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Electron detachment from negative ions in a short laser pulse
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We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle
linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760
(1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N

optical cycles produces 2(N + 1) saddle points in complex time, which form a characteristic “smile.” Numerical
calculations are performed for H− in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 1010, 5 × 1010,
and 1011 W/cm2, and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a
function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment
probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5–6
central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the
photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can
provide a way of determining this phase.
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I. INTRODUCTION

Rapid advances in experimental design in recent years have
made it possible to study strong-field ionization by few-cycle
laser pulses (see Ref. [1] and references therein). As a
consequence of these huge technological advances in ultrafast
laser technology, it has become possible to investigate physical
processes at ever-smaller time scales. This has resulted in a
shift in focus away from exploring strong-field ionization with
long (i.e., many-cycle, periodic) pulses. The emphasis is now
on addressing new theoretical challenges posed by unravelling
the dynamics of strong-field ionization with few-cycle laser
pulses. This dynamics is of fundamental interest for attosecond
physics and related fields of science.

In this paper, we generalize the approach of Gribakin
and Kuchiev [2] (GK) to describe multiphoton detachment
of electrons from atomic negative ions in a short linearly
polarized laser pulse. In particular, we explore the positions of
the transition points in complex time on the parameters of the
pulse and photoelectron momentum. We also investigate the
influence of the phase shift between the pulse envelope and
its carrier oscillation and show that the photoelectron angular
distributions provide a reliable method for determining this
phase.

The original theory of GK was based on the Keldysh
approximation [3] and was developed to describe electron
detachment from negative ions in a periodic laser pulse. In
this approach, the quantum mechanical amplitude of transition
of a bound electron into the final Volkov state is evaluated
using the saddle-point method. It is given analytically by the
contributions from two complex moments of time per period.
One of the main results of GK was a demonstration that a
proper application of the Keldysh approach to the photode-
tachment problem provides reliable quantitative predictions
for the total rates and photoelectron energy spectra and angular
distributions. It was also argued that the electron interaction
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with the laser field should be treated using the length gauge.
The latter emphasizes large electron-atom separations, where
the asymptotic form of the bound-state wave function can
be used. The theory of GK is now widely used by other
researchers in the field. It was extended by Kuchiev and
Ostrovsky [4] to consider electron detachment in a bichromatic
laser field. Reichle et al. [5] verified experimentally that the
theory of GK successfully accounts for the predicted effect
of quantum interference of electron trajectories in energy-
resolved angular distributions for the negative hydrogen ion.
Further experimental support of this approach was provided by
a study of photodetachment of F− in a strong linearly polarized
pulse [6]. This work showed that GK was qualitatively able
to reproduce the energy- and angle-resolved spectrum without
needing to incorporate the rescattering mechanism, over the
energy range studied.

Recently, there has been some disagreement in the literature
over whether the length or velocity gauge is best adopted
within the Keldysh-type theories [7,8]. However, it has been
demonstrated experimentally by Bergues et al. [9] that the
length gauge should be used in the description of the electron
interaction with the laser field. This paper showed that the
velocity gauge predicts a different interference structure in
the electron energy and angular distributions compared with
the length gauge. Direct comparison of the measurements
with the length-gauge theory of [2] and the velocity gauge
theory of [7] demonstrated that only the length-gauge approach
within the strong-field approximation correctly reproduces
the experimental data. Previous studies in the literature also
showed that when only the leading order of the transition
amplitude is retained, the model using the length gauge
gives a more accurate description of strong-field ionization
[10,11].

Experimental developments over the past decade have
stimulated great interest in studying strong-field ionization by
few-cycle laser pulses. In particular, the applicability of the
saddle-point approach to short pulses was investigated in
Ref. [12]. Subsequently, Martiny and Madsen [13] considered
the photodetachment of atomic hydrogen and examined the
effect of ellipticity of the laser pulse on the validity of
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the saddle-point method. They calculated the momentum
distributions for using the Keldysh theory and compared their
results with the saddle-point method. Their work showed
that the saddle-point method is quite accurate in the linearly
polarized case but gradually fails when the ellipticity is
changed toward the circular case.

Arendt et al. [14] have studied electron detachment from
negative ions by few-cycle laser pulses. In this work, they
examined the occurrence of a nonmonotonic dependence
of detachment probability on pulse duration. They showed
that the results of their full numerical solution of the time-
dependent Schrödinger equation compare favorably with the
strong field approximation for weak and intermediate field
strengths. However, for strong fields their results indicate
that the strong-field approximation overestimates the exact
numerical result. They also analyze momentum distributions
where a nonmonotonic dependence of detachment probability
on pulse duration occurs and show that a transition from a
symmetric to an asymmetric momentum distribution evolves
as the pulse duration is increased.

