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Structure of compound states in the chaotic spectrum of the Ce atom: Localization
properties, matrix elements, and enhancement of weak perturbations
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The aim of the present paper is to analyze a realistic model of a quantum chaotic system: the
spectrum and the eigenstates of the rare-earth atom of Ce. Using the relativistic con6guration-
interaction method the spectra and the wave functions of odd and even levels of Ce with J = 4
are calculated. It is shown that the structure of the excited states at excitation energies above 1
eV becomes similar to that of the compound states in heavy nuclei. The wave functions of the
excited states are chaotic superpositions of the simple basis states (with the number of "principal"
components N 100), built of the 4f, 6s, 5d, and 6p single-electron orbitals. The localization of the
eigenstates on the energy scale is characterized by the spread width I' ND, where D is the average
level spacing (D 0.03 eV). The emergence of chaos in the spectrum and the dependence of the N
and I parameters on the excitation energy are studied. The shape of the localization is shown to
be Lorenzian around the maximum (principal components), whereas outside this region the squared
components display a faster decrease, in agreement with the perturbation theory treatment of the
band random matrix (BRM) model. The structure of the real interaction matrix is compared with
that assumed in the BRM models. A formula expressing the mean-squared values of matrix elements
between the eigenstates in terms of their parameters and single-particle occupancies is derived, and
its applicability is checked with the results of numerical calculations. The hypothesis of a Gaussian
distribution of the eigenstates' components and matrix elements between the eigenstates has been
checked. The existence of the statistical (dynamical) enhancement of weak perturbations in systems
with dense spectra is demonstrated.

PACS number(s): 31.20.Tz, 31.50.+w, 32.30.—r, 05.45.+b

I. INTRODUCTION

The aim of the present paper is to analyze a realistic
model of quantum chaotic system: the spectrum and the
eigenstates of the rare-earth atom of Ce. It is shown that
the wave functions of the excited states are chaotic su-

perpositions of basis states constructed of single-electron
orbitals. %e investigate the localization properties of the
states and the dependence of parameters characterizing
the structure of the chaotic eigenstates on their energy.
A preliminary account of the present work has been given
in [1].The use of the realistic numerically solvable model
provides a test for the applicability of the statistical ap-
proach to the calculation of the matrix elements between
the chaotic states. The numerical calculations also show
that the admixture of the states of diferent symmetry
due to a weak perturbation in the system with dense
chaotic spectrum is enhanced with respect to this ad-
mixture in a system with a rare "regular" spectrum (sta-
tistical enhancement). The results of the work can be
extrapolated to other quantum systems: molecules, clus-
ters, mesoscopic systems, and nuclei. A particularly in-

triguing question is the possibility of observing the statis-
tical enhancement of the weak parity-nonconcerving in-
teraction in chemical reactions, similar to that observed
in nuclear reactions.

It is a well known fact that rare-earth atoms have very

complicated spectra [2]. It originates from the open-shell
configuration of their ground states and from the pres-
ence of several vacant electron orbitals in the immediate
vicinity of the valence ones. Thus, if a large number of
valence electrons n (in fact, n = 4, as in the Ce atom,
can be well considered as "large" ) are distributed among
those orbitals, it generates an exponentially large number
of combinations, representing the basis of many-electron
states of the system. Since these states have close ener-
gies, a dense spectr»m emerges in the system.

The states in this spectrum can be classified by the val-
ues of the total angular momentum and parity J,where
J n. The states with different J do not interact with
each other. However, the density of states with fixed J is
still exponentially large, so that the average level spacing
D for them is small compared to the residual interaction
V. This interaction mixes up the basis states made &om
the single-electron orbitals, thus forming a complex pat-
tern of the atomic energy levels. The levels obtained can
hardly be classified using any of the coupling schemes,
e.g. , the LS one, because the fine structure intervals are
much larger than D. The interaction of the state with
the neighboring ones is large in V/D parameter and is
completely nonperturbative. It is shown below that for a
Ce atom the excited states in J = 4 and 4+ manifolds
are formed by strong mixing of about N 100 basis
states (principal components). The occupancies of the
single-electron orbitals in such states are far from being
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integer, and it is almost impossible to determine even the
dominant nonrelativistic electron configuration for them.

The situation described above makes the spectrum of
excited states of the rare-earth atoms very similar to the
spectra of compound nuclei [3], though the compound
states in nuclei are spread over a much greater num-
ber of principal components: N 10 —10 . Their
spectral properties were widely modeled using random-
matrix theory and, in particular, the Gaussian orthog-
onal ensemble (GOE) (see, e.g. , the review [4]). The
GOE enables one to calculate the level spacing distri-
bution (Wigner distribution) and to obtain other char-
acteristics of energy-level Buctuations. The predictions
of these models have been checked with numerous nuclei
spectra and it seems natural that they also hold for the
spectra of the rare-earth atoms. Indeed, the study of
the nearest-neighbor level spacing distribution and some
other Huctuation properties with the experimental spec-
tra of Nd, Sm, and Tb (excitation energies of 2—4 eV,
D 0.03 eV) [5] showed good agreement with the pre-
dictions of the GOE.

Besides the statistical properties of the dense, chaotic
energy spectrum, there is another and more important
question: the structure of the corresponding eigenfunc-
tions —compound states. This structure, and the num-

ber N of principal components in the first place, deter-
mines the magnitude of matrix elements between these
states. As an impressive example of this one may consider
parity-nonconserving phenomena in neutron-nucleus re-
actions, where the observed effect exceeds the naive
single-particle estimate by orders of magnitude. To ac-
count for this the idea that the closely lying s and p
resonances of the compound nucleus are mixed by the
weak interaction has been put forward in [6] (see also [7]).
If one supposes these states are constructed of about N
principal components, which are mixed together in a ran-
dom fashion, then the root-mean-square value of the ma-
trix element between them is M oc 1/~N On the oth. er
hand, the spacing between nearest neighbors in the spec-
trum is D I'/N, where I' is the so-called spread width
of the single-particle component. Thus the admixture
of the nearest state of opposite parity to a given one is

M/D oc ~N. This factor determines the so-called statis-
ticat (or dynamical) enhancement of the weak interaction
in the system.

To the best of our knowledge there has been only
one paper [8] that examined statistical properties of the
chaotic eigenstates of a rare-earth atom. In this work a
sequence of 35 J = 4+ energy levels of Ce lying at en-

ergy of E = 2 —3 eV (D = 0.027eV) above the atomic
ground state was considered. Statistically analyzing the
contributions of the two leading configurations given in

[2], the author concluded that these levels were random
superpositions of some few basic states and the number
of these states was estimated at N 15 (see Appendix
A).

In contrast to the scarce information on the struc-
ture of chaotic states in real systems, there exist a great
number of works studying difFerent models, where prop-
erties of these states are investigated. The models in-
clude quantum kicked rotator (see, e.g. , a review [9]) and

ensembles of band random matrices (BRM's) ([10] is a
comprehensive guide to the problem, from the pioneer-
ing work by Wigner [11] to the recent analytical results
[12]). Initially the BRM model had been suggested as a
model for the Hamiltonian matrix describing the mixing
of basis states in a compound nucleus.

These models enable one to investigate the conditions
for the emergence of quantum chaos and to study the lo-
calization of eigenstates. This property implies that the
perturbation mixes the basis states locally and the com-
ponents of a given eigenstate rapidly (exponentially, as
usually assumed) vanish as one moves away from the cen-
ter of the eigenstate. The typical scale of this decrease
is called the localization Length. This quantity is very
similar to the number of principal components 1V, which
makes the question of localization and the calculation of
the localization length so relevant to the physical prob-
lems. However, there are only a few models which allow

a deep analytical treatment, e.g. , that of BRM's without
leading monotonically increasing diagonal [12], and the
requirement of the mathematical tractability usually con-
tradicts to the reasonable physical requirements. Thus
the absence of the leading diagonal disagrees with the
fact that basis states can always be ordered according to
their energies, and it is basically the energies of the states
which make the mixing of distant components small (per-
turbation theory limit). In addition, apart from the usual
assumption of the BRM models that the matrix elements
are certain random variables with zero expectation and
fixed variance, the whole bandlike structure may be con-
sidered only as a rough approximation to the real Hamil-
tonian matrix.

The Hamiltonian matrix of a real complex system in
the basis of single-particle states is infinite, bound from
below, and unbound from above. It is mostly irregu-
lar, and its properties, such as the spectral density of the
eigenstates, the mean squares of matrix elements, and the
number of basis states strongly mixed by perturbation,
etc. , are changing along the matrix (or with the excita-
tion energy of states considered). Moreover, this matrix
is unique. Hence one cannot perform any ensemble aver-

aging, which is a key point of the random-matrix theories.
The only possible averaging is that over the neighboring
eigenstates. The question then is the following: to what
extent do the properties of the chaotic eigenstates of this
particular matrix agree with those commonly implied and
used, e.g. , for the description of the nuclear compound
states?

The study of rare-earth atoms provides the possibility
to investigate quantum chaos in a real and rather sim-

ple system. The number of principal components mixed
by the perturbation for excitation energies above 1 eV
is about 10 (compare it with 10 —10 in compound
nuclei). It enables one to calculate these states numer-
ically using the configuration-interaction (CI) approach
and remaining weH within the available computer facili-
ties. Studying this model we trace how the chaos emerges
starting from the very ground state. Then we study the
characteristics of the chaotic eigenstates and their de-
pendence on the excitation energy and calculate matrix
elements between the compound states in order to com-



50 STRUM%RE OF COMPOUND STATES IN THE CHAOTIC. . . 269

pare the results obtained with what one would expect
&om the statistical theory. It also gives a possibility to
check various assumptions (such as the Gausian distri-
bution of the components) made when analyzing chaotic
eigenstates.

On the other hand, this study gives an insight into the
structure of the excited states of the rare-earth atoms
themselves. It yields better understanding of the mani-
festation of the correlation interaction and confirms the
existence of the dynamical enchancement of the weak in-
teraction in the spectra of rare-earth atoms [13].

The paper has the following structure. In Sec. II we
consider the electronic structure of the Ce atom and ex-
amine the features of its experimental and calculated
spectra. In Sec. III we analyze the structure of the
Hamiltonian matrix and the localization properties of the
chaotic eigenstates obtained &om the matrix diagonaliza-
tion in the CI scheme. The dependence of the parameters
of the chaotic states on energy and their relation to the
spectrum density are investigated. In Sec. IV we use the
statistical theoretical approach to calculate the matrix el-

ement between the chaotic states and check the formulas
obtained with the results of the numerical calculation of
the transition matrix element between the chaotic states.
In Sec. V we consider the mixing of chaotic states due
to a weak perturbation. The existence of the statistical
enhancement of the mixing coeKcient is demonstrated
and the corresponding enhancement factor is estimated.
Section VI gives a brief summary of the results. In the
Appendixes we analyze the statistics of the leading per-
centages, provide the details of the numerical CI calcula-
tion of the Ce levels, introduce the reduced density ma-
trix operator, present the investigation of the eigenstates
localization, including the perturbation theory approach
to it, make comparisons of our realistic calculations for
Ce with the approaches and results of the BRM models,
and check the Gaussian character of the components' dis-
tribution.

The origin of the complicated and dense spectra
of excited states in the rare-earth atoms is the ex-
istence of several orbitals in the immediate vicin-
ity of the ground state. For lanthanides they are
4f, 6s, 5d, and 6p orbitals, or in the relativistic nota-
tions 4fsy2, 4fyg2, 6sqyq, 5dsg2, 5dsy2, 6pqy2, and 6psy2.
It makes a total of N, = 32 single-electron states. For Ce
with n = 4 valence electrons there are about (N, )"/n!
4x10 possible many-electron states constructed of them.
If one takes into account that there are about 20 differ-
ent J" rnanifolds, that each of the states is 2J + 1 times
degenerate (2J+ 1 10 for an average J), and assumes
that the states cover the energy range of 10 eV, the es-
timate for the average level spacing for fixed J states is
D ~ 0.005 eV, or for the density p = D—z 2 x 10
eV ~. We shall see below that the observed level density
is several times smaller due to the selective population
of some of the subshells, e.g. , only one or two electrons
can be found in the 4f subshell (not zero). Nevertheless,
D is definitely much smaller than the spin-orbit inter-
action, or the residual interaction, which mixes up the
configurations constructed of the single-electron states.

B. Level density and level spacing

To illustrate the above outlined picture let us examine
the experimental spectra of Ce levels with J = 4, 4+.
We have chosen this value of the total angular momen-
tum for two reasons. First, the Ce ground state is an odd
level of J = 4. Second, these sequences are the best rep-
resented in [2], because J = 4 is close to the average (or
the most probable) magnitude of the angular momentum
one might expect of the four electrons distributed among
the above listed orbitals.

Instead of searching for a way to average and plot the
density of states p(E),

p(E) —) g(E E(') ) (2.1)
II. THE STRUCTURE AND SPECTRUM

OF THE CERIUM ATOM

A. Electronic structure of the Ce atom

(E~'l is the energy of the ith level), it is more instructive
to examine the staircase plot for the cumulative number
of levels:

The Ce atom has the atomic number of Z = 58 and it
is the second one in a row of the rare-earth atoms. Its
electronic structure consists of a Xe-like 18 . . .5p core
and four valence electrons. The atomic ground state be-
longs to the 4f5d6s2 valence configuration with J = 4
The ionization threshold of Ce is 5.539 eV and the bind-
ing energies of 5p3y2 and 5pg(2 electrons are 22 and 25
eV, respectively [14]. Therefore, the valence and the
core electrons are well separated on the energy scale. It
means that the excited states of Ce below the ionization
threshold are formed by four valence electrons moving in
the 6eld of the core. Apart &om generating the poten-
tial for the outer electrons the core screens (reduces) the
Coulomb interaction between them. It will be shown be-
low that the screening inQuences the average density of
states in the spectrum.

