives rise to a phenomenon of a 100% spin
polarization of the scattered electron beam at appropri-
ate electron energy and scattering angle [16]. Calcula-
tions of the electron-beam polarization were done in [16]
for the p resonance in Ra and the d resonance in Ba.
The same effect occurs for the p resonance in Yb (see
below). It may seem that from an experimental point
of view these atoms are not the best system in which
to observe this phenomenon. As will be discussed below
the only thing one needs to produce 100% polarization
of the scattered electron beam is a distinct p-wave res-
onance in electron scattering from a heavy atom. From
this point of view the Hg atom seems to be a very good
candidate to observe the phenomenon, as it indeed has
a low-energy p-wave resonance [17]. Note here that the
spin polarization has been calculated by Yuan and Zhang
[18] in the model potential approach for lighter atoms of
the Hg group (Mg, Zn, and Cd), where the polarization
did not reach 100% because of the smaller relativistic ef-
fects, and for Ba [19],where the results at low energy are
similar to [16].

As was mentioned above, the formation of negative
ions by closed-shell atoms is caused by the correlation
interaction of the extra electron with the neutral atom.
At large distances this nonlocal energy-dependent inter-
action turns into a local polarization potential of the form

nez/2r4 wh—ere o. is the electric-dipole polarizability of
the atom. Therefore, in general o. may be considered as
a measure of the correlation potential strength. It is very
important to have such a measure, because if the value of
the polarizability is known, it gives a hint as to whether
the negative-ion state is bound or not prior to calcula-
tions. On the other hand, the magnitude of n gives only
very approximate information. There is no critical value
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I) f'~ 2r (H, + z)q. = E.q. ,

where Ho is the relativistic Hartree-Fock-Dirac Hamilto-
nian

Z~ -N2

Hp ——cn. p+ (P —l)mc — + V (2)
FIG. 1. Second-order correlation diagrams in hole-particle

presentation.

of o. beyond which one could be sure that the correla-
tion interaction is strong enough to form a negative ion.
Thus the Pd atom has smaller polarizability than Zn,
Cd, and Hg atoms, yet it forms a negative ion while the
others do not. When a bound state is expected, o. does
not tell what type of symmetry it should be. For ex-
ample, in the erst unsuccessful attempts to calculate the
binding energy of the Yb ion the 6s25d configuration
was considered [20], while, as was shown in later works

[14,15], it should actually be of the 6s26p configuration.
And finally, the value of the polarizability does not pro-
vide any information about the correlation interaction at
small distances. If we adopt a many-body diagrammatic
approach, the correlation interaction in the second order
of the perturbation theory in the residual Coulomb in-
teraction is described by the four diagrams presented in
Fig. 1. Only one of them (a) contributes to the long-range
local polarization potential, which is proportional to the
polarizability. But it is known that the other diagrams,
and the exchange diagram [(b) in Fig. 1] in particular are

important and should be taken into account to obtain the
correct result for the binding energy. They contribute to
the correlation interaction at small distances where the
asymptotic formula is not valid, and where o. cannot serve
as a measure of the correlation interaction strength.

In the present paper we propose a numerical criterion
for the strength of the nonlocal correlation potential. It
accounts for both long-range and short-range behavior of
the correlation potential and is applicable to each partial
wave separately. It has the form of a necessary condition,
so that if its value is less than 1, then the correlation
potential is too weak to form a bound state of a given
symmetry. The proposed criterion generalizes the well-

known Bargman criterion [21] to the case of a nonlocal
correlation potential acting on a background of zero or-
der, e.g. , Hartree-Fock, potential. Using the criterion one
can examine the contribution of each of the four diagrams
to the correlation potential.

