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Level-resolved quantum statistical theory of electron capture into many-electron compound
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J. C. Berengut, C. Harabati, V. A. Dzuba, and V. V. Flambaum
School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

G. F. Gribakin
School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, Northern Ireland, United Kingdom

(Received 4 November 2015; published 30 December 2015)

The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very
large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the
processes which involve such states requires the use of a statistical theory. Electron capture into these “compound
resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct,
radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous sta-
tistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals,
followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a
configuration-average approach because it neglects potentially important effects of spectator electrons and con-
servation of total angular momentum. In this work we develop a statistical theory which considers electron capture
into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply
this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects
from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the
fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.
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I. INTRODUCTION

Many-body quantum chaos occurs in the excited states of
all medium and heavy nuclei [1,2], e.g., the states formed
by neutron capture, known as compound resonances. It is
also typical in atoms and ions with open f shells. In
particular, their excitation spectra demonstrate characteristic
Wigner-Dyson level spacing statistics, and the statistics of
electromagnetic transition amplitudes is close to Gaussian;
both are signatures of quantum chaos [3–6]. It has been shown
that the chaotic mixing of many-electron excited configuration
states in such atoms and ions leads to eigenstates that cannot
be described using an “exact” theory [3]. Precise description
of these chaotic eigenstates is impossible even in principle,
since any minor perturbation (e.g., higher-order correlation
corrections or relativistic effects, or neglected interaction with
the environment) would lead to radically different mixing of
the basis states, due to exponentially small level spacings. In
such cases a theory expressed in terms of the exact eigenstates
of the Hamiltonian cannot be applied.

Instead, the properties of these systems can be described
using a statistical theory of finite quantum systems. This
is analogous to classical statistical theories such as the
thermodynamics of a hot gas: While the motion of any
individual particle cannot be known, the bulk properties such
as temperature and pressure can readily be understood by
averaging over the many microscopic states corresponding to a
small energy interval. Similarly, without an exact description
of the compound resonances that describe our system, we
can nevertheless calculate properties such as ionization,
recombination, and scattering cross sections, using a quantum
statistical theory that averages over a small energy interval
containing many resonances. The energy spacing between the
compound resonances is usually very small (in our example ion

W19+ it is <10−6 eV) so in experiments this averaging appears
naturally. Earlier papers [7,8] and reviews [9,10] present the
development of the statistical theory for the matrix elements
between chaotic compound states. This theory enables one to
calculate mean values of orbital occupation numbers, squared
electromagnetic amplitudes, electronic and electromagnetic
widths, and enhancement of weak interactions in chaotic
excited states of nuclei, atoms, and multicharged ions [3–23].

One use of the statistical theory has been to understand the
properties of ions with open f shells. We consider one of these
processes in detail: the recombination of W20+ with an incident
electron to form W19+ [24]. Tungsten is a major candidate
for the plasma facing components of ITER and future fusion
reactors, and processes involving highly charged tungsten ion
are critical for the properties of fusion plasmas [25,26]. In
the recombination process the incident electron excites one or
more target electrons to form a quasistationary resonant state
(in simple systems this is a doubly excited state), which then
emits a photon, completing the radiative electron capture [27].
Consideration of this system was motivated by an extant dis-
crepancy, that the measured recombination cross section was
much larger than those predicted by very extensive calculations
[28], particularly close to the ionization threshold (i.e., for low
incident-electron energies). Use of a statistical description of
the compound resonances resolved the discrepancy [11,29]. A
similar enhancement of the recombination due to compound
resonances was found earlier in the isoelectric ion Au25+ [30]
and explained by the statistical theory [5].

Statistical theory calculations consider the problem as
electron capture into “doorway” dielectronic states, which
then spread into chaotic compound resonances due to residual
interaction with other valence electrons. This leads to long-
time trapping of the incident electron, allowing for the radiative
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decay to complete the recombination process. Of essential
importance is that once the compound resonance has formed,
the energy is distributed among the many valence electrons,
strongly reducing the probability of autoionization and boost-
ing the probability of photoemission and ultimate recombina-
tion to be essentially unity (at least near the ionization thresh-
old). Therefore, the problem reduces to calculation of capture
into the doorway states, or equivalently, the autoionization rate
of the doorways. Further discussion of the role of doorway
states in stochastic processes in quantum chaotic systems
including atoms, molecules, and nuclei can be found in [31].

