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van der Waals coefficients for positronium interactions with atoms
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The random-phase approximation with exchange (RPAE) is used with a B-spline basis to compute dynamic
dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr, Cd, and
Ba). From these, values of the van der Waals C6 constants for positronium interactions with these atoms are
determined and compared with existing data. After correcting the RPAE polarizabilities to fit the most accurate
static polarizability data, our best predictions of C6 for Ps–noble-gas pairs are expected to be accurate to within
1%, and to within a few percent for the alkaline-earth metals. We also used accurate dynamic dipole polarizabilities
from the literature to compute the C6 coefficients for the alkali-metal atoms. Implications of increased C6 values
for Ps scattering from more polarizable atoms are discussed.
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I. INTRODUCTION

The interaction of positronium (Ps) with matter and
antimatter is an important topic [1] with applications in
many areas of physics. For instance, the proposed AEgIS
experiment would produce an antihydrogen beam from the
reaction between Ps and antiprotons [2,3]. The antihydrogen
would then be used to determine whether antimatter is affected
by gravity in the same manner as matter. Ps is widely
used in condensed-matter physics to determine pore sizes
in microporous materials and probe intermolecular voids
in polymers [4]. Further, positronium formation in porous
materials is used to study its interactions with gases, e.g., xenon
[5,6], or the interaction between the Ps atoms themselves, with
prospects of Bose-Einstein condensation at room temperature
[7,8].

Here we focus on the problem of Ps-atom scattering.
Compared with electron-atom scattering and positron-atom
scattering, Ps-atom scattering is more difficult to treat theoret-
ically, chiefly because both scattering objects have an internal
structure [9].

In this paper we address low-energy Ps scattering from
closed-shell atoms. The short-range Ps-atom interaction is
repulsive, because (a) the Pauli principle prevents the electron
from Ps from entering the volume occupied by the atomic
electrons, and (b) the positron is repelled by the screened
potential of the atomic nucleus. However, low-energy Ps-atom
scattering is also affected by the attractive long-range van der
Waals interaction [10–12].

The van der Waals potential behaves asymptotically as

U (R) � −C6

R6
, (1)

where R is the distance between the centers of mass of
the atoms, and C6 is the van der Waals coefficient for the
atomic pair [13]. The value of the C6 constant determines
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the scattering phase shifts for the partial waves l � 2 at low
collision momenta k [14],

δl(k) � 6C6πk4

(2l − 3)(2l − 1)(2l + 1)(2l + 3)(2l + 5)
. (2)

The magnitude of C6 also affects the Ps-atom scattering length
A. This can be seen from the estimate which uses the potential
(1) with a cutoff at R = R0 [12],

A =
(

mC6

8

)1/4
�(3/4)

�(5/4)

J−1/4(x0)

J1/4(x0)
, (3)

where m is the reduced mass, � and Jν are the gamma and
Bessel functions, respectively, and

x0 =
√

mC6/2

R2
0

. (4)

The dimensional prefactor in Eq. (3) determines the character-
istic magnitude of the scattering length in atomic collisions
[15]. We use atomic units throughout, so that m = 2 for
Ps-atom collisions.

Mitroy and Bromley [16] calculated the C6 constants for
Ps–noble-gas interactions using the oscillator strength sum
rule. For He they calculated the oscillator strengths via the
configuration interaction (CI) method, while for Ne, Ar, Kr,
and Xe recourse was made to a set of published pseudo-
excitation energies and dipole oscillator strengths [17], leading
to semiempirical (SE) values of C6. In a recent paper devoted to
Ps scattering from Ar and Kr [12], Fabrikant and Gribakin used
the London formula [18] for the van der Waals coefficients,
which gave values about 6% greater than those from Ref. [16].
To estimate the effect of this difference on Ps-atom scattering
we can use Eq. (3), which shows that for Ar (R0 = 2.67 a.u.
[12]), changing C6 from 152 [12] to 144.1 a.u. [16] increases
the scattering length by about 4%. This example shows that
Ps-atom scattering is sensitive to the value of the van der Waals
coefficient.