Another recent study on electron detachment from negative
ions by ultrashort half-cycle electric-field pulses has been
investigated [15]. In this work, the zero-range-potential model
was used to calculate closed form expressions for momentum
and energy distributions as well as for differential and integral
detachment probabilities for a variety of pulse strengths and
time delays between the action of one or two alternating “half-
cycle pulses.” The outcome of this research illustrated that
the quantum interference of the wave packets formed during
the interaction with each of the pulses can be fully accounted
for by studying the momentum and energy distributions of
the detached electrons. However, the authors noted that these
effects were smoothed out in the energy, angular, and total
detachment probabilities.

The aim of the present paper is to apply the formalism of
Ref. [2] to short pulses and investigate in detail the behavior of
the saddle points and the dependence of the total detachment
probabilities, electron angular and energy distributions on the
carrier-envelope phase (CEP) (cf. similar effects in double
ionization [16]). We also investigate which saddle points
give significant contributions to the transition amplitude. This
analysis allows one to quantify to what extent the ionization
by a short pulse is restricted to the times near center of the
pulse where the electric field is strongest. In particular, we
examine the spectrum of the photoelectrons as a function of
both energy and emission angle and show that for a 5-cycle
pulse the contributions of the 5–9 central saddle points gives
the dominant contribution to examine the spectrum. We also
calculate angle-integrated energy spectra and total detachment
probabilities and consider the effect of varying the CEP on
these quantites. Numerical calculations are performed for the
negative hydrogen ion at three different peak intensities (1010,
5 × 1010, and 1011 W/cm2) of the 5-cycle 10.6-μm laser
pulse.

Section II below presents the basic equations of the
Keldysh-saddle-point approach to the multiphoton electron
detachment of negative ions in a short laser pulse. Section III
shows the results of our numerical calculations and their
analysis, with conclusions given in Sec. IV. Atomic units are
used throughout, unless otherwise stated.

II. THEORY

A. Detachment amplitude and probability

Consider the detachment of a valence electron from an atom
or negative ion in a short laser pulse. The electric field of the
pulse with a sine-squared envelope may be defined as

F(t) = −dA
dt

, (1)

where

A(t) = F
ω

sin2

(
ωt

2N

)
sin(ωt + α). (2)

Here, N is the number of optical cycles, ω is the frequency
of the laser pulse, and α is the carrier-envelope phase. The
photoelectron spectrum for a short pulse is determined by the
differential detachment probability:

dw = |Ap|2 d3p

(2π )3
. (3)

The amplitude Ap of electron ejection with momentum p is

Ap =
∫ τ

0

∫
�∗

pVF (t)�0drdt, (4)

where τ = 2πN/ω is the duration of the laser pulse, �0

and �p are the wave functions of the initial and final states,
respectively, and VF (t) is the interaction with the laser pulse.
Note that the amplitude is different from that of Ref. [2]. The
integral in Eq. (4) is over the whole pulse duration while the
amplitude integral for the periodic pulse in Ref. [2] is over
one period. Accordingly, Eq. (3) describes the detachment
probability, as opposed to the detachment rate in the case of
the long laser pulse.

The wave function �0(r,t) = e−iE0t�0(r) describes an
electron with energy E0 < 0 bound in the atomic potential
U (r), where �0(r) satisfies the Schrödinger equation:[

−∇2

2
+ U (r)

]
�0(r) = E0�0(r). (5)

The potential energy of the electron interaction with the laser
field in the length gauge is

VF (t) = r · F(t). (6)

In the Keldysh approximation, the influence of the atomic
potential on the detached electron is neglected and �p is
represented by the Volkov state,

�p(r,t) = exp

[
i(p + kt ) · r − i

2

∫ t

(p + kt ′ )
2dt ′

]
, (7)

where kt is the classical electron momentum due to the field,

kt = −
∫ t

F(t ′) dt ′. (8)

It is assumed that the lower limit contribution in the integrals
in Eqs. (7) and (8) is zero as if the integration is performed
from −∞ and the integrand is switched on adiabatically. The
Volkov wave function satisfies the Schrodinger equation

i
∂�p

∂t
=

[
−∇2

2
+ VF (t)

]
�p. (9)
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Using Eqs. (5) and (9) and integrating by parts, we transform
the amplitude in Eq. (4) into

Ap =
∫ τ

0

[
E0 − 1

2
(p + kt )

2

]
�̃(p + kt )

× exp

[
i

2

∫ t

(p + kt ′ )
2dt ′ − iE0t

]
dt, (10)

where

�̃(q) =
∫

e−iq·r�0(r) dr (11)

is the Fourier transform of �0(r).