Earlier statistical theories [5,11,29] treated this problem by
combining a many-body theory approach for the calculation
of the amplitude for the two active electrons to populate
various single-particle orbitals, with the idea of spreading of
the two-electron states into chaotic many-electron eigenstates
(i.e., compound resonances). The latter process was parame-
terized through its rate (known as the spreading width �spr),
which was estimated by constructing limited configuration-
interaction Hamiltonian matrices. In what follows we refer to
this approach as MBQC (for “many-body quantum chaos”)
statistical theory. The above treatment of the dielectronic part
of the problem can be described as a “configuration average”
approach. We defer details to the next section, but, in summary,
the doorways into the compound resonances were treated using
two-electron wave functions, while the remaining electrons
(e.g., 4f 7 in W19+) were treated as “spectators,” which formed
a spherically symmetric frozen core, and remained unchanged
between the target and doorway states. Our aim is to test this
assumption.

In this work we present a “level-resolved” quantum sta-
tistical theory in which the doorway wave functions include
the spectator electrons of the open f shell and are constructed
with full account of the total angular momentum of the system.
We compare the electron capture cross sections calculated
using our level-resolved theory with those of the configuration-
averaged MBQC theory. In particular, we examine the effect of
the 4f 7 core on the autoionization rates of the W19+ doorways.
We show that, despite the strong doorway selectivity enforced
by the 4f 7 electrons, when integrating over all doorways the
effect of this core can be neglected in calculation of the capture
cross section.

II. THEORY

In atomic systems that do not exhibit quantum chaotic
eigenstates which involve many active electrons, recombina-
tion with a target Aq+ is usually considered as a sum of direct,
radiative recombination (RR) and dielectronic recombination
(DR). The latter is a two-stage process in which an incident
electron is captured into a dielectronic resonance of the
compound ion, with accompanying promotion of one of the
valence electrons in the target,

Aq+ + e− → A(q−1)+∗∗. (1)

This is followed by either autoionization, in which case there
is no recombination, or radiative relaxation to a level below
the ionization threshold, which completes the recombination.
The DR process often dominates over the single-electron RR
mechanism. Experimentally, much progress has been made

due to the use of ion storage rings and electron-beam ion
traps (EBITs) [32–34]. On the theory side, a number of
computational approaches have been used successfully to
describe DR for many simpler ions and to produce data for
plasma modeling (see [35–45] and references therein).

For more complex targets such as Au25+, U28+, or W20+

considered in this work, conventional DR calculations under-
estimate the measured recombination rates, particularly at low
incident-electron energy [28,46]. Experiment shows that the
recombination rates at low (∼1 eV) electron energies in these
ions exceed the direct RR rates by two orders of magnitude
or more. At the same time the measured rates do not show
the sharp resonance structure normally associated with DR
[24,30,47].

The MBQC statistical theory quantitatively explains the
discrepancy as being due to a very dense spectrum of com-
pound resonances: multiply excited, strongly mixed, chaotic
many-electron eigenstates. Note that this situation is distinct
from trielectronic recombination (i.e., via resonances with
three excited electrons) that has been experimentally observed
in Be-like ions (N3+, O4+, Cl13+) [48,49]. In these systems
electron capture into a Rydberg state was accompanied
by simultaneous 2s2 → 2p2 promotions. Trielectronic and
quadruelectronic recombination involving resonances with
inner-shell excitations was also observed in Li-like to N-like
ions of Ar, Fe, and Kr [50–52]. However, in the case of chaotic
compound resonances one cannot separate out contributions
of dielectronic, trielectronic, or any other specific resonances
with a fixed number of excited electrons. Indeed, a compound
state is a chaotic mixture of the states with two, three, four,
and even five excited electrons, and contributions from all of
these configurations are mixed and interfere in the capture
amplitude.