In this work, we employ the random-phase approximation
with exchange (RPAE) [19,20] to calculate the dynamic
dipole polarizabilities of the noble-gas atoms and several
other closed-shell atoms with an ns2 valence shell. These
are used to calculate the C6 constants for Ps-atom pairs
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ab initio. The RPAE method, often called simply the random-
phase approximation (RPA), is equivalent to the (linearized)
time-dependent coupled Hartree-Fock method (see, e.g.,
Ref. [21] and references therein). RPAE is known to provide
a good description of atomic polarization for the noble gases
[22,23]. To make our predictions more accurate, we use scaling
based on the known values of the static dipole polarzabilities.
As a result, we expect our final C6 constants to be accurate to
better than 1%. As far as we are aware, there are currently
no published values of C6 for Ps interactions with other
closed-shell atoms. Although the RPAE method is less accurate
for them, our final C6 values provide a good benchmark for
future work.

II. THEORY

The van der Waals coefficient for a pair of atoms, A and B,
may be expressed as

C6 = 2

3

∑
n,n′

|〈nA|D|0A〉|2|〈n′
B |D|0B〉|2

EA
n + EB

n′ − EA
0 − EB

0

(5)

where D is the electric dipole operator, the matrix elements
are taken between the ground (0) and excited (n or n′) states of
the atoms, with respective energies E0 and En, and the extra
indices (A or B) are used to distinguish the two atoms [24].

There exists a useful relationship connecting dynamic po-
larizabilities of imaginary frequencies with C6. The dynamic
polarizability at frequency ω is given by

α(ω) = 1

3

∑
n

( |〈n|D|0〉|2
En − E0 − ω − iδ

+ |〈n|D|0〉|2
En − E0 + ω + iδ

)
,

(6)
where δ is a positive infinitesimal, which determines the sign
of the imaginary part of α(ω) for real frequencies ω above
the ionization potential of the atom. The ground-state static
polarizability is α(0). The van der Waals constant can be
obtained by integrating the product of dynamic polarizabilities
of atoms A and B over imaginary frequencies, viz.,

C6 = 3

π

∫ ∞

0
αA(iω)αB(iω) dω. (7)

This result is very convenient because the integration path
avoids the poles of the dynamic polarizabilities.

For hydrogenic atoms (such as H and Ps), the polarizabil-
ities are given by Eq. (6) with the dipole matrix elements re-
placed by the single-particle radial matrix elements 〈np|r|1s〉,
where r is either the electron-proton (H) or electron-positron
(Ps) separation. Thus, for an interacting pair of hydrogenic
atoms, an essentially exact value of C6 can be found. However,
for many-electron atoms (such as the noble gases) the single-
particle (e.g., Hartree-Fock) method does not give accurate
results. RPAE is a many-body theory method that is known to
give accurate dipole polarizabilities and photoionization cross
sections for closed-shell atoms, with the best results for the
noble gases [19,22].

After the RPAE equations have been solved (see the
appendix for details), the dynamic dipole polarizability is

calculated as

α(ω) = −2

3

⎛
⎝ ∑

ν>F,μ�F

〈μ‖d‖ν〉〈ν‖A(ω)‖μ〉
ω − εν + εμ

+
∑

ν�F,μ>F

〈μ‖d‖ν〉〈ν‖A(ω)‖μ〉
−ω + εν − εμ

⎞
⎠, (8)

where 〈ν‖d‖μ〉 is the reduced Hartree-Fock dipole matrix
element, 〈ν‖A(ω)‖μ〉 is the reduced RPAE dipole matrix
element, εν is the energy of state ν, and iδ has been dropped
for ω = 0 and imaginary frequencies. In Eq. (8) the sums over
the magnetic quantum numbers and spins have already been
carried out, and the remaining sums are over the occupied
(�F ) or empty (>F ) electron orbitals ν and μ.

Note that the matrix element 〈ν‖A(ω)‖μ〉 is calculated off-
mass-shell, i.e., for ω 	= εν − εμ, and the energy differences in
the denominator of Eq. (8) contain the unperturbed Hartree-
Fock energies. An equivalent but more complicated approach
would be to calculate these amplitudes on the mass shell,
simultaneously with finding the RPAE excitation energies
ωνμ. In this case the expression for the polarizability would
contain modulus squared values of 〈ν‖A(ωνμ)‖μ〉 and the
RPAE excitation energies in the denominator [cf. Eq. (6)].