B. Saddle-point method for a few-cycle pulse

The integrand in Eq. (10) contains a rapidly ocillating
exponent exp[if (t)], where

f (t) = 1

2

∫ t

(p + kt ′)
2dt ′ − E0t. (12)

Indeed, for multiphoton processes this phase is large: f (τ ) ∼
2πN |E0|/ω, where |E0|/ω is the minimum number of quanta
required for photodetachment. Hence, the integral over time in
Eq. (10) can be evaluated using the saddle-point method (see,
e.g., Ref. [2]).

The saddle points in t are the stationary points of the phase,
f ′(t) = 0. They are roots of the equation

(p + kt )
2 + κ2 = 0, (13)

where κ is related to the bound-state energy by E0 ≡ −κ2/2.
Equation (13) is the classical energy conservation condition for
the energies of the bound and continuum electrons. It cannot
be satisfied for any real t , hence, the saddle points lie in the
complex plane of time.

A crucial point in the application of the saddle-point method
is that Eq. (13) corresponds to the poles of the Fourier
transform �̃(p + kt ) [2]. Its behavior near the poles is, in
turn, determined by the asymptotic form of the bound-state
wave function at large distances,

�0(r) � Brν−1e−κrYlm(θ,φ), (14)

where ν = Z/κ , Z is the charge of the atomic residue, Ylm is
a spherical harmonic, and B is an asymptotic normalization
constant. This is an important advantage of using the length
gauge [2].

For the particular case of the hydrogen negative ion (ν = 0),
Eqs. (11) and (14) yield

�̃(p + kt ) �
√

4πB

(p + kt )2 + κ2
. (15)

Using this and evaluating the transition amplitude (10) by the
the saddle-point method, one obtains

Ap = −
∑

μ

π
√

2B√−if ′′(tμ)
exp[if (tμ)], (16)

where the sum is over all saddle points tμ, i.e., all complex
roots of Eq. (13) in the upper half-plane of complex t . (This
latter restriction is a general feature in the theory of adiabatic
transitions [17].)

For a laser pulse with a sine-squared envelope, Eq. (13)
takes the form[

p + F
ω

sin2

(
ωt

2N

)
sin(ωt + α)

]2

+ κ2 = 0. (17)

Using φ = ωt instead of t , one obtains the saddle-point
equation as

p2 + 2pF cos θ

ω
sin2

(
φ

2N

)
sin(φ + α)

+ F 2

ω2
sin4

(
φ

2N

)
sin2(φ + α) + κ2 = 0, (18)

where θ is the angle between the photoelectron momentum p
and the field F.

For a long (i.e., periodic) linearly polarized laser pulse, the
roots of the saddle-point equation can be found analytically [2].
It yields two pairs of complex-conjugate roots per period, two
of which are in the upper half of the complex plane. The
transition amplitude is then found by adding the contributions
of these two saddle points. Physically, the two saddle points
describe complex moments of time corresponding to the
maximum electric field strength.

For the short sine-squared pulse, the saddle-point equation
is solved numerically. In Sec. III, we show that numerical
solution of Eq. (18) reveals 2(N + 1) complex saddle points.
They represent the “instants” in complex time at which the
emission of photoelectrons takes place. We note again that
the roots of the saddle-point equation are complex because
ionization is a classically forbidden process, except in the
case of the over-barrier regime (i.e., very strong fields). The
amplitude is then given by the sum of 2(N + 1) contributions
of these saddle points, Eq. (16). This differs from the periodic
pulse discussed in Ref. [2], where the amplitude was given by
the contribution of only two saddle points that occur within one
period. This suggests that for the N -cycle pulse, one should
expect 2N saddle points. However, the Fourier spectrum of the
field in Eq. (2) combines components with frequencies (N+1)ω

N

and (N−1)ω
N

, which adds two more saddle points.
Explicit expressions for f (t) and f ′′(t) for the sine-squared

laser pulse are given in Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we apply the formulas obtained within the
adiabatic theory to consider the photodetachment of H−. To
apply our theory to H−, we require numerical values for the
asymptotic parameters B and κ of the corresponding initial
bound-state wave functions. The value of B is taken from
Ref. [18]. The value of κ are calculated from the corresponding
binding energy as κ = √