E
N(E) = p(E')dE' . (2.2)

The density can be estimated &om it as the slope of
the curve, averaged over the level-to-level Huctuations of
their positions. Figure 1 shows the N(E) functions for
62 odd and 132 even levels of the J = 4 sequences and
for 70 even levels with J = 1, available in [2]. There is a
marked difference in the character of the curves for odd
and even J = 4 levels. The odd one exhibits large en-
ergy gaps and corresponds to an average level spacing of
about D 0.067 eV whereas the slope for the even levels
rapidly increases to D 0.0165 eV and remains practi-
cally constant for the 15—85 levels. It will be shown below
that the matrix elements of the intercon6guration resid-
ual interaction V are about 0.1 eV. Therefore, D for the
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C. CI calculations J = 4, 4+ states of the Ce atom

50

0
0 2

Energy (eU)

FIG. 1. Staircase plot of the cumulative numbers of
J" = 4, 4+, 1+ levels of Ce. Energies are taken from the
tables [2].

odd levels in this part of the spectrum is just comparable
to them, whereas D for the even levels is much smaller
than V. It explains the difference between the irregular
(odd) and the chaotic (even) behavior of the spectra. It is
worth noting that the spectral properties of the J = 1+
sequence are similar to those for the J = 4+ one. The
levels studied in [8] (3—37) and claimed chaotic there have
D 0.026 eV, so that the condition D « V is fulfilled.

In Fig. 2 the distribution of level spacings S for
the levels 15—85 of the even J = 4 sequence is pre-
sented. It may be considered as the simpliest test of
the chaotic structure of the Ce spectrum. Indeed, the
shape of the histogram agrees well with the Wigner dis-
tribution P(S) = mS/2D2) exp( —mS2/4D ) with given
D = (E(s ) —E(is )/70 0.0165 eV. This is confirmed
by y2(10) = 6.6 at 80% confidence level. ~4;) = at at . . . at ~go), (2.3)

As outlined above the goal of the present work is to in-
vestigate a realistic model of the quantum chaotic system.
Hence the calculations we perform for the Ce spectra nei-
ther aim to reproduce the positions of particular energy
levels nor to give assignments to the experimental data.
Performing the ab initio calculations we are mostly in-
terested to grasp the global features of the experimental
spectra. It ensures the applicability of our conclusions
on the chaotic properties of the states, obtained for the
model, to the real atomic system.

The calculations were performed using the Hartree-
Fock-Dirac (HFD) and the CI codes by Tupizin [15]. In
the spirit of the CI approach we distinguish the Xe-like
core and the four valence electrons above it. HFD code
provided us with a basis of the single-electron orbitals for
the core and valence electrons. The minimal basis for the
calculation of the Ce spectrum included seven orbitals:
4fs)2, 4fyl2, 6si)2, 5ds)2, 5dsl2, 6piy2, and 6ps(2, since
they all appear within the leading configurations of the
Ce levels above 1.67 eV. The quality of the basis was
estimated in the subsequent CI calculation. The main
requirements it had to meet were the correct configura-
tions of the lowest states in both even and odd J = 4
sequences and a reasonable order of the first few levels.
We also checked the energy positions of the con6gura-
tions' centers. The particular way of constructing the
basis of single-electron orbitals is outlined in Appendix
B.

The CI code is organized in the following way. Us-

ing the input list of the relativistic valence con6gura-
tions of certain parity, it constructs all possible single-
determinant states 4, of them, corresponding to the
given value of the projection of the total angular mo-
rnentum of the atom M:

I
/

t I I
f

I ~,~ ~l

Ce J =4
levels 15-85

D =0.0165246 eU

l
20

0.01 0.02 0.03 0.05

level spacing S (eV)

FIG. 2. Level spacing distribution for the J = 4+
levels of Ce: experimental level spacings for 15—85 lev-
els (27 (histogram) and the Wigner distribution P(S)
(~S/2D ) exp( mS l4D ) with —D = (E&5 — E»)l O

0.0165 eV.

where a is the creation operator, its subscript v denoting
the single-electron nl jm states, ~%o) is the atomic core
state, and Pi m = M. The Hamiltonian matrix H, l, =
(@,~Hl@i, ) in the single-determinant basis is evaluated
using the single-electron HFD orbitals.

In Table I the configurations used for the CI calcu-
lations of the J = 4,4+ are shown. For each par-
ity they include all possible ways of distributing four
electrons among seven valence orbitals with a restric-
tion that there are one or two 4f electrons and no more
than three 5d electrons. The omitted configurations have
higher energies and essentially do not influence the spec-
trum at excitation energies of a few eV. Each of the non-
relativistic configurations includes all possible relativis-
tic configurations and produces quite a large number of
single-determinant states (see Table I). The matrix ele-

ment 0;y between the single-determinant states vanishes
if the states 4', and 4'p dier by the states n)jm of more
than two electrons. Therefore, the H;I, matrix has a very
sparse structure. There are only 6.4'Fo and 6.25/p of the
nonzero matrix elements in it for the odd and the even
levels, respectively.
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TABLE I. Con6gurations and basis sets used for calculating the J = 4,4+ levels of Ce.

Levels
4

total

Nonrelativistic
con6gurations

4f6s'5d
4f6s5d
4f 6s6p
4f5d

4j5d6p
4f 5d6p
4f6s67

7

No. of relativistic
con6gurations

4
6
6
8
12
12
5
53

No. of single-
determinant
M = 4 states

8
74
66
101
122
335
22

728

No. of states
inthe J=4

subspace
4
29
23
36
51
104
13

260

Energy of the
con6gurations

with J = 4 (eV)
1.21
2.26
3.30
4.71
6.07
6.34
7.13

total

4f 6s
4f6s5d6p
4f5d 67
4f6s 67
4f 6s5d
4f 6p
4f 5d

7

3
8
12
3
6
9
9
50

6
97
225

4
111
84
255
782

3
42
83
3

36
31
78

276

1.63
3.37
4.27
4.52
4.65
6.04
8.98

The average energies of the configurations (mean values of the diagonal Hamiltonian matrix elements) are given with respect
to the lowest odd eigenstate.

Due to the conservation of the angular momentum the
perturbatioa, however strong it is, cannot completely
mix the basis states O';. The mixing takes place within
the subspace of states characterized by definite values of
the angular momentum (eigenstates of the J2 operator).
Therefore, a new basis of illy; states has been coastructed
prior to the Hamiltonian diagonalization (see Appendix
B for details):

) AJi,i' @i' (2.4)

D. The Ce spectrum: Loss of good quantum
numbers and transition to chaos

Solving the eigenva1ue problem for the H,.k matrix,
the eigenvalues E(') and eigenfunctions 4(') of a given
J symmetry are obtained:

~ - H(J) ~(i) E(i)~(i)
kk' k' k

k'

4'*' = ) C„'*'@»,
k

(2.6)

J(J+ 1)4~;,

) A~i;;iHps~AJs, ic~ = H;i, Spent . (2.5)(~)

i', k'

Each of the submatrices Hik has a much greater num-(J)

ber of nonzero matrix elements (about 60% in our cal-
culations). In principle, all states of the 4'~; basis are
coupled by the residual interaction, possibly in higher or-
ders if the first order matrix element (2.5) between them

is zero. However, the eigenvalue problem for the Hik
matrix is much simpler numerically because the rank of
the submatrix is considerably lower than that of Hik.

where Cs~') are the components of the eigenstates in terms
of the @ps basis. The results of the diagonalization for
J = 4, 4+ are presented in Figs. 3 and 4. The staircase
plot of the cumulative number of the eigenvalues E(') is
compared with the spectrum of the diagonal matrix ele-
ments of the Hamiltoniaa (a) and with the experimental
spectrum (b). All calculated energies are given with re-
spect to the energy of the lowest odd eigenvalue, which
is set to zero together with the experimental J = 4
ground state.

The H;i expectatlon values correspond to the ener-(~)

gies of the many-electron @J; basis states (we denote
them as E;). One may consider them as the positions
of the energy levels in the zeroth approximation, when
the interaction with other states is neglected. Indeed,
they take into account the kinetic energy, the interaction
with the atomic core and the Coulomb interaction of the
valence electrons. The con6guration interaction leads to
the "straightening" of the spectrum [especially clear in
the sequence of even levels Fig. 4(a)]. The variations of

the H, , level density are smoothed down on a scale of(&)

about 2 eV. It will be shown in Sec. III that this value
is of the order of the spread width I' of the eigenstates
over the energies of the basis states. This effect is a di-
rect result of the level repulsion. It strongly manifests
in the parts of the spectra where the average level spac-

ing is much smaller than the typical matrix element H,.k
(i g k) between the configurations (see Sec. III). The re-
pulsion of levels is also quite noticeable near the edges of
the of the spectrum, where it shifts the eigenvalues down
(lower-energy edge) or up (higher-energy edge) relatively

to the Hii energies. However, we would like to stress the(&)

leading role of the Hamiltonian diagonal, which governs
the average slope of the staircase eigenvalue plot.

It is very important that the calculated spectra of odd
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and even levels qualitatively agree with the experimental
data [Figs. 3(b) and 4(b)]. Despite apparent distinctions
in the positions of the levels, the calculation reproduces
the substantial difference between the odd and the even
sequences. We would like to point out once more that ad-
justing the single-electron basis one can better fit either
the odd or the even states. However, in order to calculate
them both accurately within the ab initio approach would
require an uncomparably greater basis of configurations.
Our certainty is based on the experience of the many-
body perturbation theory calculations in heavy atoms
(see [16]). It shows that in order to reproduce the level
energies with an accuracy of about 1% one should take
into account the core polarization by the valence elec-
trons and the screening of the Coulomb interaction of the
valence electrons and between the valence electrons and
the atomic core. Roughly speaking, the core polarization
lowers the energy levels, and the screening reduces the
Coulomb repulsion between the electrons, making energy
intervals smaller.

The inBuence of these effects on the positions of the
individual levels in the dense spectra of the rare-earth
atoms must be enhanced due to the small level spacing.

As is known both the core polarization and the screening
involves the electron excitations into the continuum. In
the CI approach this means a huge additional number
of configurations, including those with excitations from
the core. In principle, one can take them into account in
a semiempirical way, introducing a model core potential
and screening factors for the Coulomb integrals.

One may understand the role of these effects from the
comparison of the experimental and calculated spectra of
the even levels [Fig. 4(b)]. The experimental spectrum
density is about 1.5 times larger than the calculated one
at E 2 —4 eV. The energies of omitted valence electron
configurations place them at much higher energies, thus
not increasing the density in the low-energy region. We
believe that it is the screening which might be responsible
for the "softening" of the calculated spectra.

Besides the smoothing scale I.
' there is another impor-

tant energy scale: the scale of the level spacing D (several
hundredths of an eV). On this scale a switch takes place
from the Poisson distribution of the spacings between
the diagonal Hamiltonian matrix elements to the Wigner
distribution of the eigenvalue spacings (Fig. 5). The Huc-

tuation properties of the energy levels are probably the
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FIG. 3. The results of the CI calculation of the spectrum
of the odd levels of Ce (J = 4). The staircase plot for the cu-
mulative numbers of eigenvalues Ei'l (thick line) is compared
with (a) the diagonal matrix elements of the Hamiltonian ma-

trix H, , (thin line) and (b) the experimental J = 4 energy
levels of Ce (thin line) [2].

FIG. 4. The results of the CI calculation of the spectrum
of the even levels of Ce (J = 4). The staircase plot for the cu-
mulative numbers of eigenvalues Ei*i (thick line) is compared
with (a) the diagonal matrix elements of the Hamiltonian ma-

trix H, , (thin line) and (b) the experimental J = 4+ energy
levels of Ce (thin line) [2].
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b, N

hS

(eV ')
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0.06 0.08

FIG. 5. Level spacing distributions for the diagonal matrix
elements of the Hamiltonian H~, l (dashed line histogram)
and the eigenvalues (solid line histogram) for the 20—100 even

J = 4 levels. They are compared with the Poisson distri-
bution P(S) = D exp( S/D)—(D = 0.0155 eV) (dashed
curve) and with the Wigner distribution (D = 0.0252 eV)
(solid curve), yielding y (7) = 7.85 and y (9) = 8.17, respec
tively.

best understood and the most universal feature of the
chaotic spectra [4,5]. Since the level spacing distribution
essentially involves the short-range correlations in level

positions, it is the least model dependent characteristic,
and the predictions of the simplest Gaussian orthogonal
ensemble are valid for most of the cases studied. Without
going into further details let us note that the observed
slight deviations from the standard distributions partially
result from the energy dependence of the locally averaged
level density. The latter is especially prominent for the
diagonal energies.

The third energy scale is the energy spanned by the
configurations included in the CI calculations (about 10
eV). In our case it is comparable to the natural scale
of the ionization limit of about 5.5 eV. The finite num-
ber of configurations included produces a decrease of the
calculated density of states above 6 eV for the odd lev-
els and above 4 eV for the even ones. First, this is in
disagreement with the experimental data. Second, it
contradicts the simple physical picture that a number of
single-electron orbitals available, and hence the number
of their many-electron combinations, increase with the
energy. Therefore, only the low-energy parts (the left
halves, roughly) of the calculated spectra behave in a re-
alistic way and reproduce the features of a real system.
This is the extent to which our results are physically cor-
rect. Beyond that the CI calculation is just a numerical
investigation of yet another quasi-random-matrix model.
However, above the ionization threshold the multiconfig-
urational eigenstates form a dense spectrum of autoioniz-
ing resonances. In an analogy with the compound states
in nuclei these states could have very small widths. We
suppose that the approach used in this paper can give an
insight into that spectral region as well.

The investigation of the energy spectrum which
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1

I I I

I
I I I I
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n6p
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0 2 3 4

Energy (eV)

I 1 I l 1

FIG. 6. The dependence of the orbitals' occupancies on
the energy of the eigenstate for the 1—130 odd J = 4 levels.
The thick line shows the occupancies averaged over the 19
neighboring levels.

emerges in the CI calculations does not prove the chaotic
structure of the eigenstates. A detailed consideration of
this question will be carried out in Sec. III. Prior to
that we examine the dependence of the orbital occupan-
cies n ~z on the energy of the states (Figs. 6—8). The
occupancies are obtained from the diagonal matrix ele-
ments of the reduced density matrix (see Appendix C).
Since the ratio of the occupancies of the fine structure
sublevels j = l 6 2 is close to the statistical +& (see Fig.
8), the sums n„~——n„~~ &~2 + n„~~+&~2 are presented for
the 4f, 5d, and 6p orbitals.