The expressions for C6 and α(ω) contain sums over the
complete sets of excited states. In real systems, such as atoms,
these sets of excited states include both discrete, Rydberg
states and the continuum of states with energies above the
ionization potential of the system. By using B splines in a box
of finite radius R (see Sec. III), the continuum is discretized in
a way that allows accurate numerical calculations of the static
polarizability (for ω = 0), α(iω), and C6.

III. NUMERICAL RESULTS

We use B splines to construct either hydrogenic or Hartree-
Fock basis states. They provide an accurate representation
of the ground-state orbitals and an effective spanning of the
continuum, due to an appropriately chosen radial grid (see,
e.g., Ref. [25]). In this work we use a set of 60 B splines of
order 9, with a box size of R = 15 a.u. The absence of true
continuum states does not affect the accuracy of α(0) or α(iω)
because all excitations in the sums are virtual (the denominator
never vanishes); such virtually excited electrons cannot travel
away from the atom, so describing them by a set of states in a
box is accurate.

We calculated static dipole polarizabilities of H, Ps, the
noble gases, and other closed-shell atoms and compared them
with exact theoretical or best experimental or theoretical values
to verify the validity of the method. Then we computed
dynamic polarizabilties α(iωj ) over a discrete set of imaginary
frequencies

ωj = ω0[eσ (j−1) − 1], j = 1, . . . ,Nω, (9)

where ω0, Nω, and ωmax ≡ ωNω
are parameters, and

σ = 1

Nω − 1
ln

(
ωmax

ω0
+ 1

)
. (10)
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TABLE I. Static dipole polarizabilities α(0) for the noble gases
and other closed-shell atoms (in atomic units).

Atom Present RPAEa RRPAb Rec.c F d

He 1.322 1.256 1.322 1.384 1.047
Ne 2.377 2.30 2.38 2.67 1.123
Ar 10.758 10.73 10.77 11.07 1.029
Kr 16.476 16.18 16.47 17.075 1.036
Xe 27.099 27.98 26.97 27.815 1.026
Be 45.604 43.2 45.6 37.76 0.828
Mg 81.502 81.2 71.3 0.875
Ca 183.965 166 182.8 157.1 0.854
Zn 54.046 50.8 38.8 0.718
Sr 242.240 232.6 197.2 0.814
Cd 75.958 63.7 49.65 0.654
Ba 355.735 324.0 273.5 0.769

aThis implementation [22,26] suffers from poor convergence.
bRelativistic random-phase approximation [27].
cRecommended experimental values for the noble gases, Zn, and Cd
[28], and calculated values for alkaline-earth-metal atoms [29].
dF is the ratio of the recommended value to the present value.

Values of ω0 = 0.01 a.u., Nω = 100, and ωmax = 1000 a.u.
have been used throughout; these values were chosen to
provide accurate, converged values of the integral (7). For H
and Ps the polarizabilities were calculated essentially exactly;
for the noble gases and ns2 atoms they were calculated using
the RPAE method. The values of C6 were then found by
evaluating Eq. (7) numerically.

The static polarizability obtained for H was α(0) =
4.500 a.u., in perfect agreement with the exact value of
α(0) = 9/2 [24]. The B-spline states and dipole amplitudes
for hydrogen can be used to calculate α(0) and α(iω) for Ps
by halving the energies and doubling the amplitudes (due to
the reduced mass of Ps being a half of that of H). This gives
α(0) = 36 a.u. for Ps.

Table I shows the static polarizabilities obtained using
RPAE for the noble-gas and other closed-shell atoms. The
RPAE static polarizabilities for the noble-gas atoms agree
to 0.1% or better with the results of the equivalent coupled
Hartree-Fock calculation [30], with the present values for Kr
and Xe being more accurate numerically due to better conver-
gence. The results are also in agreement with calculations made
using the relativistic random-phase approximation (RRPA,
which also accounts for exchange). Larger differences are to be
expected for heavier atoms, since relativistic corrections scale
as (Z/137)2, where Z is the nuclear charge. However, even
for the heaviest noble-gas atom (Xe) the difference is less than
0.5%. This bodes well for using the dynamic polarizabilities
to calculate the C6 coefficients for Ps–noble-gas pairs. As
expected, for the ns2 atoms, the agreement with RRPA is
poorer for heavier atoms (since the s electrons are affected
more strongly by the relativistic corrections). The agreement
with the experimental values for these atoms is also poorer in
general. This is related to the smaller ionization potentials
and larger effect of the non-RPA correlation effects (e.g.,
two-hole–two-particle excitations) in these systems.