II. METHOD OF CALCULATION

To calculate the scattering phase shifts or the bind-
ing energy for the external electron interacting with a
closed-shell atom we use the correlation-potential method
which was described in our earlier works [10,16,22,23].
We brieBy repeat it here with some necessary comments.
The electron wave function is found from the single-
particle equation (the application of the nonrelativistic
Dyson equation to negative ions was proposed in [3]):

A ~ A

V = Vg;, + V,„,h is the sum of the direct and nonlocal
exchange Hartree-Fock potentials created by N electrons

PL

of the neutral atom, and Z is the nonlocal correlation po-
tential which describes the correlation interaction of the
external electron with the neutral atom. The calculation
of Z will be discussed below. Similar to V,„,h, E is an
integral operator:

+(ri r2 @ )y( r)2d

and can be taken into account in a similar manner when
solving (1). We solve (1) iteratively, starting from the
Hartree-Fock continuous spectrum wave function for the
electron scattering problem. As far as the calculation of
the negative-ion bound state is concerned, it is impos-
sible to consider Z as a perturbation since there is no
binding at all if Z is neglected. So, one needs an appro-
priate initial approximation gp to solve (1) iteratively.
We calculate Qp in the potential

V = V" +bv,
2-e /rp, r (rp

e2/r, r & r—p,

ro is a Gt parameter which is chosen to obtain rapid con-
vergence. Then (1) is solved, providing the energy and
the wave function for the outer electron in the negative
ion.

A. Calculation of Z

The correlation potential Z in the lowest, second or-
der in the residual Coulomb interaction, is described by
four diagrams shown in Fig. 1. The direct diagrams 1(a)
and 1(c) usually dominate over the exchange diagrams
1(b) and 1(d), respectively, and we use different tech-
niques to calculate them. The direct diagrams are calcu-
lated using Green's functions and the Feynman diagram
technique. It enables one to calculate an infinite series
of higher-order diagrams which account for the screen-
ing of the Coulomb interaction and to take into account
the hole-particle interaction in the polarization operator
[the loops in Figs. 1(a) and 1(c)], It also provides bet-
ter numerical accuracy than direct summation over the
intermediate states. The diagrams 1(a) and 1(c) corre-
spond to the Feynman type diagram in Fig. 2(a), while
the exchange diagrams l(b) and 1(d) correspond to the
diagram 2(b). The evaluation of the exchange diagram
2(b) in the Feynman technique is much more complicated
than for the direct one because of the double integration
over the intermediate energies. On the other hand, the
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FIG. 4. Screening of the electron-electron interaction.

FIG. 2. Second-order diagrams for Z in Feynman diagram
technique.

contribution of the exchange diagram is usually several
times smaller than the direct one. Thus we do not need
such a high accuracy in the calculation of the exchange
diagrams and we calculate it by means of direct sum-
mation over the intermediate states. The higher-order
corrections to them can be taken into account in an ap-
proximate way by introducing the screening factors f~ in
each Coulomb line (k is the multipolarity of the Coulomb
interaction). The values of fr, can be estimated from ac-
curate calculations of the higher-order correlations to the
direct diagram.

There are two classes of higher-order diagrams impor-
tant for the correlation potential Z: the particle-hole in-
teraction in the polarization operator (Fig. 3), and the
screening of the electron-electron interaction (Fig. 4). For
the outer electron in the neutral Cs atom their relative
contribution is about 20—40'%%uo of the total correlation
correction to the energy level. However, it turns out
that they strongly compensate each other, so that the
resulting correction is small. Nevertheless, taking into
account the higher-order corrections in the Cs atom sub-
stantially improves the agreement between the calculated
and the experimental data for both the energy levels and
the fine-structure intervals [23]. It is a surprising fact
that for the negative ions the cancellation between these
two classes of higher-order diagrams is even closer. They
change the energy of the 4p&~2 bound state of Ca by
only 15.2 meV, but hardly change the fine-structure in-
terval [10]. We checked this for Pd as well. If the
correlation potential Z is calculated in the second order
in the residual Coulomb interaction, the binding energy
of the 5s state of Pd is 540 meV. But when we take
into account the hole-particle interaction and the screen-
ing of the Coulomb interaction it becomes 520 meV, i.e.,
changes very little. Note that the second order value 540
meV is in better agreement with the experimental value
of 560 meV [12]. We encountered a similar situation for
the Ca: though the higher-order corrections increase
the binding energy of Ca, the second-order value is also
closer to the experimental one [10]. Note that the elec-
tron afFinity is extremely sensitive to the magnitude of
the correlation potential because most of its strength is
responsible for the electron binding itself and only a rela-

tively small fraction of it deepens the level to the position
observed. The smaller the value of the electron aS.nity,
the more sensitive it is to the accuracy of the correlation
potential calculation. So, as one cannot hope to system-
atically improve the results by calculation of higher-order
diagrams, we will use the second-order approximation for
Z. It corresponds to an accuracy of several percent in Z,
that in turn corresponds to an accuracy of about 10'%%uo in
the binding energy of Pd and about 40% in the binding
energy of Yb