Nevertheless, the dielectronic states play a special role.
In the temporal picture, after the capture process (1), the
dielectronic excitation, which is not an eigenstate of the
Hamiltonian, redistributes its energy by populating nearby
eigenstates. This can be thought of as a “chain reaction” in
which the excited electrons collide with ground-state electrons
and excite them. Alternatively, this can be thought of as state
mixing in the Hilbert space, leading to “spreading” of the initial
state and distribution of the expansion coefficients in the exact
Hamiltonian basis (i.e., that of the compound resonances).

After this process has occurred, the initial electron energy
is distributed among a great number of excited electrons. In a
classical picture one can imagine that the probability of any one
electron gathering enough energy to overcome the ionization
barrier and escape is small. (This is the “trapped billiards”
picture used by Bohr to explain the effect of compound
resonances in nuclei [53].) From a quantum perspective, there
are many channels open for radiative decay and relatively few
available for autoionization. In any case, after the internal
“spreading” decay of the dielectronic state, the probability of
autoionization is strongly suppressed. This is in stark contrast
to the standard DR in simple ions where the autoionization
rate is typically much larger than the radiative rate.

A more sophisticated treatment of the radiative rate within
the quantum statistical theory is provided in [29], where
the fluorescence yield wf (i.e., the relative probability of
photoemission) was calculated for incident-electron energies
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ε � 120 eV. It was found that wf ∼ 1 for ε → 0, but its
value quickly drops to around 0.2 for ε � 15 eV. This work
is concerned with the electron capture cross section, and we
defer complete consideration of the fluorescence yield to a
later study. Rather, we will extract the fluorescence yield by
comparison of our capture cross section with experiment. The
basic equations used to describe resonant recombination are
given in the Appendix. Note that in this work we use atomic
units unless otherwise stated, and all energies are taken with
respect to the W19+ ionization threshold, Ei .

A. Statistical theory of electron capture
into compound resonances

Let us write the resonant recombination cross section (A8)
in the form

σ = 2π2

k2

∑
ν

(2Jν + 1)

2(2Ji + 1)

�
(a)
νi �(r)

ν

�ν

1

2π

�ν

(ε − εν)2 + �2
ν

/
4
,

(2)
where i indicates the initial target state, the sum is over reso-
nances ν with energy εν (relative to ionization threshold), �(a)

νi

is the autoionization width ν → i (or equivalently the capture
width i → ν), �(r)

ν is the total radiative decay width, and �ν

is the total width of the resonance including all autoionization
and radiative decay channels. If the fluorescence yield

ω
(ν)
f = �(r)

ν

�ν

(3)

does not change significantly among the resonances, it can be
factored out as σ = ωf (ε)σc, where

σc = π2

k2

∑
ν

(2Jν + 1)

(2Ji + 1)
�

(a)
νi

1

2π

�ν

(ε − εν)2 + �2
ν

/
4

(4)

is the capture cross section.
When the mixing is strong, each eigenstate

|ν〉 =
∑

k

C
(ν)
k |ϕk〉 (5)

contains a large number N of principal components |ϕk〉,
i.e., basis states for which the expansion coefficients have
typical values C

(ν)
k ∼ 1/

√
N [note the normalization condition

Eq. (7)]. The number of principal components can be estimated
as N ∼ �spr/D, where D is the mean level spacing between
the basis states (or eigenstates). Such eigenstates are called
compound states. Owing to the strong mixing, the only
good quantum numbers that can be used to classify the
eigenstates are the exactly conserved total angular momentum,
its projection, and parity JπM . The basis set in (5) is formed by
constructing linear combinations of Slater determinants, which
give eigenstates of Ĵ 2 and Ĵz with eigenvalues J (J + 1) and
M , respectively. Such basis states ϕk with definite J and M

are known as configuration state functions (CSFs). Owing to
the chaotic nature of the eigenstates, the capture cross section
can be statistically averaged by substituting expansion (5) into
(4), and using the properties of the expansion coefficients,

C
(ν)
k C

∗(ν)
k′ = |C(ν)

k |2δkk′ . A full exploration of the statistical
properties of the mixing coefficients C

(ν)
k can be found in [11].