(2|E0|) using Ref. [19]. In our
calculations, we have assumed a laser pulse with N = 5 optical
cycles. We consider pulses with three peak intensities of 1010,
5 × 1010, and 1011 W/cm2, with carrier-envelope phases of
α = 0, π/4, and π/2, respectively. The saddle points in each
case are initially obtained by considering the 3D surface plots
of |f ′(φ)|−1/2, so that the roots of the saddle-point Eq. (13) are
visualized as “infinities” rather than “zeros.” The surface plots
for each of the three intensities and each of the phases α reveal
12 saddle points, i.e., 12 approximate graphical solutions of the
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FIG. 1. (Color online) Complex-time saddle points for the 5-cycle pulse. The panels in each row represent the intensities of 1010, 5 × 1010,
and 1011W/cm2. The panels in each column correspond to the CEP α = 0, π/4, and π/2. Each group of points represent the positions of a
saddle point for a range of photoelectron energies from ε = 0.05ω to ε = 10ω and angles θ = 0, 45, 90, 135, and 180 degrees. In each group,
the points closest to the real axis correspond to the smallest photoelectron energy.

saddle-point equation. Thus, we note that for our N = 5-cycle
pulse, we obtain 2(N + 1) saddle points. This result is in
agreement with Ref. [13].

The approximate roots found from the graphical solution
can be improved to yield accurate values by using the Newton
Raphson method for complex roots. The numerical calculation
involves refining each root in turn, for a range of the angles
θ between the direction of the laser field and the momentum
p of the detached electron. In the present calculations, we
consider 0 � θ � 180◦ taking a stepsize of 1◦. The range
of photoelectron momenta is determined by the maximum
photoelectron energy taken to be 10ω. Our calculations model
detachment in a 10.6-μm CO2 laser pulse, which corresponds
to the frequency ω = 0.0043 a.u. The momentum values p

ranging from threshold to 0.29 a.u. are obtained by considering
p = √

2ε for equally spaced energies εj = (ω/20)j with
j = 1, 2, . . . , 200.

A. Saddle point “smiles”

Figure 1 illustrates the 12 roots of the saddle-point Eq. (13)
for three field intensities I = 1010, 5×1010, and 1011 W/cm2

and phases α = 0, π/4, and π/2. Each “cluster” of stars in
each of the nine panels in Fig. 1 shows the saddle points for
five angles θ = 0, 45, 90, 135, and 180 degrees (represented
by different colors) and five energies in the range between
ε = 0.05ω and 10ω. The change in the angle θ moves the
roots mostly along the real axis, while the increase in the
photoelectron energy shifts them away from the real axis. In
the first row of Fig. 1, the saddle points for each of the three
intensities have been calculated with the phase α = 0, in the
second row with α = π/4, and in the third row with α = π/2.

For each intensity and phase, the clusters of saddle points
are distributed in the shape of a “smile” with the first cluster of
stars on the left-hand side of each “smile” corresponding the
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1st root and the last cluster on the right-hand side being the 12th
root. The 12 saddle points in the complex plane of t correspond
to the 12 instants at which electron detachment takes place. In
each of the three rows of Fig. 1, we see that as the intensity of
the laser field increases toward the center of the pulse, the sad-
dle points move closer to the real axis. Additional calculations
carried out to make a comparison with the long laser pulse con-
sidered in Ref. [2] (not shown here) depict a similiar behavior
of the saddle points with laser field intensity. One can see that
for each of the intensities, the increase in the pulse CEP makes
the roots move along the “smile.” Figure 1 also shows that the
saddle points move away from the real axis with the increasing
photoelectron momentum. This indicates it is more difficult for
the laser pulse to kick out the electron at higher momentum.

Having found the saddle points for the laser pulse of N = 5
optical cycles, we obtain the transition amplitude from Eq. (16)
by adding the contributions of all 12 saddle points.

B. Contribution of different saddle points
to the detachment probability

In this section, we use the photodetachment ampli-
tude to calculate the photoelectron differential detachment
probability,

dw

dεd�
= 2p|Ap|2

(2π )3
, (19)

where the factor of 2 accounts for the two electrons in the
hydrogen negative ion. We also calculate the photoelectron
energy spectrum,

dw

dε
= 2π

∫ π

0

dw

dεd�
sin θdθ, (20)

and total detachment probability,

w =
∫ ∞

0

dw

dε
dε. (21)

The differential probability in Eq. (19) is similar to the
differential detachment rate, which characterizes the process
for a long periodic laser pulse [2]. However, for the long
pulse, the photoelectron spectrum consists of a set of discrete
δ-function spikes corresponding to the n-photon absorption,
with energies εn = nω − |E0| − F 2/4ω2 (where the last term
is the ponderomotive shift). In contrast, in the short pulse
the photoelectron energy distribution is continuous, with the
n-photon processes manifesting themselves as broad peaks
centered at ε ≈ nω − |E0|.