B. Electric-dipole polarisabilities

TABLE I. Electric-dipole polarizabilities of atoms (a.u.).
Atom
Pd
Ba
Yb
Hg
Ra

Present paper
18.7
220
125
41.2
205

Recommended values [24] Others
32+ 8 22

268 + 21
142 + 36 205
38 + 10 34

258 + 65

The dipole polarizability of the atom n determines the
long-range asymptotic behavior of the correlation poten-
tial Z:

Oe'
Z(r], r2, E ) M — 4b(ry —r2). (5)

Tg

The values of n for the Pd, Ba, Yb, Hg, and Ra atoms,
calculated &om the second order Z are presented in Ta-
ble I. On the whole they are slightly smaller than the
recommended ones from [24), although, in many cases
they fall within the given uncertainty. We checked that
accounting for the hole-particle interaction and screening
improves the agreement. For example, for the Yb atom
it increases o. &om 125 a.u. to 135 a.u. There is again a
close cancellation between the two classes of higher-order
diagrams: when only the screening is included the value
of a drops down to 77 a.u. On the other hand the po-
larizability of Pd, estimated at 18.7 a.u. , is close to what
is obtained from the random phase approximation [25].
Therefore, we suppose that the recommended value of n
for Pd is overestimated.

It is worth stressing once more that a proper value of
a is only a relative measure of the correlation-potential
strength. We believe that good agreement between calcu-
lated and measured electron aS.nities is more important,
and it justifies neglecting higher-order corrections to Z.

FIG. 3. Hole-particle interaction in the polarization oper-
ator.

RPAE approximation [25].
Gribakina et al. [15].

'Reference [26].
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C. Criterion for the strength
of the correlation potential

If the correlation potential Z is strong enough to form
a bound state of a given symmetry, it must satisfy the
following condition (see the Appendix):

g„= G„r', r Z„r, r' dr dr' ) 1, (6i

TABLE II. Contributions of the direct and exchange dia-
grams to g„.

Atom Wave Direct diagram
[Fig. 2(a)]

Pd 4.56
Yb 1.99

1.73
1.13
1.08

Ra 2.93
1.91
1.61
1.49

PX/2

P3/2
d3

d5/2

PZ/2

P3/2
3/2

ds/2

Exchange diagram
[Fig. 2(b)]

-0.56
-0.36
-0.26
-0.19
-0.19
-0.93
-0.46
-0.33
-0.33

Sum

4.00
1.63
1.47
0.94
0.89
2.00
1.45
1.28
1.16

where z = (—l)(i+~+~)(j + 2) specifies the partial wave,
G„ is the electron Green's function in the zeroth Hartree-
Fock approximation and E„ is the correlation potential
in a given partial wave. Both are taken at zero electron
energy. The physics of (6) is simple: the binding can-
not take place unless the negative attractive correlation
potential Z acquires a certain strength. As the integral
(6) involves also the Hartree-Fock Green's function of the
electron, it accounts for the fact that Z is added to the
static ground state potential of the atom. It accounts for
the Pauli principle as well: despite the fact that Eq. (1)
usually has several eigenfunctions with large negative E,
corresponding to the closed orbitals of the atomic core,
the magnitude of g„signals about the appearance of a
new bound state in the spectrum.

As the above given criterion is only a necessary condi-
tion, it is interesting to estimate the actual magnitude of
g„at which binding happens. In this paper we consider
a number of bound and resonant states of an electron
and a neutral atom. It enables us to check (6) for dif-
ferent partial waves. Besides that, g„ is linear in 2, and
it is a convenient tool for comparing the role of different
diagrams in Fig. l.