It is clearly seen from Figs. 6 and 7 that the occu-
pancies for the first several levels are very close to inte-
ger. Indeed the lowest odd states can be unambiguously
associated with the 4f6s25d (states 1,3,6,7) or 4f6s5d2
(states 2,4,5,8,9,. . .) configurations and the 4f 6s and
4f6s5d6p configurations form the low-lying levels of the
even manifold. However, with the energy increasing the
occupancies start to deviate noticeably from integer val-
ues. In order to distinguish better between systematic
trends and the fluctuations, the window-averaged values
of the occupancies are presented (thick curves). The plots
again reveal a substantial difference between the struc-
ture of the odd and even levels. In the former case the
Quctuations are considerably larger and one can easily
find numerous states clearly belonging to the well-defined
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FIG. 7. The dependence of the orbitals' occupancies on
the energy of the eigenstate for the 1—140 even J = 4 levels.
The thick line shows the occupancies averaged over the 19
neighboring levels.

nonrelativistic configurations (e.g. , 4f5ds between 2 and
4 eV). It does not mean that these states are "simple. "
They are still build up of a large number of basis states,
belonging to difFerent relativistic configurations (Table
I).

The matrix elements of the residual interaction
H~& (i g k), which mix the basis states, have essen-
tially the same magnitudes for the odd and even levels

(Sec. III). This means that the difference between the
behavior of the odd and even occupancies originates from
the difference of the level density for these cases. Figure
4 shows that for the even levels the dense and gapless
spectrum with average spacing of about D ~ 0.025 eV
arises at E ) 2 eV, whereas the odd spectrum (Fig. 3)
at E ( 4 eV is much rarer: D 0.08 eV. The latter
value is close to the typical mixing matrix element, thus
preventing a complete mixing of the interleaved states of
different configurations in this energy region. However,
when the density of the odd spectrum rapidly increases
beyond 4.5 eV the amplitude of the fluctuations drops
down to the values characteristic of the even spectrum.

On the whole, we observe that the chaotic mixing of
the basis states emerges first within particular nonrela-
tivistic electron configurations. As long as the admixture
of other configurations is small, one can still classify the

0.5

0

0.8

04

0.2

3

Energy (eV)

FIG. 8. The dependence of the 6pq ~q and 6p3~2 occupancies
on the energy of the eigenstate for the 1—130 odd J = 4 levels.

The thick line shows the occupancies averaged over the 19
neighboring levels.

states according to their leading percentages. With the
energy of the states increasing, this possibility vanishes
and the total angular momentum and parity J remain
the only good quantum numbers. We shall see below
that instead of quantum numbers one can describe these
eigenstates in the statistical way in terms of the number
of the principal components X they are built of and the
spread width F, which specifies the energy range of the
basis states strongly mixed in a chaotic eigenstate. This
approach is used, for instance, in nuclei for the descrip-
tion of the compound resonances. It justifies the use of
the term compound states for the chaotic eigenstates in
the rare-earth atom spectrum, and both terms will be
used hereafter.

III. STRUCTURE OF THE CHAOTIC
RIGEN STATES

A. The Hamiltonian matrix

After studying the spectr»m of eigenvalues and before
investigating the eigenstates, let us examine the charac-

teristic features of the Hamiltonian matrix H;. which(J)

produces them both. So far we have seen the distri-

bution of the diagonal matrix elements [Figs. 3(a) and

4(a)j. The basis states 4g; are arranged in the way that

H, , —:E; increases monotonically with i. The rate of
this increase corresponds to the average spacing of about
D 0.035 eV between the energies of the basis states.
Apart &om the e8'ects of level repulsion discussed above
the spectrum of eigenvalues essentially follows the main

diagonal of the Hamihonian matrix.
The main feature of the oR-'diagonal matrix elements

H, is that their dependence upon the level numbers
i, j is almost random. It occurs because the basis states
belonging to the different configurations are strongly in-
terspersed on the energy scale and the basis states O'J;
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TABLE II. Statistical characteristics of the off-diagonal elements of the Hamiltonian matrix used
in the CI calculations of the J = 4,4+ levels of Ce.

J = 4 odd, 260 x 260 matrix J = 4 even, 276x 276 matrix

Quantity

H2 (eV )

/H;, (.V)

H;, (eV)

No. of K,s (i ( j)
~'( Ve')
I' (eV)

Whole matrix

0.0072

0.085

—4 x 10

33670

50

2.3

H;, QOonly

0.0128

0.113

—8x10
18987

Whole matrix

0.0076

0.087

—1x10 '
37950

40

1.9

H;s g 0 only

0.0130

0.114

—2x]0 '
22220

This means that the small matrix elements ~H,P~ ( 10 a.u. 2.7 x 10 eV are omitted.
Here H;s = H~. ~, i.e., we investigate the Hamiltonian matrix (2.5) in the Sist; basis.

'For the level densities p we use values averaged over the 5—7 eV energy range for the odd spectrum
and over 3—6 eV for the even one (Fig. 15).
The spread width I is calculated as I' = 2xpV, where the characteristic value of the squared

nondiagonal matrix element V is set to H~. .

themselves are rather complex linear combinations of the
simple single-determinant states. Figure 9 shows the
mean squared values of H2 [from now. on we omit the
angular momentum index (J) since all basis-dependent
characteristics will be given with respect to the @~; ba-
sisj. They are obtained for i,j = 10, 20, . . . using the win-
dow averaging with a square W x W window (W = 19).
The same procedure applied to H,~ produced the val-

) 1/2
ues H,~

H2. W2, w 'ch one wo d expect i

the matrix elements have random signs. The "ragged
terrain" observed in Fig. 9 shows a weak trend of the
matrix elements to group along the main diagonal (a lit-
tle more distinct in the CI matrix for the even levels).
Though it is physically apparent that the matrix ele-
ments between distant configurations become very small,
this happens when the configurations differ by the states
of at least two electrons or when one electron is excited to
a high-lying Rydberg or continuous spectrum state. In
general it would require larger excitation energies than
those spanned by our bases.

The overall statistical information about the off-
diagonal matrix elements of the CI matrices for the odd
and even J = 4 levels is presented in Table II. It yields
practically equal root-mean-squared values of the off-

X/2
diagonal matrix elements for both cases: H2.

0.085 eV. Taking into account the number of different
matrix elements involved in averaging (the matrices' up-
per triangles contain about 3.5 x 10 matrix elements)
one obtains an estimate for the mean off-diagonal matrix

( ) j/2
element: H;~

~

H2
~

jv3.5 x 104 4.5 x 10 eV.'~)
This value is consistant with the numerical ones (see Ta-
ble II), which also proves the random-sign character of
H;~.

It is quite interesting to analyze the distribution of

0.03

2
0.02

H;;

(ev )

25

0.03

0.02

H, ,

(ev')

FIG. 9. The dependence of the mean-squared nondiagonal
matrix element H~. on the basis states' numbers i and j for
the 1 = 4,4+ Hamiltonian matrices (the 19 x 19 window
averaging used). The values averaged over the whole matrix
are 0.0072 eV (odd) and 0.0076 eV (even).
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the matrix elements. Its logarithm is presented in Fig.
10. The distributions for the odd and even matrices are
remarkably similar apart from the small vertical shift
due to the diH'erent size of the matrices. Both his-
tograms show very large numbers of small matrix ele-
ments since the central bin accumulates as many as the
half of the matrix elements. For larger H;~ the distribu-
tion can be approximated by a simple exponential for-
mula && oc IH&&I

~ exp( —IH;zl/V). This is shown in
Fig. 10 with V = 0.12 eV. This value is close to the root
mean square of the ofF-diagonal matrix element averaged
over the nonzero matrix elements. The agreement ob-
served proves once more that the values given in Table
II provide reliable estimates of the basis states' mixing
matrix element in this problem.

Examining the H;~ matrix we see that about half of
the matrix elements are very small (Table II). If one
uses this estimate and assumes (roughly) that the ma-
trix has a bandlike structure, then the magnitude of the
bandwidth can be estimated (the bandwidth b is defined
so that H;~ g 0, if It' —jl & b and H;z ——0 otherwise).
It gives b 80. A more accurate estimate (Appendix
E) yields b 60 for the odd matrix and b 50 for the
even one. This type of information may be useful when

making comparisons between the results of the CI calcu-
lations for the real system (the spectrum of the Ce atom)
with various predictions obtained from the BRM model

[10—12,17].
For example, we can easily prove the leading role of

the diagonal matrix elements H;; (i.e. , the zero approxi-
mation energies of the basis states) in forming the spec-
trum. If the increase of the diagonal matrix elements
can be neglected (the BRM without leading diagonal),
then the distribution of the eigenvalues is described by
the semicircle law [11,18]:

p(E) = /8bV2 —E2,1

where V is the mean square of the oK-diagonal matrix
element (V2 = H2 in .our case). Using the mean value for

the nonzero matrix elements 0, 0.013 eV one obtains
for the "diameter" of the semicircle AE = 2(8bV )

I'

5 eV (for some average value of b = 55). It would be the
characteristic energy range spanned by the levels due to
their repulsion. We indeed checked this figure numeri-
cally, diagonalizing H;~ with H;; set to zero (though the
level density showed some deviations &om the semicircle
law). As seen from Figs. 3 and 4, the true spectrum of
the odd and even levels extends over twice as large energy
region.

B. Parameters of the chaotic states:
Principal components

I I I
I

I I I

I
I I I

I

I I I
I

I I

0.2 odd 20

I I
I

I I I I I I
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0.1

C o-
J

-0.1
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The eigenstates corresponding to the odd and even
J = 4 levels of Ce are represented in Fig. 11 by their
components C~ against the energy E~ of the basis states.
The eigenstates shown approximately cover the lower half
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FIG. 10. The distribution of the nondiagonal matrix
elements of the Hamiltonian matrix for the J = 4
(dashed line histogram) and J = 4+ (solid line
histogram) levels of Ce. A simple approximation

a~ ——2.56 x 10 IH, ~I
~ exp( —IH, il/V) with V = 0.12 eV

is shown (solid line).

FIG. 11. The odd and even J = 4 eigenstates of Ce. Shown
are the eigenstates' components C~ in terms of the 4'g, basis
states vs the energies E~ ofbasis states (E~ = H ) One can. . .
clearly see the localization of the eigenstates and the shift of
the eigenstates towards higher energies, following the increase
of the eigenvalues. Note the marked difFerence between the
lower (20 and 50) odd and even eigenstates.
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p (E,~) =) C,!"a(E-E~'l). (3 2)

p (E,j) is the level density weighted with the probabil-
ities to find the jth basis state in the eigenstates. If one
performs the averaging, Eq. (3.2) turns into

p (E,j) = D C '= D m(E~', E, I. ', N),

where D is the locally averaged level spacing: D
p(E) = P, h(E —Ei'l) and E E~*~. The averaging
above can be perforxned in two ways. The first one re-
quires an ensemble of random matrices, producing the
eigenvalues E&'~ and eigenstates C. , i.e., it is an ensem-

of the spectra. One can see that even relatively low-lying
states are distributed among a large number of coxnpo-
nents. Two effects can be clearly observed in the figure.
First, the states are well localized on the energy scale,
i.e., the components contributing to a particular eigen-
state are mainly confined within an energy interval of
about 2 —3 eV. This behavior agrees with the existence
of a characteristic spread width I', which determines the
energy range within which the basis states are strongly
mixed by the perturbation (or, alternatively, the range of
eigenvalues to which a given basis state noticeably con-
tributes). The additional "splashes" of the components
outside this range are caused by large values of particu-
lar matrix elements, e.g. , those between the states of the
4f26s2 and 4f~6p2 configurations (lying 5.5 eV apart).
However, this admixture of distant components is still
relatively sxnall. The second effect is the regular shift of
the large components' bunch following the increase of the
eigenstate energy. The latter means the localization of
components around the eigenstate they represent.

The localization of the chaotic eigenstates in various
models is characterized by the parameter L, called the
localization length, or the inverse quantity, called the in-
verse participation ratio (see, e.g. , [12,18] and Appendix
E). It is usually associated with the exponential decrease

of the components ~CI'l~ oc exp( —[i —j ~/L) Describ. ing
the compound states in real systems, say, in the heavy
nuclei, another parameter, namely, the number of prin-
ciple components N, is used. It can be defined as the

( .
2

—1/2
inverse mean-squared root

~

C ' of the principal

components. One may believe that a relation L N is
valid, though there are no direct proofs that the num-

ber of large CI'l and their asymptotic behavior are gov-
erned by the same parameter. This is probably true for
the BRM models without the leading diagonal, where the
bandwidth b is the only parameter (we assume that the
matrix has infinite size, as relevant to the physical prob-
lem). The presence of the increasing diagonal provides
an additional dimensionless parameter V/D Thus a dif-.
ference between the above defined L and N arises (see
Appendixes D and E).

In order to study the distribution of the components
of the chaotic eigenstates on the energy scale in a more
detailed way let us consider the strength function intro-
duced by Wigner [11]:

ble averaging. The second type of averaging is performed
over the neighboring eigenstates i or components j. This
can be done for the unique matrix (or real system) and
represents the spectral averaging. In the spirit of the er-
godic hypothesis we believe they should yield identical
results for most of the physically reasonable quantities.
It is natural that throughout the paper only the second
type of averaging is used. Namely, we employ the window
averaging over the TV successive levels, thus allowing for
(and neglecting) the possible W i~ fiuctuations.

In Eq. (3.3) a function i'(E~", E, I', N)—:C~I'l has been
introduced. This function describes the structure of the
chaotic eigenstates in terms of the number of principal
components N and the width I' within which the eigen-
states contain a noticeable portion (about N i) of the
basis state j. Apparently, a relation ND AI' must be
valid, where A 1 is a constant depending on the actual
shape of the ui function and on the exact definition of N
and I'. The most important property of ur(E~", E, I', N),
suggested by the models [3,11] and the numerical calcu-
lations (see below), is that it essentially depends on the
difference E~ —E between the basis state energy and the
energy of the eigenstate, and not just on the number j
of the eigenstate. Moreover, m is a symmetric function
of E~ —E (if one neglects the smooth energy dependence
of N and I'). Therefore, it shows the dependence of the
mean-squared components of a given eigenstate of E en-
ergy on the energies E~ of the basis states. This point
of view seems more appropriate for the present investi-
gation than considering ~ as the contribution of a given
component j to the various eigenstates.