Physically, the process of multiphoton electron detachment
can be understood as tunneling in the slowly varying external
potential [2] (hence, the adiabatic treatment used in Sec. II).
For a short pulse, this means that the electron detachment
should occur mostly near the maximum of the pulse where
the electric field is strongest. One can then expect that in the
saddle-point treatment of the transition amplitude, the saddle
points closest to the center of the pulse will give the largest
contribution to the sum in Eq. (16).

Each row in Fig. 2 shows the differential detachment
probabilities obtained by including different numbers of the
saddle points in the transition amplitude. The three rows
correspond to the peak intensities of 1010, 5×1010, and

1011 W/cm2, respectively. Each panel depicts a range of θ and
photoelectron energies ε for the CEP α = 0. Considering the
first row of Fig. 2 with the lowest intensity I = 1010 W/cm2,
it is clear that there is a very small probability that the
electron will be detached with a high energy. This may
be noted from the large flat area in each of the panels of
row one. Next, considering rows two and three, we see
that the probability of electron detachment with a higher
energy increases with increasing field intensity. This result
illustrates the fact that at higher intensities it is easier for
the electron to absorb more excess photons from the laser
pulse.

By comparing the first panel in each row with the second
panel, we note that the main contribution to total detachment
probability comes from the middle five saddle points, i.e.,
saddle points 5–9. Thus, we see that neglecting the contribu-
tions of the seven outer saddle points (i.e., 1–4, located on
the left-hand side of the “smiles” shown in Fig. 1, and 10–12,
located on the right-hand side of the “smiles”) does not affect
the magnitude of the detachment probability. This result is true
for each of the intensities considered.

By comparing the second panel in each row, the second with
the third panel, we see that the middle three saddle points (6–8)
make a dominant contribution to the detachment probability.
These are the saddle points closest to the real axis. However,
there are noticeable deviations in the oscillatory structures
between the panels in the second and third columns. This
means that the interference effects due to the contributions of
different saddle points to the amplitude Eq. (16) are sensitive
to the contributions of the saddle points 5 and 9.

Table I shows the total detachment probabilities obtained
by including various saddle-point contributions for α = 0 and
the three peak intensities. For I = 1010 W/cm2, it may be seen
that the contributions from the middle five saddle points (5–9)
gives a 99.67% contribution to the detachment probability.
We observe that the contribution from the 3 central saddle
points (6–8) gives a slightly larger detachment probability than
the contribution from the 5 middle saddle points (or all 12
saddle points). This suggests that there are some interference
effects at this intensity and phase corresponding to coherent
detachment of electrons at different instants of time. In the
case of I = 5 × 1010 W/cm2, it is observed that the five saddle
points (5–9) give a 99.96% contribution to the final detachment
probability. The three central saddle points yield a 95.44%
contribution to the total detachment probability. We also note
that there is no interference effect at this intensity. Finally, in
the case of I = 1011 W/cm2, the 5 central roots give a 99.92%
contribution to the total detachment probability and the three
roots closest to the real axis give a 92% contribution to the
total detachment probability.

These results confirm our graphical results that it is the
saddle points closest to the real axis that contribute most to
the detachment amplitude. Our calculations suggest the crude
result that for an N -cycle pulse, the N middle saddle points
closest to the real axis will yield the near total probability
of detachment at the lower intensity of 1010 W/cm2 and the
total detachment probability at the higher intensity of 5 ×
1010 W/cm2 and above. Furthermore, our results in this section
also show that the adiabatic theory for the short laser pulse
predicts the oscillatory nature of the detachment probabilities
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FIG. 2. (Color online) Differential detachment probabilities dω/dεd� for CEP α = 0. In each row, the first panel shows the detachment
probability calculated using all 12 saddle points, the second panel shows the contribution of the central 5 saddle points (5–9), and the third
panel shows the contribution of the middle 3 saddle points (6–8). The first row is for the peak intensity of I = 1010, second for 5 × 1010, and
third for 1011 W/cm2. The energy axis in each plot shows the photoelectron energy in units of ω/20.

as a result of interference caused by the electrons detached at
different instants of time.

Let us now turn to the effect of the carrier-envelope phase
on the detachment probability. Figure 3 shows the differential
detachment probabilities calculated using all 12 saddle points

TABLE I. Total detachment probabilities from H− by 5-cycle
pulses with the CO2 laser frequency ω = 0.0043 for CEP α = 0.
The total detachment probabilities are calculated considering the
contribution from all 12, the central 5 (5–9), and the inner 3 (6–8)
saddle points.