The contributions of the direct and exchange diagrams
to g„ for the p and d waves in the Yb and Ra atoms are
presented in Table II. As one can see from these data,
the contribution of the exchange diagrams to the corre-
lation potential is three to Ave times smaller than the
contribution of the direct ones. It con6rms that they do
not need to be calculated with high numerical accuracy
but they are by no means negligible. Forestalling the de-
tailed discussion of Sec. III, note that only the pi/2 states
are bound for both Yb and Ra, and for the Yb atom it
is by a margin. Therefore one can expect a critical value
of about 1.6 for g„. As will be shown in the next section,
the values of g„ indeed give a reliable indication of the

existence of a bound state or of a resonance. Thus it is
a true measure of the correlation-potential strength.

Summarizing the above we can describe our method of
calculation as follows:

~ The Hartree-Fock-Dirac potential of the neutral
atom V and the Hamiltonian Ho are used to gen-
erate a complete set of discrete (core) and contin-
uous spectrum states for the many-body perturba-
tion theory calculations of Z.

~ The correlation potential Z„(ri, r2, E ) in the
s pi/2 p3/2, d3/2, and d5/2 partial waves is cal-
culated within the second order in the residual
Coulomb interaction. The most important direct
diagrams are calculated using the Feynman dia-
gram technique, whereas the exchange diagrams
are calculated via direct summation over the inter-
mediate states. Their contributions to the criterion
(6) are estimated.

~ Equation (1) is solved iteratively, starting from (4)
for the bound state, or from the Hartree-Fock con-
tinuous spectrum state for the electron-scattering
problem.

III. RESULTS AND DISCUSSION

The procedure outlined above has been applied to in-

vestigate the interaction of the electron with the Pd, Ba,
Yb, Hg, and Ra atoms. The results for the binding ener-
gies (electron affinities) and the energies of the low-lying
resonances are presented in Table III together with the
calculated values of g„.

As one can see &om these data the inequality g„& 1

always means that there is either a bound state or a reso-
nance at energy E ( 0.5 eV. Since g„measures the effect
of the addition of the correlation potential to the static
Hartree-Fock atomic field, these features are exclusively
due to the correlation interaction of the electron with the
atom. One can also notice that the condition g„& 1.6
emerges as the necessary and sufhcient condition for the
existence of a bound state due to the correlation poten-
tial.

Pd was the 6rst among the stable negative ions
formed by closed-shell atoms which had been calculated
using the equation (1) [3]. The present calculation yields
a binding energy of 0.54 eV for the Pd 4d 5s. It is

in good agreement with earlier calculations [8] and is re-
markably close to the experimental value of 0.56 eV [12].

Unlike the alkaline-earth atoms and Yb, Pd has a very
small polarizability. The s-wave binding of Pd takes
place mainly because of the atom's unique 4d ground
state, and the extreme proximity of the 5s subshell to
the 4d subshell: the lowest 4d-5s excitation energy in
neutral Pd is only 0.814 eV [26]. This can also be un-

derstood by examining the magnitude of the scattering
length a which governs the behavior of the s-wave phase
shift at low electron energy: b = —ak, k is the electron
momentum. For the majority of closed-shell atoms the
scattering length in the static Hartree-Fock approxima-
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TABLE III. The binding eaergies, the energies of the low-lying electron resonances, and the
parameters g„ for the correlation-potential strength for the Pd, Ba, Yb, Hg, and Ra atoms. Com-

parison with experiments and other calculations.

46

56

Atom

Pd 4d1O

Ba 5p 6S

Wave

S1/2

P1/2

4.00

2.43

Energies (meV)
Binding Resonant

540

190

Other calcula-
tions or

measurements
560 140 525'

192 176 144
148' 199

70

80

88

Yb 4f' 6a

Hg 5d1o6S2

Ra 6p'7s'

P3/2
3/2

5/2

P1/2
P3/2

3/2

~5/2

P1/2
P3/2

3/2

d5/2

P1/2
P3/2
d3/

d5/2

2.08
1.60
1.54
1.63
1.47
0.94
0.89
0.93
0.71
0.24
0.24
2.00
1.45
1.28
1.16

133
15

148

60

30
1500
1600
230
540

18~

330
440

210
54 98.5

630 "
630 "

75' 125'

Experiment [12].
Nonrelativistic Dyson equation method [3,4,15,28,29].