The results for C6 are displayed in Table II. Our calculations
which use RPAE polarizabilities (“Present” in Table II)

TABLE II. van der Waals C6 coefficients for various Ps-X systems
(in atomic units).

System Present Best predictiona CI/SEb Otherc

Ps-H 34.785 34.785 34.785
Ps-Ps 207.969 207.966
Ps-He 12.849 13.41 13.37 14.6
Ps-Ne 23.759 26.48 26.74 27.4
Ps-Ar 96.212 98.69 98.50 104.4
Ps-Kr 142.185 146.71 144.1 155.1
Ps-Xe 222.355 227.38 221.6 240.6
Ps-Be 241.416 208.6 210.7 294.3
Ps-Mg 393.484 355.8 357.9 506.4
Ps-Ca 717.138 641.5 636.6 1079
Ps-Zn 300.756 231.4 303.8
Ps-Sr 885.425 767.5 763.8 1144
Ps-Cd 397.161 285.0 381.6
Ps-Ba 1164.429 975.6 966.8 1569

aObtained by scaling the matrix elements by ξ and energies by 1/ξ 2,
where ξ = F 1/4 (see Table I).
bComputed in Ref. [16] using the configuration interaction (CI) for
He and semiempirical dipole polarizabilities [17] for the noble gases,
and in the present work, using empirically adjusted CI + many-body
theory data [31] for the alkaline-earth-metal atoms.
cFor Ps-H and Ps-Ps: pseudostate calculations [32]. For all other
systems, these values were calculated using the London formula
C6 = 3αAαBIAIB/[2(IA + IB )], where αA,B and IA,B are the static
dipole polarizabilities and ionization potentials of the atoms [18]; the
polarizabilities were taken from Ref. [28] and the ionization potentials
were taken from Ref. [33].

are in close agreement with the SE calculations of Mitroy
and Bromley [16] for the heavier noble gases; the relative
differences for Ps-Ar, Ps-Kr, and Ps-Xe are 2%, 1%, and
0.3% respectively. For the lighter noble gases the differences
are more significant: 4% and 11% for Ps-He and Ps-Ne,
respectively. This discrepancy can be traced back to the
fact that the RPAE polarizabilities for He and Ne are lower
than the recommended values, by 5% and 12%, respectively.
Correcting the RPAE C6 value for He by the corresponding
factor F (see Table I) gives C6 = 13.45, which agrees with the
accurate value for He from Ref. [16] to within 0.6%. However,
this crude scaling violates the Thomas-Reiche-Kuhn sum rule,
which in the limit of large ω gives

α(iω) � N

ω2
, (11)

where N is the number of atomic electrons. A better ap-
proach is to scale the dipole matrix elements 〈μ‖d‖ν〉 and
〈ν‖A(ω)‖μ〉 in Eq. (8) by some factor ξ and the orbital
energies in the denominators by 1/ξ 2. In this case the sum
rule is preserved, while the calculated static polarizability
is scaled by ξ 4. The appropriate choice of ξ is given by
ξ = F 1/4. Carrying out this scaling for He gives C6 = 13.41,
which agrees with the value from Ref. [16] to within 0.3%.
This is a clear improvement over the simple scaling by a factor
of F .

As a further test of the effectiveness of this scaling, the
C6 constants were calculated for pairs of the noble-gas and
alkaline-earth-metal atoms. These were compared with data
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TABLE III. van der Waals C6 coefficients for Ps-alkali-metal
systems (in atomic units).

Atom Li Na K Rb Cs Fr

C6
a 462.8 505.7 765.7 846.8 1014.6 937.5

C6
b 463.9 507.2 768.3 844.8

aComputed in the present work using empirically adjusted many-body
theory data [31].
bSemiempirical calculations from Ref. [16].

from Ref. [31], wherein several relativistic many-body theory
[29,34] and semiempirical [17] methods were employed. For
noble-gas pairs, the minimum relative difference was 0.7%
(for Ar-Ar), while the maximum (for Xe-Xe) was 5% (due
to the use of the dynamical polarizability “normalized” to
α(0) = 27.16 a.u. [17] in Ref. [31], which is lower than
the recommended experimental value α(0) = 27.815 a.u. that
we use). For alkaline-earth-metal pairs, the comparison was
actually better; the relative differences ranged from 0.2% (for
Sr-Sr) to 2.1% (for Be-Be). This is because we use the same
recommended static polarizabilities for the alkaline-earth-
metal atoms as in Ref. [31].