Intensity

Roots 1010 W/cm2 5 × 1010 W/cm2 1011 W/cm2

1–12 1.496 × 10−6 2.568 × 10−3 2.574 × 10−2

5–9 1.491 × 10−6 2.567 × 10−3 2.572 × 10−2

6–8 1.500 × 10−6 2.451 × 10−3 2.368 × 10−2

for the three sets of intensities and three phases: α = 0, π/4,
and π/2. For the intensity of 1010 W/cm2, we see that changing
the phase has little effect on the detachment probabilitity. It is

TABLE II. Total detachment probabilities from H− by 5-cycle
pulses with the CO2 laser frequency ω = 0.0043 for different
intensities and carrier-envelope phases.

Phase Intensity

α 1010 W/cm2 5 × 1010 W/cm2 1011 W/cm2

0 1.496 × 10−6 2.568 × 10−3 2.574 × 10−2

π/4 1.492 × 10−6 2.514 × 10−3 2.549 × 10−2

π/2 1.488 × 10−6 2.523 × 10−3 2.585 × 10−2

GKa 1.32 × 10−6 2.57 × 10−3 2.24 × 10−2

aGK is the detachment probability estimated by multiplying the
detachment rate for the periodic pulse from Ref. [2] by the effective
5-cycle pulse duration chosen to be T = 2π/ω.
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FIG. 3. (Color online) Differential detachment probabilities dω/dεd� for different CEP values, α = 0, π/4, and α = π/2 (columns one
to three, respectively), and different peak intensities, I = 1010, 5 × 1010, and 1011W/cm2 (rows one to three, respectively). The energy axis
shows the photoelectron energy in units of ω/20.

also observed from Fig. 3 that for the higher intensities of 5 ×
1010 and 1011 W/cm2 (rows two and three, respectively), the
increase in the phase makes the angular distributions markedly

asymmetric. Thus, the CEP has an important influence on the
photoelectron probability distributions. Another pattern that
is observed in all the panels in Fig. 3 is that as the intensity
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FIG. 4. Dependence of the photoelectron angular distribution on the carrier-envelope phase α for the three intensities, I = 1010 (panel 1),
5 × 1010 (panel 2), and 1011 W/cm2 (panel 3). For each intensity, the photoelectron energy corresponds to a maximum in the electron energy
spectrum, ε = ω (1010 and 1011 W/cm2), and ε = 1.25ω (5 × 1010 W/cm2).
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FIG. 5. Photoelectron energy spectra calculated for the CEP α = 0 by including a different number of saddle points in the amplitude: 3
(6–8), shown by dotted line; 5 (5–9), shown by asterisks; and all 12 (dashed line). The peak intensities are 1010 W/cm2 (panel 1), 5 × 1010W/cm2

(panel 2), and 1011 W/cm2 (panel 3).

increases, the probability of detachment also increases. These
results are confirmed in Table II.

Table II shows the total detachment probabilities for H−
in the 5-cycle pulse for the three peak intensities and three
CEP values: α = 0, π/4, and π/2. From the table, two
trends are observed. The first is that, as expected, the larger
peak intensities result in greater detachment probabilities. The
second trend shows that the numerical values of the detachment
probabilities do not have a strong dependence on the CEP for
all intensities considered. In order to check our detachment
probabilities in Table II, we compared our results with the
detachment rates of the periodic pulse obtained in Table I
of Ref. [2]. The effective pulse length for a 5-cycle short
laser pulse is about one period, i.e., 2π/ω. Thus, to make
the comparison between the two sets of results, we took the
total detachment rates from Table I of Ref. [2] and multiplied
this sum by the period of the pulse. Our present results are
in excellent agreement with the long pulse calculations in
Ref. [2].

C. Angular dependence on carrier-envelope phase

The dependence of the photoelectron angular distribution
on the CEP is examined in Fig. 4. Here, slices of the 3D graphs
from Fig. 3 were taken, with all 12 saddle points included in
the evaluation of the transition amplitude. For each intensity,
the photoelectron energy was chosen to correspond with the

most likely probability of detachment (see Sec. III D), and the
detachment probability was plotted against θ .