The energies Ek = 〈ϕk|Ĥ |ϕk〉 of the principal basis com-
ponents lie within the spreading width of the eigenenergy Eν

of the compound state, |Ek − Eν | � �spr. The components
outside the spreading width decrease quickly, so that they
do not contribute much to the normalization. For Ek − Eν ≈
const, the components of the chaotic eigenstates have the
statistics of Gaussian random variables with zero mean. The
variation of their mean-squared value with energy is described
well by the Breit-Wigner profile,

∣∣C(ν)
k

∣∣2 = N−1
�2

spr/4

(Ek − Eν)2 + �2
spr

/
4
, (6)

with N = π�spr/2DJν
fixed by normalization∑

k

∣∣C(ν)
k

∣∣2 

∫ ∣∣C(ν)

k

∣∣2
dEk/DJν

= 1. (7)

In fact, Eq. (6) implies that the system is ergodic: All
components near a given energy that have the same exact
quantum numbers (Jπ ,M) are mixed with the same average
weight.

The sum in Eq. (4) is over the resonances with different
J , and we can consider the contribution of each J separately.
For a fixed J , the sum over the dense spectrum of resonance
energies Eν can be replaced by integration,∑

ν

−→
∫

dEν

DJ

. (8)

Consequently, we obtain the statistical capture cross section
as a sum over the CSF basis states,

σc = π2

k2

∑
k

(2Jk + 1)

(2Ji + 1)
�

(a)
ki

1

2π

�spr

(ε − εk)2 + �2
spr/4

, (9)

where εk = Ek − Ei and

�
(a)
ki = 2π

∑
j l

|〈(εkj l; Ji)JkMk|V̂ |ϕk〉|2. (10)

The total capture strength of any electronic configuration
τ is proportional to the sum over all CSFs k that belong to
configuration τ ,

Sτ (ε) =
∑
k∈τ

2Jk + 1

2Ji + 1
�

(a)
ki

1

2π

�spr

(ε − εk)2 + �2
spr

/
4
. (11)

The integral strength,

Iτ =
∫

Sτ (ε)dε =
∑
k∈τ

2Jk + 1

2Ji + 1
�

(a)
ki , (12)

is determined by the autoionization widths (10). Comparing
with Eq. (9) we see that Sτ (ε) gives the contribution of
configuration τ to the reduced capture cross section σck

2/π2.

B. Configuration-averaged statistical theory

A further approximation may be made as the two-body
Coulomb interaction has nonzero value only between the
determinants which differ from the target and incident by
most two orbitals (the doorways). These configurations may
be written in the single-particle basis as τ → αβγ −1. We treat
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these as the only active electrons, assuming that all other
electrons are spectators. We construct CSFs k within τ and

perform the summation over all Jk for a single multiplet
within (9),

∑
Jk

(2Jk + 1)|〈(εj l; γ )JkMk|V |(α; β)JkMk〉|2 =
∑

λ

Xλ[εγ αβ]2

2λ + 1
+

∑
λλ′

{
jγ

j

jβ

jα

λ

λ′

}
Xλ[εγ αβ]Xλ′[εγβα] + α ↔ β, (13)

where the Coulomb matrix element is

Xλ[cγ αβ] =(−1)λ+jc+jγ +1
√

[jc][jα][jγ ][jβ]ξ (lc + lα + λ)ξ (lγ + lβ + λ)

(
λ

0

jc

− 1
2

jα

1
2

)(
λ

0

jγ

− 1
2

jβ

1
2

)
Rλ(cγ αβ), (14)

ξ (L) = [1 + (−1)L]/2 is the parity factor, [j ] = 2j + 1, and

Rλ(cγ αβ) =
∫∫

rλ
<

rλ+1
>

[fc(r)fα(r) + gc(r)gα(r)][fγ (r ′)fβ(r ′) + gγ (r ′)gβ(r ′)]drdr ′

is the radial Coulomb integral, f and g being the upper and lower components of the relativistic orbital spinors, respectively.
The final configuration-averaged capture cross section is obtained as

σ CA
c (ε) = π2

k2

∑
αβγ

∑
j l

(∑
λ

Xλ[εγ αβ]2

2λ + 1
+

∑
λλ′

{
jγ

j

jβ

jα

λ

λ′

}
Xλ[εγ αβ]Xλ′ [εγβα] + α ↔ β

)

× nγ

[jγ ]

(
1 − nα

[jα]

)(
1 − nβ

[jβ]