The normalization of the eigenstates P C ' = 1 im-

poses the following requirement on ur(E~", E, I', N):

) ~(E,", E, r, N) =1

-+ m E;E,I', N = 1, 3.4dE~

where we assumed that m is a smooth function of E~,
so that the sum over j can be replaced by the integral
over dE~/D. It is a consequence of Eq. (3.4) that iii

N around its maximum, i.e., at ~Ez —E~ ( I'. The
integration in (3.4) can be formally extended from —oo
to +oo provided m drops rapidly enough.

The mean-squared components Ci'l obtained by
xneans of averaging over the W neighboring eigenstates
(W = 19) are shown in Fig. 12 as functions of E~. It is

interesting to observe how t .' evolves for the odd eigen-
states with the increase of the level number. The maxi-
mum of C-' for the odd levels around i = 20 is about2.0.03, implying N 30 principal components. With the
increase of the level number the magnitude of C.' suc-j
cessively decreases and becomes the same as for the even

levels around i ) 100. In contrast with that t .' is al-
ready about 0.01 for the even levels with i & 50. This
difference is another manifestation of the difference re-
vealed earlier between the odd and even spectra (Secs.
II B and II C). Since each of the 40 bins used to calculate
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the t -' contains about 10 components from 19 eigen-
2

states, Huctuations of about 10% might be expected. The
observed rate of Huctuations agrees with the existence of
a smooth curve m behind the histograms shown. How-
ever, there are several eH'ects which distort the symmetric

and smooth shape of C-(i)2

The first one is a regular low-energy dispacement of the

energy eigenvalue with respect to the maximum of C '

(it corresponds to the second order perturbation theory
2

energy shift b,E; = P. & "& ). This is a manifestation
2 E,—E

of the uncompensated level repulsion near the lower edge
of the spectrum [Figs. 3(a) and 4(a)]. The accompany-

ing effect is the skewness of the C~'l for the lower eigen-
values, which is especially noticeable for the 20th even
state (the even eigenstates around i = 20 contain about
50 main components, which inevitably causes such skew-

ness). The latter also occurs since the basis states set is

bounded from below. Accordingly, both effects gradually
disappear with increasing eigenvalue number. Other ef-
fects include enhanced Huctuations for the small N lower

odd levels and some nonstatistic deviations of the C '

shape, causing the appearence of additional "shoulders"
beside the central maximum. Nevertheless, we believe
that in order to clearly describe the main features of the
chaotic eigenstates one may neglect all the above men-
tioned effects. Still, we will allow for the first of them (the
displacement of the maximum), assuming that an addi-
tional parameter AE, the magnitude of the displacement,
can be introduced into m(E&, E, I', N) Th. e question now
is the following: what is the actual analytical form of
tU(E~; E, I', N) that we may use to fit the numerical data
in Fig. 12?

In [11] an integral equation for the strength function

p for the infinite BRM with the leading diagonal has
been obtained. It has been shown that in the case of
D, ~ (& 1 the localization of the eigenstates is described
by a simple Lorenzian curve

1 I' /4"('''")=N
(E E, ) +-r/4

(iE —E, i
& Db), (3.5)

2 Vwhere the spread width is I' = D and the number of
principal components N =

2D is introduced in the way

that tiI = N i at the maximum. Equation (3.5) describes

C '
within the band. The condition &,&

(( 1 is equiv-

alent to I' & Db, i.e. the spread width of the state is
supposed to be less than the energy width of the band.
Accordingly, the normalization condition (3.4) is auto-
matically fulfilled. It is quite remarkable that Eq. (3.5)
coincides with the results of the model description of the
strength function in the case of a level interacting with an
equidistant spectrum of other levels by a constant matrix
element V [3]. Though Eq. (3.5) describes a nonpertur-
bative mixing of states, it reproduces the perturbation

theory result at Db ) ~E —E~~ ) I': C~I'l —
2

Beyond the bandwidth Db, Eq. (30) of [ll] predicts a
modified exponential drop:

I'

uj(E~;E, I', N) oc exp 2/in ~
(e— 2q i in[(/+q] ~)

(3.6)

0.008

0.006

odd 110 even 110
where

0.004

0.002

0 8 0 2

Energy (eV)

8 10

FEG. 12. The dependence of the mean-squared component
C2 on the energy of the basis state E~ (the strength function)
for the odd and even eigenstates of Ce. The squared compo-
nents C.' were 6rst distributed on their energies E~ —F ' .
Then the averaging was performed within each of the 40 bins
over the C.' of the 19 neighboring eigenstates. Long thick
ticks show the positions of the corresponding energy eigenval-
ues.

iE —E, i
V

Db ' D2b
(3.7)

Note that this formula is diferent from the asymptotic
solution (35a) in [11], since the latter is incorrect. The
derivation of the correct expression (3.6) is given in Ap-

pendix D together with the perturbation theory consider-
ation of the behavior of distant components. It is shown
there that the form of Eq. (3.6) reflects the feature of the
BRM that the coupling of the distant components hap-
pens via higher order perturbation theory terms. Thus
the exponential decrease predicted by the formula above
is essentially governed by the energy bandwidth Db (if
one neglects the logarithmic factor) and does not depend
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explicitly on the number of principal components N or
the spread width I'.

As seen in Fig. 12 the whole energy range spanned by
the CI calculations is only a few times larger than the
widths of the C2 maxima. Therefore, one cannot study
the mixing of distant components in detail in our nu-

merical model, and we concentrate below on the descrip-
tion of the large principal components. In order to find
the parameters N and I' of the chaotic eigenstates the
averaged squared components Cs obtained from the CI
calculations have been fitted with the Lorenzian curves
ui(E~", E+AE, I', N) using the least-squares method. The
fits for the 80th odd and even levels are shown in Fig. 13.
They yield N = 86, I' = 1.58 eV and N = 118, I' = 1.64
eV for the odd and even levels, respectively.

Despite an overall reasonable agreement of the Loren-
zian fits with C2, one may notice that the latter shows
a faster decrease at the wings of the central maximum.
It is a manifestation of the transition from Eq. (3.5) to
another form, like that of Eq. (3.6). In order to check
this and to estimate the quality of the fit, two other fits
have been tried. Introducing the shape function f(e):
w (E~",E + b,E, I', N) = N if (e), where e-:
they are characterized by f(e) = (1+ 4&2) (squared
Lorenzian fit) and f(e) = exp (1 —v 1+4e2) (interpo-

Level Bins
80 odd 13 —27 b

1 —40 '

Quality of fit
Squared Interpolation

Lorenzian Lorenzian exponential
6.9 4.7 5.6
21.6 10.6 14.7

80 even 6 —18 b

1 —40 ' 1.5
2.1 x 10

2.3
22.8

2.2
43.7

The values given below are the normalized variances Nb;„x
f C~ —m(E E+EE,F',N) &

averaged over the 40 bins of the Cs

histogram (Nb;„ is the number of C~ falling into the bin,
Nb;„10). If the distribution of C~ within each bin is
Gaussian, the variance for the "perfect" fit must be equal to
2.
The maximum region Cs ) 0.1

~

Cs
max

'The whole energy range.

200 I I I
I

I I I

I
I I I

I

I I

150

TABLE III. Comparison of the Lorenzian, squared Loren-

zian, and interpolation exponential Bts of t ~ for the 80th odd
and even eigenstates of Ce.
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FIG. 13. Fitting the C~ with m(E~", E, N, I') for the 80th
(a) odd and (b) even eigenstates. The least-squares Loreuzian
(solid curve), squared Loreuzian (dash-dotted curve), aud in-
terpolation exponential (dashed curve) Sts are shown.

Energy (eV)
FIG. 14. The number of principal components N and the

spread width I' for the J = 4 eigenstates. Solid triangles
show the data obtained from the Lorenzian least-squares fit
of C. . In the lower part the inverse level spacing D
(triangles) is compared with the calculated level density p
(histogram) for the J = 4 states.
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lation exponential 6t), while f(e) = (1 + 4e ) cor-
responds to the pure Lorenzian fit (3.5). The squared
Lorenzian shape takes into account the fact that out-
side the bandwidth the coupling of states happens by
means of the next, second, order of perturbation theory.
The interpolation exponential fit accounts for the same
effect, roughly mimicking the behavior of Eq. (3.6) at

~e~~ & i: f I)e cc (
— r

' (in cur numerical example2IE—E
I

I' Db 2 eV). Both non-Lorenzian fits are shown in

Fig. 13. They are remarkably close to each other in the
4 eV range around the maximum.

The quality of the fits is analyzed in Table III for the

maximum region C ) 0.1 C. and for the whole
max

energy range. In the first case one cannot see much dif-
ference between the fits. Apparently, the fluctuations
for the 80th odd level exceed the limits allowed by the
Gaussian statistics of components (the latter assumption
is analyzed in Appendix E). However, the slow drop of
the Lorenzian curve becomes evident when the normal-
ized variances are analyzed for the whole energy range.
From this point of view the best result is achieved with
the squared Lorenzian fit. One should keep in mind that
the average number of the C~ components in each bin is

about 130. Therefore, a deviation of the C2 wings from

the Lorenzian shape is statistically credible. It is neces-
sary to mention that one can discover other systematic
features in Fig. 13 which contribute to the difference be-
tween the calculated C2 and the fits, e.g. , the shoulders
on the right side of the main maximum. They are caused
by the preferential mixing of some configurations and,
probably, by the variations of the basis states density.

Despite the overestimation of the contribution of dis-

tant components, one may regard the achieved fit of the
C2 maximum with the Lorenzian curve as fairly rea-

2
sonable. The values of N and I' obtained by fitting

the window-averaged C.' (i = 10, 20, 30, . . .) with the
Lorenzian curves are shown in Figs. 14 and 15. One
can see that the parameters of the chaotic states vary
considerably with the energy of the states. This is espe-
cially true for the number of the principal components,
whereas the spread width displays smaller variations for
both odd and even levels. According to the model cal-
culations [3,11] the magnitude of the spread width can
be estimated as I' = 2mVz/D = 2z pV2. The values pre-
sented in the bottom line of Table II refer to the energies
of 5—7 eV (odd) and 3—6 eV (even) and are in good agree-
ment with those obtained from the fit (see Figs. 14 and

15).
The validity of the Lorenzian fit is checked in Figs. 14

and 15 (lower graphs) in another way. There we compare
the level density p obtained &om the eigenvalue spec-
trum with the inverse level spacing found from the nor-

malization condition for the Lorenzian fit: D
The agreement observed is a nontrivial fact since one

might expect that the normalization condition (3.4) in-

volves the level spacing between the basis state energies

E~ rather than that between the eigenstates. Figures

3(a) and 4(a) give evidence that the spectral densities

of the basis states and the eigenstates differ noticeably.
However, the typical spread width of the eigenstate is

largely comparable to a typical energy scale of the de-

viation between the two densities. Thus an averaging
(smoothing) of the basis state density takes place, pro-

ducing the D i values close to the eigenvalue density.
Since the spread width I' is a rather slowly varying func-

tion of energy, it is essentially the density of states which

governs the behavior of the number of the principal com-

ponents: N = 2D
=

2 pI.

IV. MATRIX ELEMENTS BETWEEN THE
CHAOTIC STATES: STATISTICAL

DESCRIPTION OF CHAOS

20—
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Energy (eV)

FIG. 15. The same as in Fig. 14, but for the J = 4+

states.

The preceding section presented an account of the
properties of the chaotic eigenstates in the dense spec-
trum of the Ce atom. It has been shown that they are
superpositions of a large number of basis states. The lat-
ter are mixed in such a way that the mean-squared value

of the jth component C2 is described by the function

w(E~; E, %, I'), where E is the energy of the eigenstate
and N and I' are the number of principal components
and the spread width, respectively. We now proceed to
the calculation of the matrix elements between chaotic
eigenstates. In doing so we aim to compare the statis-
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A. Calculation of the mean-squared matrix element
between the chaotic states

In the calculation of the matrix element between the
chaotic eigenstates we follow the main ideas of [19—21],
where a statistical approach to the calculation of the
matrix element between compound states has been pro-
posed. Suppose the states Il) and I2) are chaotic (in the
sense of Sec. III) superpositions of large number of basis
states

I2) =).c,'"Ij) . (4.1)

tical approach to the calculation of the matrix element
with the results of direct numerical calculations. This is
a stringent test for both the assumptions used in the ana-
lytical calculation of the matrix eleinent (Sec. IV A) and
for the validity of the above given description of chaotic
states.

M» = (2IMI1) = ) .(~lmlP)(2la.'upl1)
ap

(21)
mapp p

ap
(4 6)

trix element between the chaotic eigenstates essentially
depends on the squared components distributions. In
most of applications M is either a single-body (external
field) or a two-body (interparticle interaction) operator.
Below we concentrate on the former case, whereas the
latter is considered in [20].