From the graphs, it is evident that at the lowest intensity
varying the CEP has very little effect on the detachment proba-
bility. Here the detachment energy is ε = ω. The distributions
in panel 1 of Fig. 4 are notably symmetric for all phases
considered. In the second panel of Fig. 4, we see that as
the intensity is increased to 5×1010 W/cm2, the CEP has
a more marked effect on the magnitude of the detachment
probability. Here, the detachment energy is ε = 1.25ω. In
this case, the angular distribution is symmetric for α = 0 but
becomes increasingly asymmetric as the phase is increased. In
the third case in which I = 1011 W/cm2 with the detachment
energy εω, we note that α = 0 again yields a symmetric
angular distribution, but again as the phase shift increases the
angular distributions become asymmetric. We also observe
from Fig. 4 that the detachment probability is increased with
increasing intensity.

D. Energy spectrum

Here, we consider the photoelectron energy spectrum that
is given by Eq. (20). The energy spectra are shown in
Figs. 5 and 6. The most noticeable feature of the spectra
is the presence of peaks spaced by �ε ≈ ω. Each of these
“above-threshold” peaks results from the ejection of the
electron following the absorption of a different number
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FIG. 6. Photoelectron energy spectra calculated using all 12 saddle points for the CEP α=0 (solid line) and α = π/2 (dashed line) and
three peak intensities: 1010 W/cm2 (panel 1), 5 × 1010W/cm2 (panel 2), and 1011 W/cm2 (panel 3).

033409-8



ELECTRON DETACHMENT FROM NEGATIVE IONS IN A . . . PHYSICAL REVIEW A 84, 033409 (2011)

0 5 10 15 20 25 30

Time (units of ω-1
)

-1

-0.5

0

0.5

1
E

le
ct

ric
 fi

el
d 

(a
rb

. u
ni

ts
) α=0

α=π/2

FIG. 7. (Color online) Electric field in the short pulse with the
CEP α = 0 (solid red line) and π/2 (dashed blue line).

of photons. Since the photons in the short pulse are not
mono-energetic (that is, their energies have an uncertainty
�ω ∼ 2π/τ = ω/N), the peaks are broadened in comparison
with the above-threshold peaks that one would observe with a
long pulse (see, e.g., Table I in Ref. [2], which illustrates the
detachment probability for the absorption of n monoenergetic
photons).

In Fig. 5 we show how the behavior of the spectrum is
affected by the number of saddle points considered within
the transition amplitude. It can be seen from all three graphs
that it is the central five saddle points (5–9) that dominate
the behavior of the energy spectra for all three intensities
considered. The calculation that includes only three central
saddle points (6–8) shows significant deviations from the
five-saddle-point calculation. This confirms our earlier results
from the 3D surface plots considered in Fig. 3. The graphs also
show that the spectra obtained with 5 saddle points are almost
indistinguishable from the results obtained with all 12 saddle
points.

In Fig. 6, we analyze the dependence of the electron energy
spectra on the CEP. It appears that α = π/2 gives rise to higher
maximum values of the spectra. In order to understand this
dependence of the photoelectron energy spectrum on the phase,
it is useful to look at the profile of the electric field for different
carrier-envelope phases. The field is given by Eqs. (1) and (2),
and we illustrate the field for the two cases of α = 0 and
α = π/2 in Fig. 7.

From Fig. 7, it may be seen that for α = 0 the field reaches
its maximum strength, once maximal in the middle of the
pulse. On the other hand, for α = π/2, the electric field has

a maximum and minimum of equal absolute value near the
middle of the pulse. Hence, the larger detachment probability
for α = π/2 may be related to the fact that, in this case, the
electric field strength takes its largest value twice near the
center of the pulse, and that its maximum magnitude is only
slightly lower than the single peak value for α = 0.

IV. CONCLUSIONS

In conclusion, we have extended the adiabatic method of
Ref. [2] to describe electron detachment from negative ions in a
short laser pulse. In this approach we have found that a linearly
polarized pulse with N cycles results in 2(N + 1) saddle points
in complex time, which contribute to the transition ampli-
tude. Our calculations show that the N inner saddle points,
i.e., those closest to the pulse maximum, dominate the behavior
of the transition amplitude. The detachment probabilities show
three main features. First, they have a strong dependence
on the dominant saddle point contributions; second, they are
highly asymmetric; and third, their magnitude is independent
of the CEP. It should be noted here that the envelope of the
pulse is chosen to be sine-squared for convenience. Other
pulse envelopes such as the Gaussian envelope adopted
in Ref. [14] should yield a similar effect to the present
calculations.

Our calculations predict an interference structure and a
phase dependence in both the photoelectron angular distri-
butions and energy spectra. In particular, we can identify the
actual saddle points that cause the interference structures due
to the electrons emitted at various complex moments of time.
The dependence of the electron angular distribution on the
carrier-envelope phase provides a new method for measuring
the absolute phase of the pulse.