'Relativistic Dyson equation method [8].
R-matrix approach [7].

'Multiconagurational Hartree-Fock [6].
Local density functional method [5,14].

sRelativistic correlation potential method [10,16] .
"Experiment [17].

tion is positive. It becomes negative due to the corre-
lation potential producing the Ramsauer-Townsend ef-
fect (see, e.g. , [27] for noble-gas atoms and [28], [29] for
alkaline-earth atoms). In contrast, the scattering length
for Pd is already negative in the Hartree-Fock-Dirac ap-
proximation: a = —10 a.u. It indicates the existence of
a virtual level at 5/2a2 0.14 eV energy. That is why
a relatively weak electron-Pd correlation potential is ca-
pable of forming quite a strongly bound 8 state. It is
interesting to note that the nonrelativistic value of a is
about two times smaller: a = —4.5 (5/2a 0.67 eV).
So, the relativistic effects are very important in forming
the Pd negative ion and the neglect of them seems to be
the main reason for the underestimation of the electron
affinity in [3].

A joint consideration and comparison of binding prop-
erties of the Ba, Yb, and Ra atoms provides a clear in-
sight into the role of the correlation interaction and rela-
tivistic efFects. Ba and Ra are the heaviest alkaline-earth
atoms and Yb differs fmrn Ba by the presence of the
compact 4f ~ subshell. The outermost subshell for these
atoms is n8 . Based on the values of their polarizabil-
ities one would expect correlation potentials of similar
strength for Ba and Ra, and a smaller one for Yb. On
the other hand, the relativistic effects, and in particu-
lar, the spin-orbit interaction, are increasing successively

from Ba to Ra. The combined action of these factors
produces the following picture. The lowest state pq/2 is
bound for all three atoms, forming the ground states of
the ions: Ba 6a26p, Yb 4f~46a26p, and Ra 7a 7p.
The binding energy for Yb is considerably lower than
those for Ba and Ra. Its magnitude is 36 meV, which is
within the error bars of [14] 54 6 27 meV. It also agrees
with the experiment [13],which provides the lower limit
of 10 meV for it.

The effect of the spin-orbit interaction is already quite
marked in Ba: the 6ne-structure interval AEg, ——57 meV
constitutes 30%%uo of the electron affinity. This value coin-
cides with our earlier estimation based on Z dependence
of the fine-structure interval [10]. In Yb as well as in Ra
(see also [10]) the spin-orbit p~~2-ps~~ splitting becomes
larger than the electron afIInity. The p3/2 state of the
negative ion exists as a quasistationary state in the con-
tinuum. It manifests itself in the resonant behavior of
the ps~2 phaseshift (Fig. 5), and produces a large, sharp
maximum in the scattering cross section (Fig. 6). The
energies of the resonances given in Table III correspond
to the maximum in the partial wave cross section.

The interaction of the d-wave electrons with Ba, Yb,
and Ra is also very peculiar. In contrast with previous
ab initio [28,29] and model potential [16,19] calculations
the energies of the d3/2, ds/2 states of Ba turned out to
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0.05 0.1 0.15
E(a u.)

FIG. 5. Dependence of s (dot-dash curve), p~yq (long dash),
ps(3 (short dash), dsg2 (dot), dsgq (solid curve) phases on
energy for Yb.

be very close to zero. In fact the lower d3y2 state in our
calculation is weakly bound, and the upper d5~2 resonant
state has much smaller energy than that of a d resonance
in [28].

It is necessary to recall here that we estimate the ac-
curacy of the second-order calculation of the correlation
potential as several per cent. For the case of d states
of Ba the corresponding uncertainty in the calculated
positions of the energy levels is about 30—60 meV. It

does not allow us to prove or disprove the existence of
the bound 68 5d3~2 state of Ba . However, the energies
obtained indicate that the positions of the d resonances
for electron scattering by the Ca, Sr, and Ba atoms may
be substantially lower than those calculated in [28,29].
This supposition agrees with the fact that the measured
electron-alkaline-earth atom scattering cross sections [30]
exhibit the d-wave resonance for Ca at 0.78 eV (instead
of 1.44 eV in [28]), and do not show any resonant features
for Sr at E ) 0.09 eV (in contrast with the prediction of
the d resonance at 0.87 eV [28]).