)
�spr

(ε − εαβγ −1 )2 + �2
spr/4

. (15)

Here nα, nβ , and nγ are the occupation numbers of the
corresponding subshells (ranging from 0 to 2jα + 1, etc).
The energy εαβγ −1 is the energy for the resonance (relative to
the W19+ ionization threshold). In [5,11] the resonance energy
used is the single-particle energy εαβγ −1 = εα + εβ − εγ ,
while in this work we present our configuration-averaged
statistical theory using the configuration-averaged energy of a
relativistic configuration [4],

ECA
i = Ecore +

∑
a

εana +
∑
a�b

na(nb − δab)

1 + δab

Uab, (16)

where εa is the single-particle energy of orbital a in the field
of the core and Uab is the average of Coulomb matrix elements
for the electrons in orbitals a and b:

Uab = [ja]

[ja] − δab

[
R0(abab)

−
∑

λ

ξ (la + lb + λ)Rλ(abba)

(
ja

1
2

jb

− 1
2

λ

0

)2]
.

The number of states in each relativistic configuration is

Ni =
∏
a

[ja]!

na!([ja] − na)!
. (17)

From (15) we also define configuration-averaged capture
strengths SCA

τ (ε) and ICA
τ analogously to those of the level-

resolved case, i.e., SCA
τ (ε) = σ CA

c k2/π2 where the first sum
only runs over a single configuration τ = αβγ −1.

Equation (15) is identical to the MBQC theory formula used
in [5,11,29]. The form of Eq. (15) is similar to the expressions
which emerge in the so-called average-configuration approx-
imation [54]. The difference between the two approaches is
that in a system with chaotic eigenstates, the averaging that
leads to (15) occurs naturally due to the strong configuration

mixing, rather then being introduced by hand to simplify the
calculations. In this work we refer to it as the configuration-
averaged (CA) statistical theory, to distinguish it from the
level-resolved (Jπ ) calculation (9) that we now elucidate.

III. CALCULATIONS

For the level-resolved MBQC calculation of Eq. (9) we
used configuration interaction (CI) to calculate the energies
and wave functions of 2 014 212 excited levels of W19+, from
which we calculate capture widths from the W20+ ground state.
The levels correspond to 63 configurations with configuration-
average energies in the range −13 to 114 eV (relative to the
W19+ ionization energy). They are also doorway states for the
W20+ + e− recombination process; i.e., they are dielectronic
excitations of W19+. All such doorway states have one hole in
either the 4d10 or 4f 8 shells.

Because diagonalization of the complete Hamiltonian is
not practical for this system, each CI Hamiltonian includes all
CSFs corresponding to one configuration (which may include
many relativistic configurations) and one (Jπ , M) symmetry.
While the latter is exact for the Coulomb interaction (which
does not mix states of different symmetries), the former
constraint must be justified in the context of the statistical
theory. In fact, such a choice models precisely the capture
cross section into the doorway states (which are not compound
resonances), exactly as required by the statistical theory. In the
following we denote these levels by the subscript n. These
are not just the CSFs of Sec. II A, but rather include CI
mixing among all CSFs k corresponding to a configuration.
The largest Hamiltonian matrix diagonalized in this work
was for the 4d−1 4f 8 5p 5f configuration with J = 9/2: The
number of CSFs (and hence the matrix size) in this case is
25 112. An improvement on this method would be to include all
dielectronic excitations with a given symmetry into a single CI
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calculation. Of course, even this is computationally difficult,
and the overall strength would be unchanged once a sum over
all such doorways is performed. The major difference of such
a method would be to shift the energies of the levels (within
�spr, and typically by much less than �spr), but this effect is
already modeled by the statistical theory and the change in
the continuum electron energy falls within our approximation
�

(a)
νi → �

(a)
ki (Sec. II A).