Finally, the findings of this work allow a simple qualitative
and quantitative physical analysis of the problem of electron
detachment from negative ions in a short laser pulse and may
be of use to experimentalists.

APPENDIX: CLASSICAL ACTION FOR THE
SINE-SQUARED PULSE

To calculate the transition amplitude Eq. (16), we need to
evaluate f (t) from Eq. (12) and f ′′(t). For the sine-squared
laser pulse, Eq. (2), the momentum due to the field is

kt = F
ω

sin2

(
φ

2N

)
sin(φ + α), (A1)

where φ = ωt . Hence, one obtains

f (t) = 1

2
p2t − E0t − p · F

2ω2
cos (φ + α) + p · F

4ω2

[
N

N + 1
cos

(
N + 1

N
φ + α

)
+ N

N − 1
cos

(
N − 1

N
φ + α

)]

+ 3F 2t

32ω2
− F 2N

8ω3
sin

φ

N
+ F 2N

64ω3
sin

2φ

N
− 3F 2

64ω3
sin(2φ + 2α) + F 2

16ω3

[
N

1 − 2N
sin

(
1 − 2N

N
φ − 2α

)

+ N

1 + 2N
sin

(
1 + 2N

N
φ + 2α

)]
− F 2

128ω3

[
N

1 − N
sin

(
2(1 − N )

N
φ − 2α

)
+ N

1 + N
sin

(
2(1 + N )

N
φ + 2α

)]
,

(A2)
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and

f ′′(t) = p · F
2N

sin
φ

N
sin(φ + α) + p · F sin2 φ

2N
cos(φ + α)

+ F 2

2ωN
sin

φ

N
sin2 φ

2N
sin2(φ + α) + F 2

ω
sin4 φ

2N
cos(φ + α) sin(φ + α). (A3)
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[12] D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, J. Phys.
B 39, R203 (2006).

[13] C. P. J. Martiny and L. B. Madsen, Phys. Rev. A 78,
043404 (2008).

[14] C. Arendt, D. Dimitrovski, and J. S. Briggs, Phys. Rev. A 76,
023423 (2007).

[15] T. P. Grozdanov and J. Jacimovic, Phys. Rev. A 79, 013413
(2009).

[16] X. Liu and C. Figueira de Morrison Faria, Phys. Rev. Lett. 92,
133006 (2004).

[17] L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Nonrel-
ativistic Theory (Peragmon, Oxford, 1965).

[18] E. E. Nikitin and B. M. Smirnov, Atomic and Molecular
Processes (Nauka, Moscow, 1988).

[19] H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14,
731 (1985).

033409-10

http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1103/PhysRevA.55.3760
http://dx.doi.org/10.1103/PhysRevA.55.3760
http://dx.doi.org/10.1103/PhysRevA.59.2844
http://dx.doi.org/10.1103/PhysRevA.59.2844
http://dx.doi.org/10.1103/PhysRevLett.87.243001
http://dx.doi.org/10.1103/PhysRevLett.87.243001
http://dx.doi.org/10.1103/PhysRevLett.90.183001
http://dx.doi.org/10.1103/PhysRevLett.90.183001
http://dx.doi.org/10.1103/PhysRevA.77.067401
http://dx.doi.org/10.1103/PhysRevA.77.067402
http://dx.doi.org/10.1103/PhysRevA.77.067402
http://dx.doi.org/10.1103/PhysRevA.75.063415
http://dx.doi.org/10.1103/PhysRevA.75.063415
http://dx.doi.org/10.1088/0953-4075/37/10/003
http://dx.doi.org/10.1088/0953-4075/37/10/003
http://dx.doi.org/10.1103/PhysRevA.72.023415
http://dx.doi.org/10.1103/PhysRevA.72.023415
http://dx.doi.org/10.1088/0953-4075/39/14/R01
http://dx.doi.org/10.1088/0953-4075/39/14/R01
http://dx.doi.org/10.1103/PhysRevA.78.043404
http://dx.doi.org/10.1103/PhysRevA.78.043404
http://dx.doi.org/10.1103/PhysRevA.76.023423
http://dx.doi.org/10.1103/PhysRevA.76.023423
http://dx.doi.org/10.1103/PhysRevA.79.013413
http://dx.doi.org/10.1103/PhysRevA.79.013413
http://dx.doi.org/10.1103/PhysRevLett.90.183001
http://dx.doi.org/10.1103/PhysRevLett.90.183001
http://dx.doi.org/10.1063/1.555735
http://dx.doi.org/10.1063/1.555735