In the Yb and Ra atoms the d states have much higher
energies than in Ba. Thus their resonant character does
not raise any doubt, even at the present level of accuracy,
of the correlation-potential calculation.

The abrupt dependence of the resonant p and d phase-
shifts on energy together with the strong spin-orbit in-
teraction produces a phenomenon of near 100% spin po-
larization of the scattered electrons in the large energy
interval near the resonance and at appropriate scattering
angle ( 90' for p resonances and 54' and 125' for
d resonances) (see [16] f'or more detailed discussion). It
is illustrated in Fig. 7, where the polarization P and the
differential cross section for electrons scattered by Yb are
shown as functions of the scattering angle 0. In principle
the analogous effects can be observed in the vicinity of
all resonances listed in Table III. However, most of them
have very small energies, which makes the effect dificult
to detect experimentally.

We suppose that Hg atoms may be the best for the
observation of the low-energy electron spin polarization.
According to the experimental data [17] there is a promi-
nent p resonance at E = 0.63 eV with width I' 0.4 eV.
The calculations show that the Hg atom does not form
stable negative-ion states, its polarizability being much
smaller than those of Ba, Yb, and Ra. Nevertheless, the
electron-Hg correlation potential forms resonant pq~2 and

p3/3 states (see the phase shifts in Fig. 8) . The elastic
cross section has a broad asymmetric maximum associ-
ated with them (Fig. 9). The position of the maximum

4000

C$

K
O

W 2000-

FIG. 6. Total cross section for Yb as a
function of energy.

O
V

0
0 0.05 0.1 0.15

E (a.u. )
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(a u)
dg

300

200

100—

0—
I

0.5

—-0.5

I I I I I I

50 100 150 g(~ g)

appears to be considerably lower and its width is larger
than the experimental values. Making this comparison
one should bear in mind the strong asymmetry of the
peak, which might hinder precise determination of the
resonance parameters by the transmitted current tech-
nique [17]. Figures 10 and 11 show the spin polarization
parameters for Hg at E = 0.3 and E = 0.5 eV. The large
widths and separation of the p andi(2 an p3)2 resonances
enable one to observe a high degree of spin polarization
over the extended range of electron energies.

Summarizing, we observe that the atoms considered
above, as well as some other closed-shell atoms dis-

play very peculiar properties in the interaction with low-

energy electrons. They include negative-ion bound states
and resonances formed due to the strong correlation
electron-atom interaction. The strength of this inter-
action can be measured for each partial wave with the
help of the criterion we propose. In some cases (Ba, d

wave) it requires a very accurate calculation of the cor-
relation potential to determine the actual character of
such states. The relativistic spin-orbit interaction pro-
duces strong spin polarization of the electrons scattered
by spherically symmetric target at certain angles. The
mercury atom is probably the best candidate to observe
this effect experimentally.

FIG. 7. D'. DifFerential cross section (dashed curve) and polar-
ization of scattered electrons (solid curve) for Yb at 8 = 0.19
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APPENDIX: THE NECESSARY CONDITION
FOR THE EXISTENCE OF A NEGATIVE-ION

BOUND STATE

/
/'

/
j

/
/

The aim of the Appendix is to derive the criterion 6 )

which estimates the capacity of a nonlocal potential Z
added to a zero-order Hamiltonian Ho to create an extra

ound state. Since the whole paper concerns the prob-
lem of the interaction of an electron with an atom we
will consider this particular case hereafter. However, the
criterion itself is a mathematical statement. it may be
proved with more rigor, as well as applied to other prob-
lems.

The behavior of the electron in the Geld of the closed-
shell atom is described by the equation

Hrg(r) t JZ(r, r'}@(r'}dr' = r@(r), (Al)

I I I I I I I I I II I I I I

0.02 0.03 0.04

I I I I I I I I

0 0.01 0.05
E(a.u.)