Scaling the ab initio RPAE polarizabilities in this way
produces our best prediction of the C6 van der Waals
coefficients (third column in Table II). We expect that for
the noble-gas atoms these values are accurate to within 1%.
The relative differences from the CI/SE values of Mitroy and
Bromley for Ne, Ar, Kr, and Xe are 1%, 0.2%, 1.8%, and
2.6%, respectively. We believe that for Kr and Xe our best
prediction values are superior to those of Ref. [16], where the
polarizabilities from Ref. [17] were used.

Since the RPAE polarizabilities of the ns2 atoms are greater
than the recommended values of α(0) by 15–50%, the calcu-
lated ab initio C6 values significantly overestimate the true van
der Waals coefficients. Given the larger discrepancy for α(0),
the use of scaling is a cruder procedure for improving the C6

constants. In this case we believe that our best predictions are
accurate within few percent for the alkaline-earth-metal atoms,
and within 5–10% for Zn and Cd.

As a further test of the accuracy of our predictions for
the alkaline-earth-metal atoms, we used tabulated dynamic
dipole polarizabilities from Ref. [31], which were computed
using a combination of relativistic methods, including RRPA,
CI, and many-body perturbation theory, and further adjusted
using accurate theoretical and experimental data. These values
are presented in the fourth column of Table II (lower half). In
all cases the difference between these values and our best
predictions does not exceed 1%. Reference [31] also presents
accurate dynamic dipole polarizabilities for the alkali-metal
atoms, and we used these to compute the C6 coefficients
for the Ps-alkali-metal pairs; see Table III. Comparison
with semiempirical calculations presented in Ref. [16] shows
excellent agreement.

Looking at the last column in Table II, we see that the
London formula does a reasonable job for the more rigid
noble-gas atoms but tends to overestimate the C6 coefficients
significantly for Ps interacting with ns2 atoms.

IV. CONCLUSIONS

Dynamic dipole polarizabilities over a range of imaginary
frequencies were computed numerically exactly for H and Ps,
and by using RPAE for the noble-gas atoms and several other
closed-shell atoms. The static polarizabilities for the noble
gases deviated from relativistic (RRPA) calculations by no
more than 0.5%, and for Ar, Kr, and Xe were within few
percent of experimental values. There was greater error for
the other closed-shell atoms, but this was expected; the RPAE
method is most suitable for the noble gases.

Ab initio calculations of the van der Waals C6 coefficients
for Ps interactions with these atoms were performed. For the
heavier noble gases, close agreement is observed with previous
calculations [16]. For the lighter noble gases (He and Ne) the
discrepancies are more significant, which motivates a sum
rule preserving scaling of the dynamical polarizabilities to
calculate C6 values. Though these data are no longer ab initio,
they are expected to the be the most accurate values currently
available. For the most part, our values of C6 for Ps interactions
with the ns2 atoms differ significantly from the London values.
Here our best predicitons are less accurate (few to 10%), but as
there are no other theoretical calculations of these data, these
values will provide a useful benchmark for future calculations.

It is interesting to discuss the implications of the C6 values
for low-energy Ps-atom scattering. It is clear from Table II
that for more polarizable (and more weakly bound) atoms, the
C6 values are greater, and that Ps will experience a stronger
van der Waals attraction to these atoms. However, it can be
seen from the parameter x0, Eq. (4), which determines the
scattering length in Eq. (3), that the increase in C6 for such
atoms is offset by the increase in the parameter R0, which
is proportional to the atomic radius. In fact, the latter effect
makes x0 smaller for the more weakly bound atoms. As a
result, the more polarizable atoms are not more attractive for
Ps, and will likely have larger positive Ps scattering lengths,
due to their larger geometric sizes. This also shows that Ps
binding to closed-shell neutral atoms does not occur. Note that
this is in contrast to many open-shell atoms, e.g., Na, Cu, or
the halogens, which do bind Ps by accommodating the extra
electron in their valence shell [35,36]. However, even in the
case of Ps bound states with alkali-metal atoms, the binding
energy decreases in the sequence PsLi, PsNa, PsK [37], in
spite of the greater values of the C6 constant. This is primarily
the effect of the increasing atomic radius.