If M is a single-electron operator M
g p(almlP)at ap (o;, P denote the single-electron states,
I, is the operator in the space of the single-electron
states), it is convenient to express its matrix elements
in terms of the matrix elements of the density matrix
operator p p

——a ap,

P

The matrix element of an operator M is given by

M„=(2IMI1) = ) C(')*C,"(jlMli) . (4.2)

Since the matrix element between the compound states
strongly varies &om level to level, averaging over the
states Il) and I2) is to be perforined to obtain a typical
value of Mzi. This averaging is performed assuming the
chaotic and uncorrelated distributions of the components

~( ) C( ) C( )*g( ) 0i j j i (4.3)

IM2il = ) C- C,. (jlMli)(ilM Ij), (4.4)

where we again used the statistical properties of the com-
ponents:

~{1)+C (1) ~{1)2g
I(; i i ik &

C(2)'C(2) C(2)2g, (4 5)

(C;( ) and C( ) are assumed real). It becomes apparent(1) (2)

&om (4.4) that the magnitude of the mean-squared ma-

which results in the zero mean matrix element M21 ——

0. In the absence of the ensemble of random matrices
and the ensemble of corresponding eigenstates and in the
spirit of Sec. III we understand (4.3) as a window average
over the set of neighboring eigenstates. The size of the
window is chosen to embrace a large number of states
W in order to make the relative fluctuations as small as
W 1~2. On the other hand, W is assumed to be smaller
than the characteristic scale at which a variation of the
eigenstates' parameters (N, I') takes place. Handling the
numerical data of the CI calculations we stick to this type
of averaging throughout the paper, and it is also used
below for the numerical estimation of the matrix elements
between the chaotic states. The statistical independence
of the C,- and C- components is ensured by the use of(1) (2)

the states of difFerent symmetry for Il) and I2).
Averaging the square of the matrix element (4.2) one

obtains

where p p) —(2lp pl 1) is the matrix element of the den-

sity matrix operator. The superscript (21) reminds one
that this matrix element corresponds to the 1 -+ 2 tran-
sition and the operator should be rather called a tran-
Sition matrix rather than a density matrix. The com-
plex conjugation of the transition matrix element yields

(21) (12)
l,pap —ppa .

The magnitude of p p determines the "weight" of the

P ~ o. single-electron transition (almlP) in Mzi. In con-
trast with the very large number of many-electron ba-
sis components the number of single-electron orbitals in-
volved in the compound state is small. This makes the
formalism of the density matrix operator quite appropri-
ate for the description of the matrix elements between
compound states.

If I2) = Il) the transition matrix turns into a usual

density matrix p p
——(liat apll) and its diagonal ma-

trix element yields the occupancy of the the single-
electron state cr in the many electron state Il): p

(11)

(1luta I1) =(1I& 11) =& (o&& &1)
Since the mean value of the matrix element between

chaotic states is zero, it follows from (4.6) that p p
The mean square of the matrix elements is expressed as

IM»l' = ).Im-pl'lp."p'I' .
ap

(4.7)

This formula is obtained f'rom (4.6) with a suppo-
sition that the transitions between different pairs of
s1ngle-electron states are uncorrelated: p p p„(21) (21)+

b „bp„lpp I
. One can easily check that the latter is con-(21) 2

sistent with the assumptions (4.5) and that the formula
(4.7) for IM2il2 directly follows from (4.4) if Ii), Ig) are
the basis states given by (2.3). Thus the mean-squared
matrix elements of the density matrix operator deter-
mine the mean-squared matrix elements of other single-
electron operators between the chaotic states. Accord-
ingly, we consider below the case M = p p.
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Equation (4.4) then yields

I&'p'I' = ) t-"' ' & ' (jla.'apli)(ilapa-lj&

= ) wi(E;)zu2(E, )(jlatapli)(ilapa lj), (4.8)

where uii(E, ) = tu(E;; E,Ni, ri) and w2(Ez)
m(E~", E l, N2, rq) are the characteristic functions which
describe the dependence of the mean-squared compo-
nents on the energies E;,Ej of the basis states. These
functions depend on the energies Eli'2l and parameters
N, I' of the chaotic eigenstates.

Suppose the states li), Ij) are the many-electron basis
states given by Eq. (2.3). Then for the fixed j there is

only one state li) = apa Ij), which gives a nonzero con-t

tribution to the sum (4.8). The energy of this state is
determined by Ez Ej + 8'p E'~ Ej + ~p~& where

and cp are the single-particle energies of the electron
states n and P. Therefore, the double sum (4.8) is re-
duced to

relation E; = Ed +cup
Further simpli6cations are possible if one assumes that

the occupancies of the single-electron states are slowly
varying functions of the energy. Then the matrix element
of the n (1—np) operator in (4.9) can be replaced with its
average value P ui2(E~)(gin~(1 —np)lg) = (n (1—np))2
[note that P, ui2(E~) = 1 is the normalization condition].
The latter quantity is the mean value of the occupancy
times the "emptiness" for the chaotic state I2) averaged
over a number of neighboring levels. Extracting it from
behind the sum in Eq. (4.9) we obtain

l~ p'I'=(n-(1 —np)) ):~ (E, +~p.)~ (E,) .

(4.10)

Following the simple models provided in [3,11] and in
agreement with the results of Sec. III we assume that
the strength function ui(E~ ;E,N, I.') can be presented as

~(E;E,N, I') = N 'f(e), e=, f(0) = 1,E. —E

I p.'p'I' = ).~i(E~ + ~p )~2(E~) (j la.'apapa-Ij)

= ) ~i(E&+ ~p-)~2(E&)(jln-(1 —np)lj),

(4.9)

where the operator equality a apapa = —a a apap +
at a = n (1 —np) (a P P) is used to express the ma-
trix elements of the operators at and a in terms of the
operators n = at a of the number of particles. Al-
ternatively, one can say that (4.9) follows from (4.8) af-
ter the summation over the complete set of li) states is
performed taking into account the energy conservation

(4.ii)
where f(e) is a universal symmetrical bell-shaped func-
tion with a width of about 1, which describes the localiza-
tion of the eigenstate in terms of the basis components.
Though its exact analytical form does not matter at all
for the present calculation, the possible examples are the
Lorenzian f(e) = (1+4e ), or the squared Lorenzian
f(e) = (1+4&2) shapes, which were probed in Sec. III
in connection with the real Ce eigenstates.

Having in mind to replace the summation over j in
(4.10) by the integration over de/D2 (D2 is the local
average level spacing in the vicinity of the compound
state I2)), we do so for the normalization condition for
w (E~; E, N, I') first:

) w(E", E, N, r) = 1 m ui(E,", E, N, r) dEj

2

(E, -E) r +"
I' j ' ND f(e)de = 1 .

(4.12)

The last integral in (4.12) is a dimensionless quantity of about 1, which depends upon the choice of f (e) If we deno. te
it by 2 = I f (e)de, the normalization condition will take the form of

r
ND

=1. (4.18)

The sum in (4.10) is now calculated as follows:

) ,(z, + ,.) ,~F„)= J (z, + ,.;F~'~, w„r, ) ~z, ;z~'~, n„r,I
2

1 (E, + (up —E~'~ ) (E, —Et'l l dE,
NiN2 ( ri j ( r2 1 D2

(4.14)
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Let us now define a function 6(Fi, F2, 4): obtained:

(F., F2, ~) -=„„,f I F I
f I

(E+6) (E)
„—~FF, qF, ~ qF&

IC' p'I' = Di h(Fi F& +) (n (1 np))2, (4.17a)

(4.15)

Using (4.12) and (4.13) and the symmetry f(—e) = f(e)
one can easily check the following properties:

where 6 = E( ) —E( ) —~ p. Starting &om the same
equation (4.8) one may arrive at a different form of the
answer if the summation over the complete set of

~j) in-
stead of ~i) in (4.9) is performed:

f
+oo

h(F„F„a)dS =1, (4.16a) ~p p ~' = D2 b(F„F2,b) (np(1 —n ))i, (4.17b)

h (I'i, I'2, —b.) = h(I'i, Fz, b ),
h(F„F„a)= h(F„F„S).

(4.16b)

(4.16c)

Thus h(Fi, I'2, b, ) is a positive even function of 6 and
a symmetric function of I'q, I'2 with unit area under its
graph. Since its magnitude is determined by the overlap-
ping of the two f functions in (4.15), it has the analogous
bell-shape dependence on b, with a typical width of about
I'i + Fz. In the limit Fi,F2 -+ 0 it turns into the usual 6
function h(b, ).

Combining Eqs. (4.10), (4.14), and (4.15), the mean-
squared matrix element of the density matrix operator is

where the symmetry properties (4.16) have been used.
These formulas have been obtained in [19—21] given that
the Lorenzian approximation is used for C~. Based on a
simple model [3] the Lorenzian approximation allows one
to check that in the perturbation theory regime, when the
transition between distant components is studied (~E& l-
Ef l+~p

~
)) I'i 2, and I'i Fz is assumed), the answer

is given by half of the sum of (4.17a) and (4.17b) [19,21].
Assuming the Lorenzian and the squared Lorenzian

forms of f(e), one respectively obtains the following two

expressions for h (I'i, I'2, b.):

h(F„F„~)- ~

'"
4

r,+r,
»+fr +r &R&4

(Lorenzian)
(r, +r, )[r,r, (r, +r, )*+[aR+(r,yr, )

R ]4j(r*,+rR —r, r.)]
[+2+('Pg+Pg)Q /4js (squared Lorenzian).

(4.18)

The physics beyond Eqs. (4.17) is quite transpar-
ent. Suppose the spread widths of the compound states
are of the same order of magnitude I'q I'2 I
and the energy interval is not large: ~b,

~
& F. Then

h F i, and since the number of principal compo-
nents is N F/D, the mean-square matrix element is

~p p ~2 N (np(1 —n ))i [we used Eq. (4.17b) here].
The N factor is a natural consequence of the fact
that the compound states are chaotically distributed over
about N simple basis states. The second factor shows
that the contribution of the P -+ a single-electron transi-
tion to the matrix element between the compound states
~1) and ~2) is proportional to the joint probability for the
P state to be occupied and the a state to be vacant in
the initial state ~1) [or vice versa, in the final state ~2),
if one considers Eq. (4.17a)]. When the ur p energy be-
comes noticeably difFerent from Ef2~ —Ef ~ (~b,

~
) F)

the mean-squared p &
drops down due to the decrease(»)

of the probability to find configurations difFering by the
state of only one electron (P vs a) among the principal
components of the ~1) and ~2) compound states, respec-
tively. This slump is described by the spread b function
h. Therefore, the presence of h in (4.17) is a specific man-
ifestation of the energy conservation for the transitions
between the chaotic state coxnponents with finite widths
F.

In order that both formulas (4.17) give the same results

a fulfillment of the following condition is required:

Di(n (1 —np))2 ——D2(np(1 —n~))i . (4.19)

Here we present a qualitative argument in favor of that.
Suppose all occupancies are small: n, np « 1, i e , the. .
number of single-electron states is much larger than the
number of electrons involved. Then (n (1 —np))2
(n~)z and (np(1 —n~))i (np)i. If the occupancy
of, say, the a state in ~2) is smaller than that of the P
state in ~1): (n~)z & (np)i, then it means that there are
more single-particle states available within the compound
state ~2) than within ~1). But having more single-particle
states available, the density of many-electron states in
the vicinity of ~2) is larger and the corresponding level
spacing is smaller: D2 ( Dq. The latter balances the
difFerence in the occupancies in (4.19).

In the present paper the basis of states @g; (2.4) with
certain total angular momentum and parity is used. The
statistical independence of the components C,. expressed
by (4.3) and (4.5) follows then from the large magnitude
of the residual interaction, which xnixes the components
of the eigenstates in a nearly random fashion (Sec. III).
This mixing takes place not only among the principal
components within the energy band of the spread width
I', but also among the smaller "distant" components. In
contrast with that, the xnixing of the single-determinant
basis states SIP; (2.3) may never be considered as com-
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piete, as long as the exact quantum number of the total
angular momentum exists (i.e., while the Hamiltonian
commutes with the corresponding operator J ). On the
other hand, the mixing of the single-determinant states
takes place irrespectively of the magnitude of the resid-
ual interaction because the eigenstates of the Hamilto-
nian are necessarily the eigenstates of the J operator.
This fact alone introduces a kind of randomness into
the C, components due to the quasichaotic behavior of
the coefficients of the angular momentum addition (e.g. ,

the Clebsch-Gordan coefficients, in the simplest case).
Despite this "angular" contribution to chaos, rigorously
speaking, the use of the 4'g, basis looks more consistent if
one aims to investigate the true chaotic properties of the
eigenstates. This is the approach we adopted performing
the numerical investigation of the Ce compound states in
Sec. III. Below we consider the modifications it required
to derive the Eqs. (4.17) for the mean-squared matrix el-
ement. Henceforth we assume that the basis states!i), !j)
in (4.8) are the states with definite angular momentum
J and its projection M. Accordingly, the average level
spacing D, the number of principal components X, and
the spread width I' are understood in the same way as
in Sec. III, i.e. , in reference to a particular J manifold.
For the sake of simplicity the transition matrix element
between the states !1) and 2) of the same angular mo-
mentum J will be considered.

Pi~, ~»=l
2 +1 Pnl jm, n'l' jm

(2J+ Ii"
(2j+1) antjma (4.20)

Note that its diagonal value (nl = n't') is proportional
to the operator nnlj of the number of electrons in the

1/2

1/2
nnl j ~

Introducing the operator (4.20) into (4.4) and following
the steps outlined by Eqs. (4.8), (4.9), etc. , the mean-
squared matrix element of the zero rank reduced density
matrix operator (4.20) is obtained in the form similar to
(4.17):

In order to retain the validity of the closure used to
obtain Eq. (4.9) from Eq. (4.8), one must be sure that
the action of the operator [Mt in (4.4) or u&a in (4.8)]
onto the

!j) state in the matrix element (i! .
!j) does

not take this state out of the subspace of the (i! states.
We will ensure that by considering the matrix element of
a scalar or a pseudoscalar operator. It can be expressed
in terms of the reduced density matrix operator of the
zero rank p„&„,&, [Appendix C, Eq. (C6), Ji = J]:

(
(2&)o

Pnl j,n' l' j
Di h(I'i, I'z, 6) 2.+,' (n„(,(1 — ".'",'))z

D2 h(I i, I'z, 6) z, +, (n„t (1 —"."+",))

(4.21a)

(4.2lb)

where 4 = E~ ) —E~ ) + &nil j nlj In deriving this for-
mula an additional assumption has been made that the
occupancies of the ntjm and n'l'jm states are statisti-
cally independent and the states with di8'erent m within
the same nlj shell are equally populated. This seems
quite plausible for a system with several electrons in the
valence shells. Moreover, this supposition influences only
the "emptiness" factors (1 —z."+'i) in (4.21a) and (4.21b)
that are at any rate close to 1 when the number of single-
electron states available is much greater than the number
of electrons involved.