FIG. 8.. 8. Dependence of s (dot-dash curve), pi/~ (long dash),
ps/q (s ort dash), and d (solid curve) phases on energy for Hg. Hp(p„(r) = e„y„(r) (A2)

rh

where Hp is the Hartree-Fock Hamiltonian, and E(r, r')
is the correlation potential, represented

' th l d'e in e ea ing
or er y the diagrams in Fig. 1. The spectrum of Ho
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contains the discrete states v & I" occupied in the atomic
ground state (F denotes the Fermi level), and the ex-
cited states v ) I', representing the motion of an extra
electron in the "frozen" Hartree-Fock field of the atomic
core. The Hartree-Fock potential of the neutral atom is
a short-range one, and is too weak to bind the additional
electron. The main question then is as follows: is the
spectrum of (Al) different from that of (A2), having an
additional bound state of the negative ion?

Expanding g in terms of the complete set of &p„states
of Hp

so = min & ) (e &, + (v)&(v'))& &
v v'

t

(A6)

Hartree-Fock energies e„(v ( F), and the submatrix
v, v' & I' is very weakly coupled to the rest of the ma-

trix, so that one can omit it in the calculation of the other
eigenvalues. The new bound state, provided it appears
in the spectrum of (A5), is then the lowest one, and can
be found &om the variational principle

&(r) = ).&-~-(r)
V

C = p„*r rdr

(A3)

(A4)

(a.u. )
dL9

one obtains Eq. (Al) in matrix form:

..C. +) (v~Z~v')C. =s,C. . (A5) 120
0.5

Since the operator Hp + Z is spherically symmetric its
eigenfunctions have definite angular momentum, and
both the expansion coefficients C„and the equation (A5)
can be written for a partial wave of interest. It means
that g„ includes the summation over the core orbitals
in this partial wave and the integration over the energies
of the continuum.

Suppose a loosely bound state ep ( 0 emerges in the
spectrum of (Al) and (A5) due to Z. If the binding
energy ~s'o~ is small, the wave function @ is very much
delocalized, and has a radius much greater than that of
the atomic core. It makes the contribution of the core
orbitals to the sum in (A3) negligibly small. Then only
the continuous spectrum states v need to be taken into
account in (A5). One can justify it in another way. Solv-

ing the eigenvalue problem for the b„„+(v~Z~v') matrix,
we have a few large negative eigenvalues corresponding
to the occupied core orbitals. They are very close to the

80
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50

FIG. 10. Differential cross section (dashed curve) and
polarization of scattered electrons (solid curve) for Hg at
E = 0.30 eV.
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and (A13) immediately follows from the Cauchy-
Schwartz inequality.

It should be noted that in the simplest possible case
when Ho is the nonrelativistic Hamiltonian of a &ee par-
ticle and Z is local, so that Z(r, r') = b(r —r')U(r)
[U(r) ( 0 is an attractive potential], the criterion turns
into the well known Bargman formula [21]

2 rUr dr&21+1, (A17)

where l is the orbital momentum of the partial wave.
In obtaining (A17) we used the expression for the free
particle Green's function and correlation potential in the
1th partial wave: Gt (r, r') = —

z&+~
r'&+ /r'&, E~(r, r') =

U(r)h(r —r'). The particle's mass is set to 1.
There is an interesting case where the condition (A12)

turns into an exact necessary and sufBcient one. Suppose
there is a low-lying resonant state in the spectrum of the
zero-order Hamiltonian. Then the Green's function at

small E is represented by a contribution of the nearby
pole: G„(r, r') yp(r)pp(r')/(E —Ep). Here Ep ) 0 is
the real part of the energy of the resonance and yp(r)
is the normalized radial function of this quasistationary
state ( [31]).We suppose that its width is small: I' (( Ep
This is true for the resonances with I & 1 if Eo is small
enough. Introducing this Green's function into (A12)
one obtains Ep + (yp]Z„]pp) ( 0. It is apparently a
perturbation theory result, which is valid because only
a small additional potential Z is required to turn the
resonant state into the bound one.

Apart from the "electron plus atom" problem, one may
apply (A12) to investigate the interaction of atoms with
positrons. In this case the correlation potential over-
powers the static repulsion between the atom and the
positron, and it may give birth to a bound or a resonant
state [32], especially for heavy atoms with large dipole
polarizabilities. The above given derivation looks even
more rigorous for the positron, as there are no deep core
bound states, and the possible weakly bound state is in-

deed the lowest one.
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