In this work the single-orbital basis functions and the
continuum wave functions are both calculated in the V N

potential of the target ion. The target orbitals are constructed
by solving the relativistic Hartree-Fock equations for the
configuration [Kr] 4d10 4f 8. The open 4f shell is treated
by scaling the corresponding interactions for the closed shell
by the factor 8/14. We then use B splines [55] to calculate
excited states up to 8spdfg; the results obtained with this
basis are very close to those of excited Hartree-Fock orbitals.
We found that the electron capture strengths are saturated
when continuum orbitals with l � 6 are included. Finally,
to speed up our calculations of Eq. (10) we used a grid
of continuum functions separated at 10-eV intervals and
starting at 0.1 eV above the ionization threshold. Thus, rather
than calculating �

(a)
ni with continuum energy εn, we actually

calculate |〈(εgridj l; Ji)JkMk|V̂ |ϕk〉|2 with εgrid being the grid
point closest to εn. The associated error is negligible since
the matrix elements depend weakly on the energy of the wave
functions in the ionic Coulomb field, when normalized to the
δ function of energy.

Our configuration-averaged cross sections are obtained
from Eq. (15) using the same single-particle orbitals as the
level-resolved calculation. We choose occupation numbers of
the target ground state based on a CI calculation of the target
4f 8 manifold with J = 6, which gives relativistic occupations
4f x

5/2 4f 8−x
7/2 with x = 4.627 14. From these we generate the

occupation numbers for the 4f orbitals of the doorways in
Eqs. (15) and (16), subtracting one from the relevant orbital
depending on where the hole is.

IV. RESULTS AND DISCUSSION

In this section we examine the results of our level-resolved
calculations described in Sec. III and compare them with
results obtained from the configuration-averaged MBQC
statistical theory (Sec. II B) performed with the same single-
particle orbital basis.

A. Effect of conformation of the 4 f “spectator” electrons

One immediately noticeable effect in the level-resolved
calculation is that levels with lower energies within a single
configuration tend to have larger capture widths. A typical
example is seen in Fig. 1(a), which shows the strengths of all
780 levels of the 4f 76s 6d configuration with J = 11/2. Note
the logarithmic scale on the vertical axis: Different levels of
the same configuration with the same J have widths that differ
by up to eight orders of magnitude.

This trend is apparently due to the effect of the 4f 7 core
which, rather than being a “spherical” potential as in the
configuration-averaged model, actually has a large number of
possible “conformations.” Levels where the 4f 7 spectators

FIG. 1. Autoionization widths �
(a)
νi for J = 11/2 levels of the

configuration 4f 76s 6d . (a) Capture from the ground state 4f 8 J = 6;
(b) capture from the 18th excited state in the 4f 8 J = 6 manifold;
(c) capture from the 37th (highest) excited state in the 4f 8 J = 6
manifold.

are coupled in a way most similar to those of the target,
maximize the capture strength, and these same conformations
tend to have lower energy by virtue of the fact that the target
ground state is a low-energy conformation. We tested this
understanding by calculating the autoionization widths for
different states of the 4f 8 configuration with J = 6 (there
are 38 such levels). The results in Fig. 1(c) correspond to
the target being in the highest-energy 4f 8 conformation, and
the trend of Fig. 1(a) is entirely reversed: The highest energy
levels of the 4f 76s 6d (J = 6) configuration now have the
largest strengths. Figure 1(b) shows the strengths of capture
from the 18th excited level of the same manifold, which favors
conformations with energies around the middle of the possible
range. Thus, we see that electron coupling within the 4f 7 core
has a very large effect on the capture cross section. Possibly this
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FIG. 2. Contributions of states with different angular momenta
Jn to the capture strength Eq. (12) for different configurations τ : (a)
τ = 4f 75f 6f ; (b) τ = 4f 76s 6d .

strong dependence averages out in the final recombination rate
once summation over many configurations within �spr is made.

B. Effect of angular momentum

In our level-resolved calculation we limit the orbital angular
momentum of the continuum (incoming) electron to l � 6
(i.e., j � 13/2). Since the W20+ target ground state has
J = 6, only resonances with 1/2 � Jn � 25/2 contribute.
The different values of Jn contribute in different ways to the
integrated strength of a configuration Iτ . In Fig. 2 we show
these contributions for two different configurations with vastly
different integral strengths. The configuration 4f 75f 6f is
one of the largest contributors to the total capture cross section
in the range 0–100 eV, while the configuration 4f 76s 6d is
much weaker. They show rather different trends with Jn, but
generally we observe no strong dependence on the total angular
momentum, though usually the resonances with small or large
Jn do not contribute as much as those nearer to J = 6.