B. Numerical calculations vs the statistical
theoretical approach

In this section the results of the calculation of the ma-
trix elements between the chaotic states are presented.
The question behind these calculations, as well as behind
the study of the chaotic states as a whole, is the existence
of the dynamical enhancement of small perturbations in
systems with chaotic spectra. Forestalling the calcula-
tions, we would like to claim that this enhancement is
indeed observed in the spectrum of the Ce atom.

As an example of a small perturbation one may con-

sider the parity-violating weak interaction or the interac-
tion induced by the electron dipole moment, which vio-
lates both parity and time invariance (see, e.g. , [22]). The
latter interaction has an especially simple structure. Be-
ing a pseudoscalar it violates parity but conserves angular
momentum. Hence its matrix elements are expressed in
terms of the reduced density operator of the zeroth rank
(see Appendix C). We will have this particular example
in mind when performing the calculations.

The matrix elements pnl. n, l, . of the reduced density(;I )o
2t 2

matrix operator of the zeroth rank [Eq. (C6)] have been
calculated between the first 140 odd (i) and even (k)
states of J = 4. For the given basis of single-electron
orbitals the selection rules allow the following six transi-
tions ~~j ii'&'j: 6s,g, —6p,(„5d,], 4f,(„6p,~,——5d,~„
and the reverse ones. The mean-squared values of the

matrix elements (p„&,&,
.) have been obtained for the('k)o

i, rtI' = 10, 20, . . . , 130 levels using the averaging over a
square window i + 9, k + 9 (the window size is W = 19).

In accordance with the random Gaussian-like distri-
bution of p *&. , &,

. (see below) the numerically obtained
mean values of the matrix elements proved to be small:

- 1/2

p„*&.„,&, (p~*&. , &,
.) /W and displayed stochastic
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h i and k. However, the dependence of thevariations wit i an
bers ofd t elements on the cardinal num emean-square ma rix e e
h. Ase ular and relatively smoot . sthe eigenstates looks regular

(iI )o is pre-l the root mean square of p6',

i . 16 as well,sented in Fig. 16(a). tHenceforth, and in Fig. as we

is used when calculat-an additional factor of
~ 2J+& is

ing the ma rix e erneh t lements and the corresponding operator

2m+i I paid, n i~g
= ~ ~ipse ~

d of (4.20) under the same name ofthis operator instea o
the reduced density matrix of the zeroth ran s ou no
brin any confusion. ]

'1 l the observed behavior of 'One can easily exp ain e
- i/2() i

' Ifll & h g(
gies of the configurations (Table I) that the energy

f th ingle-electron transition 6si/2 —6pi/2
ntl this single-electron tran-is about 2 eV. Consequen y,

'matel 2sition is ravore if d 'f the even state k is approximate y

0.1Vp"
0.0
0.0

e igher than the odd state i: a feature descri ed in
E s. (4.17) and (4.2la) and (4.21b) by the spread func-
tion b(I'i„I';,E( ) —E ' —(us„,,s,, ,
e o k f r the favorable transitions (largeeven state num ers or e

- i/2

j values) are noticeably larger than the681/2 P1/2

n the ec inecorresponding odd level numbers i. In turn, h
F' . 16ia) towards higher odd levels is

of the 6sid ith the decrease of the occupancy o e si/2connecte wi e e
' . 6~ and this fact is taken into accoun y

E 417 d(4.21 ) d
al that the values o t

rage occupancy factors in Eqs.
(4.21b). Thus it is quite natural tha t

d t '
element obtained by means ofmean-root-square ma rix e e

Eqs. (4.21a an d ~4 21b) demonstrate the same behavior

Having calculated the root-mean-square matrix c-
ents '1 h k the statistics of the ma-ents one can easi y c ec

them in the following way:trix elements by normalizing t em in e

(ik) (~A') o/o('"), where cr ' = ps,~681/2 6P1/2
W
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momentum and parity, then some of the matrix elements
might be exactly zero due to the corresponding selec-
tion rules (others being larger, since P&(i~M~k)(k~M~i)
does not depend upon the "degree of chaos" among the
k states). Figure 17 suggests that in our numerical ex-
ample the states' mixing is nearly complete and there are
only traces of the abolished selection rules in it (see also
Appendix E where the statistics of the components are
analyzed) .

An extensive test of Eqs. (4.21a) and (4.21b) includ-
ing four different single-electron transitions is presented
in Fig. 18. It shows the cross sections of the surfaces
analogous to those in Fig. 16 with i = 80 (odd) or k = 80
(even) fixed. As one can see, there is generally a good
agreement between the matrix elements calculated with
the true CI wave functions and those obtained using the
statistical approach outlined in Sec. IVA. To calcu-
late the latter from Eq. (4.21a) and (4.21b) we used the
widths I' and the numbers of principal components N
presented in Figs. 14 and 15. The average occupancy
factors (n„~i(1— z".+z )) = n„~z —z.+&n„~~n„~z were

obtained in the same way as shown in Figs. 6 and 7.
The second term (correlated product of the occupan-
cies) is usually rather small and can be approximated
as n„~~ n„~z (th.ough we calculated it exactly).

The most problematic point when applying Eqs.

(4.21a) and (4.21b) is to find the correct energies of the
single-electron transitions (d ~j ~~ij~. This is not simply a
consequence of the complicated procedure used to obtain
the basis of the single-electron orbitals in the present CI
calculations (Sec. II C and Appendix B) and the absence
of a simple single-electron Hamiltonian which might pro-
duce them. There is in fact a much deeper question:
when we consider a pair of many-electron basis states
which differ by the position of one electron [say, one of
the states is . . . (nl j)~'(n'l'j')~'. . . and the other one is
. . . (nl j)~'+~(n'l'j ')~' ~. . .j is it true that the energy dif-
ference between these states is a well defined quantity?
In other words, can its magnitude be given irrespectively
of the occupancies of other orbitals, as well as of qq and
q2~ Formulating this question we have in mind that in
accordance with Sec. IIIB the energy positions of the
many-electron basis states determine their mixing in the
chaotic eigenstates.

The answer to the above question is not straightfor-
ward. The energies of the single-electron transitions
demonstrate rather strong dependence on the "environ-
ment" in which the transitions take place. In Table IV we

present the single-electron transition energies estimated
using the average configuration energies from Table I.
However, if the uncertainty in the value of u„)jn f j I is less

than the total width I'q + I'z of the function b(I'q, I'2, 6),
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are the window-averaged results of the CI cal-
culations (solid triangles) and the results ob-
tained from Eq. (4.21a) (solid line) and Eq.
(4.21b) (dashed line), using the Lorenzian
approximation for w(E,", E, N, I'). The fig-
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TABLE IV. Energies of the single-electron transitions nl j —n'l'j obtained from the differences

between the average energies of the odd and even con6gurations.

nlj
6Pi/2
68'/2

n'l' j
68g/g

6Px/2

Minimal AE, „f
(eV)
1.67

—2.74

Maximal AE, „f
(eV)
2.70

—2.01

(eV)
2.00

—2.00

5d5/2

4fs)2
4fs(2
5d5/

—4.27
—0.07

0.03
2.07

Here we neglected the difference between the energies of different spin-orbital components j = l 6 —.
These energies are used for the calculation of the root-mean-squared matrix elements of the density

matrix operator in the statistical approach.

a Gxed value of ~„~~„~~ can be used, and the differ-
ence between the real energy of the single-electron tran-
sition and the fixed value of u„~~„~z should not mani-
fest too strongly. The values chosen for the calculation of

(p„'&)„,&,
.) are shown in the last column of Table

IV.
Returning to the results in Fig. 18 one may notice that

in a number of cases the matrix elements obtained via
the statistical approach reproduce quite subtle features
of the curves from the CI calculations. This is conclusive
proof of the validity of the statistical approach to the
calculation of the mean-squared matrix element between
chaotic states. There is also a reasonable overall agree-
ment between the two ways of calculation: Eq. (4.2la)
and Eq. (4.2lb). There are also indications that a lin-
ear combination of the two formulas might often yield
the best result (see the check of the perturbation theory
limit in [21]).

If one assumes a stronger localization than that given
by the Lorenzian shape of m(E~ ;E,N, I'), the. dependence

of h(I'i, I'2, 4) on energy b. becomes more abrupt [Eq.
(4.18)]. This is demonstrated in Figs. 18(a) and 18(b) for
the squared Lorenzian approximation for m(E~; E, N, I').
The average slope of the corresponding curves seems
slightly closer to that of the CI calculated ones. Never-
theless, as the true behavior of the distant components is
different &om both the Lorenzian and the squared Loren-
zian shapes of m(E~", E, N, I') (Appendix D), this ques-
tion needs a more careful investigation. This would also
require a consideration of transitions between the chaotic
states lying further apart on the energy scale, so that
large 4 could be probed.

V. DYNAMICAL ENCHANCEMENT
OF SMALL PER1URBATIONS

(i[M)k)
E(') E(A:) (5.1)

In systems with dense spectra and chaotic eigenstates the

Let us consider the admixture of the state ~i) to the
state ~k) due to the effect of the perturbation M. The
magnitude of the admixture is given by

matrix element in the numerator is reduced by a factor
of N / due to the randomness of the components' con-
tributions. The denominator for closely lying states is
about D N I'. Thus an enhancement of the mixing
coefficient (5.1) proportional to N ~z is expected with
respect to the mixing in a system with a spectrum dom-
inated by single-particle features. It will be shown below
that this enhancement indeed exists in the chaotic spec-
trum of the Ce atom and the magnitude of the enhance-
ment agrees with this simple estimate.

If one considers the mixing of states of different J
manifolds, it is a reasonable assumption that the spacing
between the closest levels ~E(') —E(")]obeys Poissonian
statistics (there is no level repulsion efFects). Assuming
further that the numerator in Eq. (5.1) has a typical
magnitude of Mo, one can obtain the distribution for the
mixing coefficients g for the closest pairs of levels:

f (q) e '9o I'9 (5.2)
92

where go ——Mo/D gives the typical magnitude of mixing
and D is the average spacing between the closest levels

of the different manifolds. If one attempts to find the ex-
pectation value for the mixing coefficient from Eq. (5.2),
the result would be g = oo since the corresponding in-

tegral diverges as f dg/g. It does not only mean that
very large values of g can be observed, but it also means
that their number is large. The probability to observe a
value of i1 larger than certain gi is P(g & r/i) go/gi
(provided rh &) qo).

In order to check these considerations we have calcu-
lated the mixing coefficient between the 21—70 odd levels
and the 1—140 even levels. In doing so we have cho-

X/2
sen the mixing operator to be M = 2~&+i

~ ps,
(its root-mean-squared matrix elements are shown in Fig.
16). For each of the 50 odd levels the 140 mixing coef-
ficients g (5.1) were calculated, and we chose the largest
of them. Usually it corresponded to the mixing of the
closest even level with a given odd one. The distribution
of the resulting 50 values of g is presented in Fig. 19.
There it is fitted by the model distribution (5.2) with

go ——1.15 eV . The results of the g tests support the
validity of the fit. It is easy to check that the probabil-
ity of finding a value of g greater than 10 eV is about
10%. Remarkably, this is exactly the number of g values
falling out of the range shown in Fig. 19.
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FIG. 19. The distribution function for the maximal mixing

coefficient g = max' 2J+y p6 6p E E
(k = 1 —140), for the 50 odd levels i = 21 —70. The histogram
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shown is the magnitide of the single-electron mixing g, = 0.5
eV . The results of the y tests are shown for the 6rst four
and ten bins. Five g values among 50 fall beyond g = 10:
g = 12.5, 20.4, 37.7, 41.8, 98.0.

As mentioned above, the calculation of the mean mix-
ing coeflicient is meaningless. Its magnitude, strictly
speaking infinite, would depend upon the subset of g cho-
sen (the larger the subset, the greater the mean value). In
our case g 6.1 eV is obtained, which is much greater
than the typical mixing gp = 1.15 eV . It is interest-
ing to estimate the typical mixing one might expect in
this situation. The average even level spacing at 2—4 eV
is about D 0.025 eV. The typical root-mean-squared
values of the matrix elements for 21—70 odd and even
levels are about Mp = 0.03 (Fig. 16). Taking into ac-
count the fact that the average spacing between a given
odd level and the closest even one is 2, one obtains a
typical mixing of D' 2 eV . This rough estimate is
in good agreement with the gp value obtained by fitting
the histogram.

Despite the fact that the transition chosen is not the
best for observing the dynamical enhancement (the do-
main of maximal matrix elements lies to the side of the
El') El") region), we can easily demonstrate its exis-
tence. Let us find out the magnitude of single-particle
mixing g„which one might expect in a system with a
sparse, "regular" spectrum, like that of the Cs atom. The
energy difference between the 68'/2 and 6p&~2 levels in Ce

2 eV. Since the mixing matrix element of
Z/2

tween the single-particle 68qg2 and 6p~/2 states is equal
to 1, the mixing coefficient is q, = 1/~s„,&,s.. . 0.5
eV . Thus we see that the characteristic mixing in Ce
gp ——1.15 eV is greater than g, by a factor of 2.3, not
to mention that some particular values of g exceed g, by
one or even two orders of magnitude. The statistical en-
hancement factor in our example (2.3) turned out to be

smaller than the potential value of ~N 10. This can
be explained from Eqs. (4.21a) and (4.21b) since both
b and the occupancy factor in it are approximately two
times smaller than their maximal values.

VI. CONCLUSIONS

It has been shown in the paper that the excited states
of the rare-earth atom Ce at excitation energies above
2 eV have chaotic structure. These states are similar
to the compound resonances in heavy nuclei. They are
formed as superpositions of large numbers of simple ba-
sis states. The mixing of the basis states is determined
by the strength of the residual interaction and the level
spacing of the spectrum. It takes place within a certain
energy range, i.e., within their spread width. The lo-
calization of the squared components of the eigenstates
considered as functions of the basis states' energies is
described by the Lorenzian curve. Beyond the energy
range of a few spread widths a stronger localization (en-
hanced exponential) has been observed, together with
the selective mixing of distant components. The matrix
elements between the chaotic states are calculated both
directly and using the statistical approach. Within the
latter they are expressed in terms of the parameters of
the chaotic eigenstates, the average single-electron occu-
pancies, and the energies of the single-electron transition.
The validity of this approach is proved by direct compar-
ison with the results of the numerical calculations. It is
shown that a statistical enhancement of small perturba-
tions takes place in the dense spectrum of chaotic levels.
This favors the observation of a strong mixing of lev-
els belonging to different J manifolds and large observ-
able parity-nonconcerving and time-invariance violating
effects in such systems.