It is hoped that the results presented here will be useful for
studies of Ps-noble-gas-atom scattering and Ps interactions
with ns2 and alkali-metal atoms. With little extra work, the
method can be extended to calculate quadrupole and higher
polarizabilities and determine higher-order van der Waals
coefficients C8 and C10.
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APPENDIX: RPAE EQUATIONS

In the equations for the RPAE dipole matrix element
〈ν|A(ω)|μ〉, we must distinguish between the hole states, i.e.,
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states below the Fermi level F , and particle states, i.e., states above the Fermi level F . For ν > F and μ � F we have

〈ν|A(ω)|μ〉 = 〈ν|d|μ〉 +
⎛
⎝ ∑

ν ′>F,μ′�F

−
∑

μ′>F,ν ′�F

⎞
⎠ 〈νμ′|V |ν ′μ〉 − 〈μ′ν|V |ν ′μ〉

ω − εν ′ + εμ′ + i(1 − 2nν ′ )δ
〈ν ′|A(ω)|μ′〉, (A1)

and a formally identical equation for ν � F and μ > F .
In Eq. (A1), 〈ν|d|μ〉 is the Hartree-Fock dipole matrix element; 〈νμ′|V |ν ′μ〉 is the Coulomb matrix element, which is defined

by

〈νμ′|V |ν ′μ〉 ≡
∫∫

ϕ∗
ν (r)ϕ∗

μ′(r′)
1

|r − r′|ϕν ′(r′)ϕμ(r) d3r d3r′, (A2)

where the ϕν are single-particle wave functions; εν ′ is the energy of state ν ′; and

nν ′ =
{

0 for ν ′ > F,

1 for ν ′ � F.
(A3)

By separating the angular and radial parts in the electronic states ϕ, and then integrating over the angular variables and summing
over the magnetic quantum numbers and spins, one obtains the RPAE equations for the reduced amplitudes 〈ν‖A(ω)‖μ〉 in the
form

〈ν‖A(ω)‖μ〉 = 〈ν‖d‖μ〉 + 1

3

⎛
⎝ ∑

ν ′>F,μ′�F

−
∑

μ′>F,ν ′�F

⎞
⎠ 〈νμ′‖U1‖ν ′μ〉〈ν ′‖A(ω)‖μ′〉

ω − εν ′ + εμ′ + i(1 − 2nν ′ )δ
, (A4)

where

〈ν‖d‖μ〉 = (−1)lν
√

[lν][lμ]

(
lν 1 lμ
0 0 0

)∫ R

0
Pν(r)rPμ(r) dr, (A5)

〈νμ′‖U1‖ν ′μ〉 = 2〈νμ′‖V1‖ν ′μ〉 − 3
∞∑
l=0

(−1)l−1

{
lν 1 lμ
lμ′ l lν ′

}
〈νμ′‖Vl‖μν ′〉, (A6)

and

〈νμ′‖Vl‖ν ′μ〉 = √
[lν][lμ′][lν ′][lμ]

(
lν l lμ
0 0 0

)(
lμ′ l lν ′

0 0 0

) ∫ R

0

∫ R

0
Pν(r)Pμ′(r ′)

rl
<

rl+1
>

Pν ′ (r ′)Pμ(r) dr dr ′ (A7)

are the reduced dipole and Coulomb matrix elements, Pν(r) are radial wave functions, [lν] ≡ 2lν + 1, r> = max(r,r ′), r< =
min(r,r ′), and R is the box radius in our B-spline-basis implementation.

Introducing vectors x and y for 〈ν‖A(ω)‖μ〉 for ν > F , μ � F and ν � F , μ > F , respectively, we can write Eq. (A4) in
block matrix form as (

x

y

)
=

(
d

d

)
+

(
U1a U1b

U1b U1a

)(
χ1 0
0 χ2

)(
x

y

)
, (A8)

where χ1 and χ2 are the diagonal matrices of energy denominators, d is the vector of Hartree-Fock dipole matrix elements, and
the matrices U1a and U1b represent the two terms in Eq. (A6). This linear equation can be solved numerically for the RPAE dipole
amplitudes, and then the dynamic dipole polarizability is calculated from Eq. (8).
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