C. Comparison of level-resolved and configuration-averaged
statistical theory

The capture strengths and doorway-state energies of
the level-resolved theory can be directly compared with
the configuration-averaged theory by examining the capture
strengths Sτ (ε) (11) of individual configurations from both
calculations. The capture cross section is dominated by a

few configurations, and we show the comparison between
the two theories for these configurations in Fig. 3. All
other configurations are shown as gray lines and we have
not presented SCA

τ (ε) for these. Note that we take �spr =
0.68 a.u. = 18.5 eV calculated in [11].

Figure 3 shows good agreement between the two statistical
theories. That is, despite the strong effect of the conformation
of the spectator electrons and the complexity introduced by
angular momentum, when summed over all levels the two theo-
ries are in remarkable agreement. In our discussion of the effect
of the spectator electrons in Sec. IV A we saw that levels with
lower energies have larger capture widths. This suggests that in
the level-resolved theory the peaks should be shifted to lower
energies relative to the CA MBQC calculation, since the great-
est contribution is given by doorway states with lower energies.
Indeed, this is seen in Fig. 3, although the difference is perhaps
not as large as one might expect when considering the spread
of level energies (see Fig. 1). The reason for this is that part of
the conformation effect comes from the relativistic occupancy
of the target ground state. Our CI calculation of the target gives
average occupancies 4f 4.6

5/2 4f 3.4
7/2 (Sec. III), and these are the

occupancies nγ used in (15) and (16). Thus, the configuration-
average calculation itself is shifted to lower energies relative
to the average energy of the resonance levels, reducing the
difference between the CA and level-resolved calculations.

The total height of the peaks is generally smaller in the case
of the level-resolved (Jπ ) theory. However, we find that the
total (integrated) strength Iτ always agrees with the CA theory
to within around 15%. Rather, the level resolution in the Jπ

theory spreads the capture strength over a wider range of
energy, broadening the peak while maintaining the integrated
strength. Thus, while any individual configuration appears to
be broader and lower in the Jπ theory, when summed over
all configurations, the total capture cross section is almost
unchanged.

The total reduced capture cross section σck
2/π2 in the

different calculations is presented in Fig. 4. As would
be expected from the preceding discussion, we find good
agreement between our two theories over the entire range
from threshold to 100 eV (the solid line is level resolved and
the dashed line is the CA MBQC calculation). As explained
in Sec. III, we have only included configurations where the
CA energy lies between −13 and 113 eV. However, the
Lorentz distribution is heavy tailed, and with �spr = 18.5 eV
configurations from outside this range could have an effect
if they possess particularly strong capture cross sections.
Therefore, in Fig. 4 we include another CA calculation (shown
as the dot-dashed curve) where configurations with energies
in the range −100 to 200 eV are included. We see that, indeed,
there is some contribution from configurations outside the
range of our main calculations. In Fig. 4 we also include
the experimental recombination data of [24]. Since in this
paper we have neglected the fluorescence yield, a direct
comparison cannot be made except very close to threshold,
ε � 1 eV, where the radiative yield should be very close to
unity. We see that the calculated capture cross section is still
slightly below the experimental recombination rate at very low
energy. We note, however, that the statistical theory cannot
resolve individual sharp resonances, which may occur close to
threshold.
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FIG. 3. (Color online) Comparison of the level-resolved capture strength Sτ (ε) [Eq. (11), solid lines] and configuration-averaged SCA
τ (ε)

(dashed lines) for six configurations τ , which give the largest contribution to the capture cross section. Capture strengths of other configurations
are shown in gray (level-resolved calculation only). We take �spr = 0.68 a.u. = 18.5 eV [11].

Using the data in Fig. 4 we can extract the fluorescence
yield ωf [see Eq. (3)]. As shown in [11], the fluorescence
yield can be approximated as

ωf (ε) ≈ 1

1 + aN (ε)
,

where N (ε) counts the number of autoionization channels
open at an energy ε, that is, the number of W20+ target states
with energy below ε. This form mimics the increase of the
autoionization width of the resonances vs their radiative width.