In the paper we used chaotic properties of the com-
pound eigenstates to calculate the matrix elements and
the statistical enhancement factor. However, one can also
try to formulate a criterion for the emergence of chaos in
quantum system based on the enhancement of pertur-
bations. The latter property is somewhat similar to the
exponential divergence of trajectories due to the pertur-
bation in the initial conditions in classical chaotic sys-
tems. Indeed, the enhancement of small perturbations
(proportional to ~N e ", where n is the number of
"active" particles) means that any small variation of the
Hamiltonian drastically changes the positions of energy
levels and the weights of basis components in each com-
pound state. We observed this phenomenon in the nu-

rnerical calculations where the smallest changes in the ba-
sis single-electron orbitals (see Appendix 8) or the intro-
duction of screening coeKcients in the Coulomb integrals
noticeably changed the positions and the component con-
stitution of the individual compound states. It is natural
to suppose that in such a situation the compound states
demonstrate chaotic properties.

In the Appendixes a comparison is presented of the
results of the present paper with the predictions of the
BRM models, and with some other approaches investi-

gating quantum chaotic systems.
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The authors believe that the physical picture obtained
of the realistic quantum chaotic systexn —the spectrum
of the Ce excited states —can give insight into other cora-
plex systems: actinide atoms, molecules, clusters, meso-
scopic systexns, compound nuclei, etc.

oo —y/2
~&(N) —= N y g '(y) dy

p 27ly

y d(g" (y))
0

(A1)
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APPENDIX A: STATISTICS OF LEADING
PERCENTAGES —THE GAUSSIAN MODEL

In the paper [8] a sequence of 35 J = 1+ energy levels
of Ce lying at energy of E = 2 —3 eV (D = 0.027 eV)
above the atomic ground state was considered. Though
the results of the present work confirm the chaotic prop-
erties of Ce eigenstates, there are two important points
which make the reliability of the numerical estimates of
[8] questionable.

First, it was essential for the analysis of [8] that an
assumption of the maximal quantum chaos was adopted.
It included the supposition that the jth coxnponent C~
of the eigenstate obeys the Gaussian statistics, and the

mean values are C~ = 0 and C2 = N . However, in
a real physical system perturbation mixes up an infinite
number of basis states and there are many small cornpo-
nents, besides a number of N principal ones. It makes the
overall statistics of components different from the Gaus-
sian statistics (see Appendix E). In particular, if one
examines the leading components of the eigenstates, a
normalization of C. = FN might be assumed, where

F = P. t
2 ( 1, since the summation is performed over.j.2

the principal components only.
Second, the key point of the numerical analysis of [8]

was an expression for the mean maximal square mq of
N independent Gaussian variables x~ and that for the
second largest square (m2) as well. We argue that for
large N the correct asymptotic formulas for mq 2 are mq

2 x2 lnN and m2 2 x2 (lnN —1), which differ from

those used in [8] by a factor of 2. The proof is given
below.

Suppose x~ (j = 1,2, . . . , N) are independent Gaussian
random variables with zero centroid and unit variance.
The question is the following: what is the mean value of
the maximal square mq(N) of them?

Introducing the squared variables y = x2 and recall-
ing that their probability density is (2z y) ~~2 exp( —y/2),
one obtains

where g(y) is the probability that x2 ( y, and the factor
N accounts for the fact that each of N squares x2 may
turn out to be the maximal one. An examination of the
integrand in (Al) shows that it has a maximum around

y 21nN. Therefore, the asymptotic formula for g(y)
can be applied:

(y»1), (A2)

where the last expression in (A2) is more convenient for
calculating the Nth power of g(y). Introducing a new
variable u = g~(y) to calculate the integral (Al) (u runs
from 0 to 1), one needs to express y in terms of u. It can
be easily done by means of the asymptotic exponential
expression (A2) for g:

y = 2 ln N —2 ln( —ln u) —ln —.
vry

2

Here the first item 21nN in the right hand side is the
leading one. Hence it can be used for y in the third
item. Calculating the integral fz ydu and using [23] to
integrate the second item in (A3), one obtains

zuq (N) 2 ln N + 2C —ln(m ln N), (A4)

where C 0.577 is the Euler constant. Numerical eval-
uation of the integral (Al) shows that the asymptotic
expression (A4) works with an amazing accuracy of bet-
ter than l%%uo even for N = 3.

The mean value of the second large square of N inde-
pendent Gaussian random variables is given by the in-

tegral below. It essentially involves the probability that
N —2 squared variables are less than y times the proba-
bility that one square is larger than y and a combinatorial
N(N —1) factor:

oo —y/2
to2(N) = N(N —1) y g (y) [1 —g(y)] dy .

s /2' y

(A5)

Reduced to a linear combination of Ntvq(N —1) —(N—
1)mq(N), (A5) can be easily estimated using the asymp-
totic expression (A4):

m2(N) mg(N) —2 + (ln N) —N (A6)

An account of both points xnentioned above yields F
0.6 and N 16. Thus the estimated number of large
components is in agreement with the one given in [8],
though only 60% of the eigenstate normalization seems to
be shared between them. The rest of the components are

~ e
—~/2 e wl2 — ( 2e wl2 )—

g(y) = dt 1 —2 exp ~—
o &2mt g2n y ( g27ry )
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smaller and their statistics cannot be probed by means
of the leading percentages.

fixed J are mixed together in a nearly random fashion,
which makes doubtful the practical value of any coupling
scheme.

APPENDIX B:CI CALCULATIONS FOR
CERIUM —CONSTRUCTION OF THE BASIS

The trial CI calculations we performed for Ce showed
that the results (the energies and the configuration con-
stitution of the eigenstates) are extremely sensitive to
the way of calculating the single-electron orbitals. It
was particularly noticeable for the 4f and 5d wave func-
tions. Their radial behavior and the single-particle ener-

gies strongly depended on whether there were one or two
electrons in the subshell during the self-consistent HFD
calculation of the basis. Accordingly, different methods
of calculating them favored (lowered the energies of) the
configurations with one or two f or d electrons, respec-
tively. Since we needed to calculate matrix elements be-
tween the many-electron states, it was important for us
that all levels were calculated in the same basis. Finally,
a balanced way to calculate that was found.

At the first stage the 4f wave functions were obtained
in a self-consistent calculation of the
1s 5@i/25ps/24f 6s atomic state, which coincides

with the configuration of the lowest J = 4+ level. The
core wave functions and the 4f ones were then "frozen"
and the 6s25d configuration (the lowest with J = 4 )
was calculated in the field of the 1s 4f residue, yield-
ing the 6s and Gd orbitals. The 6p orbitals were calcu-
lated separately in the frozen field of the ls2 4f6s5d,
after the 1s2 . 4f26s5d state had been calculated in a
self-consistent way. In doing the HFD calculations the
Coulomb interaction between the electrons in the open
subshells was averaged over the nonrelativistic configu-
ration, using the statistical occupancies of the j = l + 2
orbitals. The valence orbitals thus obtained were orthog-
onalized before being used in the CI calculations.

The resulting single-electron orbitals were used to con-
struct single-determinant basis states (2.3) and the basis
of states with definite J values (2.4). It is worth men-
tioning that none of the particular coupling schemes are
used for the construction of the 4g; basis. Instead, the
J eigenstates in the CI code [15] are generated for the
states in each of the relativistic configurations with the
help of the lowering operator J . Starting from the
single-determinant states with the maximal J, projec-
tion and consequently applying the J operator and the
orthogonalization procedure, the sets of the 4J, states
with J & M are obtained (M = 4). Each of the rel-
ativistic configurations chosen produces several states
with J = 4 and some of them as much as 20 (the
4fs/24f7/25ds/26ps/2 odd and 4fs/24f7/2523/25d5/2 even
configurations). The numbers of 4g, states with J = 4,
corresponding to each of the nonrelativistic configura-
tions, are shown in Table I together with their average
energies.

It might seem as a drawback of the approach used
to construct the 4g; states that there is no reasonable
way of classifying these states. However, in the case of
the rare-earth spectrum large numbers of the states with

APPENDIX C: REDUCED MATRIX ELEMENTS
OF THE DENSITY MATRIX OPERATOR

(C1)

where ( // // ) is the reduced matrix element. On the other
hand, we can express the matrix element (Cl) in terms
of the transition matrix according to (4.6) and using the
single-electron basis of n = nt jm (p p ~ p„i~

ta„,, a„,, ):

Jg Mg I ~, I
~Jg Mg )

) (nl jm(t )n't'j 'm') p„i
nl jr'

n I j rn

(C2)

) . (-1)' I, I («i II
t'

ll
n'~'j')

nlj na

(2i)
~nlj m, n'l'j 'm' (C3)

Now we define the Lth rank reduced matrix element
of the density matrix operator p„&-„,&,

., from the equa-(2i)L,

tion which connects the reduced matrix elements between
the many-electron states with those between the single-
electron states:

(@'z", II
&' ll@'J,') = )

nlj
n I j

(c4)

where the summation runs over the single-electron or-
bitals nl j,n'l'j' in contrast to (4.6) and (C2), where it
involves the single-electron states, i.e., the summation
over the angular momentum projections as well. It fol-
lows then from (C3) and (C4) that

The eigenstates calculated by the CI code have defi-
nite projections M of the total angular momentum. In
order to calculate the M-independent values of the ma-
trix elements it is convenient to express the answer in
terms of the reduced matrix elements with the help of
the signer-Eckhart theorem.

Suppose the states ~1):—~@& M ) and (2~:—(4& M ~

in (4.2) are the eigenstates of the J, and J operators
Jt

and M is an irreducible tensor operator of the Lth rank
M = T . According to the %igner-Eckhart theorem
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This quantity is independent of any angular momentum
projections involved (either Mi 2, or q, or m, m'). For-
mula (C5) was used in the numerical calculations to ob-
tain the reduced matrix elements of the density matrix
operator &om the CI wave functions which are calculated
at fixed values of the total angular momentum projec-
tions. Equation (C5) looks especially simple for L = 0
(consequently, J2 ——Ji, j' = j and m' = m):

(2i)0 ~2Ji + 1/2

j ~ ~

(21).Pnijm, n & jm . (C6)

The matrix element of the reduced diagonal (n't'j' =
nl j) density matrix operator of the zeroth rank between
the identical states ~2) = ~1) is given by

(ii)o &2J, + I )
1/2

ppslj, pslj ( 2~ + I )~ ) (11).~n~jm, num . (C7)

The sum on the right hand side yields the number of
electrons in the nlj subshell. Thus the occupancy n„~j
of the nlj orbital in the state ~1) is given by n„~j

2j+1 ~[ (11)0
~& 2J,+1 &I ~nip, nl j

(2i)L
( I)JR —MR ~~

PPIlj, PI'I'j '
~ M

(2i)
~nl jm, n'l' j'm'

mm'

(C5)

where j,k,m, . . . g i and Ilj, allows for the band structure
of the matrix:

ii —g &b
0, Ii —jf &b (D4)

In writing Eq. (D3) we do not preserve the normalization
of the Q; state and we do neglect the terms which have
the saine order in V/6E but a lower order of summation.
The latter is based on an assumption that the bandwidth
is large b )) 1. This approximation is analogous to that
made in [11].

Equation (D3) reveals an inherent feature of the band
matrices. If one examines the mixing of distant com-

Ponents ~i
—j~ & b, the lowest order n = 's~ + 1

exists, below which the perturbation series items do not
contribute to C;j. Each of the numerators in Eq. (D3)
contains a product IIjg .II;, which determines a se-
quence of subscripts leading from the i state to the j
state. The higher the order of the term, the larger the
number of such sequences. Therefore, higher-order terms
have greater statistical weight (though they may be sup-
pressed by a greater power of z&). It makes the mixing
of distant components for the band matrix a nonpertur-
bative problem in the sense that a certain number of
items of the series (D3) yield comparable contributions
to C;j for given i and j.

If one averages C;j over the ensemble of random ma-
trices (Dl) and (D2), one obtains C;j = 0 due to the
statistical properties of the off-diagonal matrix elements.
However, averaging C;. , one obtains

APPENDIX D: LOCALIZATION PROPERTIES
OF THE CHAOTIC STATES—DISTANT

COMPONENTS

In this appendix we use perturbation theory to derive
the equation governing the behavior of distant compo-
nents of the BRM eigenstates and to obtain its asymp-
totic solution (3.6).

Suppose we calculate the eigenfunctions for the follow-
ing infinite matrix H;~".

H;; = E;b;, + V;,.(1 —b;,.) (~i —
g~ & b), (Dl)

H;, = 0 (~i —
g~ & b); (i,j = . . . , —2, —1,0, 1, 2, . . .),

(D2)

where E; = iD are the diagonal energies with D spacing,
6 is the bandwidth, and Vj are random variables with
zero centroid and fixed variance: V. = 0 and V,. - = V . If
one uses perturbation theory to obtain the eigenfunctions

Q; of H;z in terms of the eigenfunction g of the H;
E;b;z matrix, vP; = @; + P C;j@. , the admixture of
the state j to the i is given by

Vj; II;~ ~ . VjgVg;IIjg, IIA.;
E —E (E —E )(E —Es). .

Vjg Vj, V;IIjg, IIg II+ D3
(E' —Ej)(E' —E~)(E' —E-)

V'll, ; ~. V'll, ,ll„
(E, —E )2 (Es E,)2(E E.)2.

V6II rrA, II
(E E,)2(E. E,)2(E E.)2

(D5)

where all odd-power terms vanish due to the random
nature of Vj and we omit the terms which have less
summations within each order. Introducing the notation
io(j —i) = C2, valid since C;j depends only on the "dis-
tance" between the states, one obtains from Eq. (D5)
the following equation for m:

V2 II.; V2 1
D (j — ) D ( k

(D6)

If ~i
—j~ & b this equation turns into a homogeneous one:

V'
m(j —i) =, , ) IljgTU{k —i) .

g —g)2
k

If io(k —i) is a smooth function of k (it is true for b &) 1
since b fixes the typical variation scale for iu), one can
replace the sum in Eq. (D7) with an integral f &up(k —.
i)dk. Introducing a new variable (—:~&' and a new
function p ($) = TU((b) one obtains an integral equation
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p-(&) = —, p ((')d(',
(—i

(D8)

-4

21nC-—
J

~ P
a4

~ (jp» 6o ~nW I
P,s

P3II
2

where q = D, &. This equation exactly coincides with
what one obtains from Eq. (35) of [11]for the asymptotic
behavior of the strength function. Apparently, Eq. (D3)
is valid only in the perturbation theory regime D ( 1.
Otherwise it cannot be used for calculating large compo-
nents proximate to the eigenstate. However, if one ap-
plies it to distant components it leads to Eq. (D8), which
holds irrespectively of the magnitude of the perturbation.

Before solving Eq. (D8) it is worthwhile to guess the
answer by considering the series (D5). One may conjec-
ture that for E~ —E, = Db( ) 0 the main contribution to
C2. and, consequently, to p (() comes from the nth order
term of the series, where n (. This can be estimated
as

v 2Th 1 (VI'~
(Db)'(2Db)2 (nDb)2 ((!)2 Dbi

where t(() takes into account the number of items in
the sum which contribute to the nth order term. Using

(! /2vr( —, one obtains

p (() oc exp —2(ln ~—t(() f( Db t

2~( ge V )
(D9)

sinh y'(f)
y'(()

For ( )& q one may subsitute sinhy'(f) ie "~&l and
the following asymptotic solution is obtained:

y'(() = —ln ——ln
~

ln —
~
+

The factor before the exponent is a slowly varying func-
tion of ( and the main dependence of p (() on ( is
grasped by the exponent.

Therefore, in order to solve Eq. (D8) it is convenient to
introduce a new function y((): p (():—e"!tl. Supposing
that y(() varies slowly on the scale of a bandwidth one
may expand it in the integrand on the right hand side
of Eq. (D8) as y((') = y(() + y'(()((' —() [note that
y'(() ( 0, as p (() is decreasing at ( ) 0]. An equation
then follows for y'(():

e
J~ ~

~ ~
n ~ ~

o& o

~ d lS Q
4

st .
~b 0 ~

0 0

L
-4 0 2

E,—E —bE (eV)

I I t ~J
6 8

FIG. 20. The behavior of the distant components of the
chaotic even eigenstates of Ce. The window-averaged C~ val-

2
ues are shown for the even levels: 60 (open triangles), 70

(open squares), 80 (open hexagons), 90 (solid triangles), 100
(solid squares), and 110 (solid hexagons). The solid curve
shows the asymptotic behavior given by Eq. (3.6) (D10) with
V = 0.114 eV, D = 0.032 eV, and b = 80 (q = 0.16).

[11].The magnitude of the constant in Eq. (D10) is de-
termined by the normalization condition of the eigenstate
and is, very roughly, inversely proportional to the num-
ber of principal components N i. The condition (s » q
of the validity of Eq. (D10) rewritten in terms of the
energies and parameters of the matrix looks as follows:

[E, —E;[ » b'~'V.
In Fig. 20 we check the capacity of Eq. (D10) to

describe the behavior of the distant components of the
Ce J = 4+ eigenstates. The states chosen have close
numbers of principal components N 120 and widths
I' 1.8 eV (see Fig. 15). Hence the dependence of the

numerically obtained Cz on the distance between the ba-
sis state energy Ez and the eigenvalue E (corrected by
the AE shift) is essentially the same for them. In order to
apply Eq. (D10) we used fixed values of the parameters
from Sec. IIIA and Table II. Good agreement is ob-
served between the numerical values and the asymptotic
formula outside the 2 eV range around the maximum.
The exception is a prominent high-energy shoulder on

the numerical t
2 due to the selective mixing of configu-

rations.

It yields

p (t) = const x exp (
—qt'ln

~

t'e qq tlnj(/~q
)

(( ) 0), (D10)

where the terms varying slower than ( have been omitted
&om the exponent. This result con6rms the perturbation
theory estimate (D9). Since p is symmetric, it is suf-
ficient to introduce ~f~ instead of $ to make Eq. (D10)
valid for both positive and negative values of the argu-
ment. This solution corrects the erroneous one given in

APPENDIX E: THE ENERGY BANDWIDTH,
THE ENTROPY LOCALIZATION LENGTH, AND

THE DISTRIBUTION OF EIGENSTATES'
COMPONENTS

In this appendix we check the applicability of ap-
proaches adopted for investigating BRM in model cal-
culations to the system in consideration: the CI matrix
and the chaotic eigenstates in Ce.

It has been pointed out in Sec. IIIA that the matrix
elements H;~ exhibit a trend to group along the main
diagonal, thus imposing a bandlike structure to the con-
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) (H,, —H, , )'IH, , I'

(~E;)' —= ' (E1)

figuration interaction matrix. In order to check it the
mean-squared energy bandwidths [17] are calculated:

It means that there is an obvious difference between the
localization length I introduced to characterize the expo-
nential localization of eigenstates in some of the models
and the number of principal components N defined ac-
cording to Eqs. (3.3)—(3.5). However, there is a different
definition of I [18] that does not appeal to the character
of the localization:

5 I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I

AE,

(eV),.

odd

The values of AE; are presented in Fig. 21. Apart
from the level-to-level fluctuations their dependence on
i is on the whole amazingly fiat. The average values of
EE, 1.9 eV and AE; 1.5 eV characterize the en-
ergy bandwidths for the CI matrix for the odd and even
J = 4 states, respectively. Using the average H;; spacing
of 0.03 eV for both cases, estimates for the bandwidth
b are obtained: b 60 (odd) and b 50 (even). Since the
local spacing between the diagonal energies H;; strongly
varies along i, the local values of the bandwidth may be
diferent &om those given above. Thus, between the 30th
and 150th even levels the average spacing of D 0.014
eV and b,E; 1.3 eV produces b 90. This value
is close to that used in Appendix D when studying the
asymptotic behavior of the distant components.

As we have seen in Appendix D the asymptotic be-
havior of the distant components for the BRM with the
leading diagonal, as well as for our numerical model, is

e ~

different from the simple anzatz IC~I'
I

oc exp

L ~ = N exp(H —HGQE),

where H = —) C lnC (E3)

Here N is the rank of the matrix, Ci are the components
of a particular eigenstate, and HGQE is the "entropy"
(E3) calculated for the Gausian orthogonal ensemble (see
[4] for detailed analysis of the GOE) I~. is called the
entropy localization length. The factor N~ exp( —HGQE),
introduced into Eq. (E2) in [18] for normalization pur-
poses, is equal to exp(2 —C —ln 2) 2.075 for large rank
matrices (C is the Euler constant).

In Fig. 22 the entropy localization length is presented
for the odd J = 4 levels of Ce as a function of their en-
ergies. Also shown are the numbers of principal compo-
nents for each tenth level (same as in Fig. 14), multiplied
by a factor of 1.37. The agreement observed suggests that
an approximate relation I~ 1.4N is valid.

If one assumes that the localization of the eigen-
state is described by the mean square Cz —= ur(E~) =
N j ( 'e ) jeee Sec. 111B and Eq. (4.11)], and the

distribution of the components is otherwise uncorrelated
and Gausian [with the to(Ez) variance around E~], the
entropy H can be calculated as follows:

3—

h

V$

200—

Ctg

tL)

150—

C
N

O 100—

C40
iv

50

p I

bE;4-
(eV)

even

3

2"

1 'I tt "IIItqttt

p I I I I I I I I I I I I

0 50 100

I I

' ~
IIIIII I,III,

0 4 ~ I I ~ I I I 4 I ~ I 1 I ~ I I

0 2 4 6 8

Energy (eV)
I I I I I I

250

I I I I I I I I I I I I I I I I I I I I I I I I I

FIG. 21. Root-mean-square energy bandwidths for the odd
and even matrices. Straight lines correspond to the average
values of 1.9 eV (odd) and 1.5 eV (even).

FIG. 22. Entropy localization length LH
= 2.075exp( —P.C~ ln C ) for the odd Ce levels as a func

2
tion of their energy. The thick curve is 1.37N, where N is the
number of principal components obtained from the Lorenzian
St.
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C2 j C2

l(
C 'll dE~

& ~(E'))
dE~= —(2 —C —ln2) —fw(E, ) lnw(E, ) . (E4)

The first item in Eq. (E4) cancels the normalization fac-
tor N exp( —IIGQE) in Eq. (E2). The entropy localiza-
tion length is then given by

I

0L

cf

CJ

"d
R -2—

l

R

LH = N exp
l

—A f(e) ln f(e)de
l

where A—:f f(e)de Bo.th the integral in the exponent
and A are model dependent. Equation (E5) yields the
following relations: LH ——4N, 2.16N, and N for the
Lorenzian, squared Lorenzian, and rectangular approx-
imations for f(e), respectively. Therefore, in principle,
one can use the relation between L~ and N to distin-
guish between difFerent types of localization. However, it
would be prematurely to draw any conclusions from the
fact that the "experimental" relation is L~ 1.4N (Fig.
22), since neither the influence of the finite size of the
matrix in the CI calculation nor the actual distribution
of the components has been carefully checked yet.

If Gausian statistics are assumed for the components
C~ at a given E~, then the number of components in the
interval dE~ falling into the [C, C + dCj interval is

I

0

CN'"

FIG. 23. The logarithm of the scaled distribution of the
components C~ over the scaled CN variable. Open tri-
angles, odd levels 21—40 (Npp = 37), 41—60 (Npp = 42),
61—80 (N7p = 76 ), 81—100 (Ngp = 104), alld 101—120
(Niip = 126), solid squares, even levels 21—40 (Npp = 79),
41—60 (Npp —107), 61—80 (Nrp —116), 81—100 (Npp = 116),
and 101—120 (Niip ——121). Also shown are the scaled dis-
tributions corresponding to the Lorenzian localization (solid
curve), squared Lorenzian localization (dashed curve), and
"rectangular" localization (dash-dotted curve).

1 C2 dE~de, ~, = . exp — ~ dC . (E6)
27rui(E~ )

0.6
odd 21-40

The distribution of the components is then described by
the following expression:

dNc
dC

1 C2 dE

/2vrni(E, ) ur(E, ) D

A~2& gf(, ) 2f(e)
(E7)

It is again expressed in terms of the shape function f (e)
The Eq. (E7) reveals that N ~ &g is a universal func-

tion of the scaled variable C = N ~ C:

0.4

0
O

0.2

0 0

N
0 4

(b)

N 3&2dNc 1 e

A~27r Qf (e)
(E8)

0.2

Therefore we can use the data obtained for the levels with
different N to check the distribution of the components
(Fig. 23) and thus make some conclusions about the
localization shape f (e)

An asymptotic form can be derived &om Eq. (E8) at
C » 1 (C » N —'~'):

0

normalized t"ornponent

—C 2dNc 2 e

lf"(0)I
(E9)

In general, the weaker the localization, the sharper the

FIG. 24. The distributions of the normalized components
- -I j2

(C ) for the 21—40 odd [histogram (a)] and even

[histogram (b)] levels, compared with the Gaussian distribu-
tion (solid curves).
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f(e) maximum at e = 0 and the lower the curve pre-
dicted by Eq. (E9) goes (the numerical factors be-

fore e ~2/]C] are +2/rr 0.45 and rr 0.318 for
the squared Lorenzian and Lorenzian f (e), respectively).
This behavior is qualitatively diKerent from the simple
Gaussian one, which takes place in the case of maximal
quantum chaos (MQC) (which was assumed in [8]):

—C 2
3(2 dN~ e

(Elo)

The MQC implies that each eigenstate has exactly N
components —random Gausian variables with the vari-
ances equal to N [8].

The numerical data presented in Fig. 23 were ob-
tained in the form of histograms for several sets of 20
odd and even levels and rescaled to the N s~2

&g func-

tion of the C variable using the values of N &om Figs.
14 and 15. It is compared with the model distribution
(ES) calculated for the Lorenzian [f(e) = (1+ 4e) ],
squared Lorenzian [f(e) = (1 + 4e) ], and rectangu-
lar [f(e) = 1 at [e~ &

2 and 0 elsewhere] localization
shapes. The latter corresponds to the hypothesis of the
MQC. It is the strongest type of localization conceiv-
able. What prevents the numerically obtained points in
Fig. 23 &om following a unique curve is partly statis-
tical Huctuations and partly the inHuence of the finite
matrix size and the eKects of selective configuration mix-
ing (like that revealed in Appendix D). However, one can
ascertain that, first, the scaling is indeed observed, and
second, the localization is more diffuse than that of the

MQC and stronger than that predicted by the Lorenzian
model. Indirectly, it also supports the assumption of the
approximate Gaussian distribution of the components Cs
for the fixed basis state energy Er or, more rigorously, for
the fixed energy difference ~Es —Ei')] between the basis
state and the eigenstate.

Finally we present a direct comparison of the compo-
nents' distribution with the Gaussian one. In doing so

- -X/2
the normalized components C~I' (C~I' ) were cal-

culated in close analogy with the normaIized matrix el-
ements in Sec. IVB. Their distributions for the 21st
to 40th odd and even levels are shown in Figs. 24(a)
and 24(b), respectively. Apparently, one can speak of
good agreement with the Gaussian statistics for the lat-
ter, whereas in the former case the calculated distribution
greatly exceeds the Gaussian one at small values of the
variable (& 0.5) as well as at large ones (& 2.5). This dif-
ference accords with the previous observation about the
emergence of chaos in the odd and even manifolds (see
Secs. IIB and II C). We checked that for the 100th to the
120th odd and even levels the distributions of the nor-
malized components become much more alike. However,
a statistically significant deviation from the Gaussian dis-
tribution, like that in Fig. 24(b), still holds for them. It
makes the situation similar to that observed in Fig. 17
for the normalized matrix elements. Gaussian statistics
appear to be a limiting case which may be achieved only
when complete chaotic mixing takes place. In a real sys-
tem there may always be present the perturbation theory
contributions (small though not statistical) due to the se-
lective mixing of some particular basis states.
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