FIG. 4. Total reduced capture cross section in the level-
resolved calculation (solid) and the configuration-averaged calcu-
lation (dashed). The dot-dashed curve is a configuration-average
calculation including configurations from a wider range of energy,
from −100 to 200 eV. The dots show the unaveraged experimental
recombination data of [24] (αk2/vπ 2, where α is the experimental
rate coefficient and v is velocity). Comparison gives an indication of
the fluorescent yield wf .

We have calculated N (ε) over our range of interest using the
same kind of level-resolved calculation outlined in Sec. III and
find that using a = 0.012 leads to a good fit to experimental
data over our energy range (0 to 100 eV). In fact, we observe
that over this energy range N (ε) ∝ ε and find that ωf can be
well approximated by using the considerably simpler function

ωf (ε) = 1

1 + bε
, (18)

with b = 0.124 eV−1. Multiplying our final capture cross
section by this factor leads to our final RR rate, which is
compared with experiment in Fig. 5.

It is instructive to compare our final results (Fig. 5) with
the recombination rates obtained from the very thorough

FIG. 5. (Color online) Recombination rate from experiment [24]
(black) and the theoretical results of this paper (red). The latter is
obtained by multiplying our capture rate (dot-dashed line) with our
extracted fluorescence yield (18).
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DR calculation of [28], where the rate near threshold is
underestimated by a factor of ∼3. The reason is that [28] misses
the contribution of some configurations that have no direct con-
nection to the continuum. These configurations can radiate, but
do not easily autoionize since they are not dielectronic. They
appear in our calculation through complete statistical mixing
and are the majority contribution to compound resonances,
causing the recombination rate to be much larger than it would
otherwise be.

V. CONCLUSION

We have derived a level-resolved MBQC statistical theory
of resonant electron capture in highly charged ions that
includes the effects of spectator electrons and respects the total
angular momentum J of the resonances. We have calculated
the energies and wave functions of 2.0×106 doubly excited
doorway states of W19+ in this level-resolved theory, and have
determined the capture cross section by the ground-state W20+

target for each of these. We found rather strong dependence
on the conformation of the spectator electrons and a relatively
weak dependence on the angular momentum of the individual
resonances. Nevertheless, we observe that when considering
the sum over all resonances, the configuration-average MBQC
statistical theory used in previous works [5,11,29] is robust
with respect to inclusion of these effects.

A reasonable course of calculation in the future would
be to first determine the most important configurations using
the configuration-average formulation of the statistical theory,
and then perform a more accurate level-resolved calculation
on those that contribute the most to the cross section. Not
calculated in this work is the fluorescence yield, ωf (3), which
has a large influence on the recombination rate at energies
that are not very close to threshold. In this case one might
predict a stronger effect from the angular momentum quantum
numbers due to the selection rules in play. In the future
our level-resolved statistical theory can also be applied to
other processes where chaotic mixing plays an important role,
such as photo- and electron-impact ionization and scattering
processes in highly charged ions [31].
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APPENDIX: THEORY OF RESONANT RECOMBINATION

The following derivation of the resonant recombination
cross section is based on the formulation of Ref. [56]. The
initial state (p,μ) describes the electron with momentum p and
helicity μ = σ · p/2p = ±1/2 incident on the target ion W20+
in the ground state |JiMi〉. Let us expand the incident-electron
state in partial waves,

|p,μ〉 = (2π )3/2

√
p

∑
j lm

〈�jlm(p̂)|χμ(p̂)〉ileiδjl |εj lm〉, (A1)

where �jlm and χμ are spherical and ordinary spinors and
δjl is the scattering phase shift. The wave function (A1) is

normalized so that 〈p′,μ′|p,μ〉 = (2π )3δ(p′ − p)δμ′μ and the
radial functions are normalized to the δ function of energy,
〈ε′j ′l′m′|εj lm〉 = δ(ε′ − ε)δj ′j δl′lδm′m. The spinor matrix el-
ement in (A1) is

〈�jlm(p̂)|χμ(p̂)〉 =
∑

λ

C
jm

lλ 1
2 μ

Y ∗
lλ(p̂), (A2)

where C
jm

lλ 1
2 μ

is the Clebsch-Gordan coefficient and Ylλ is the

spherical harmonic.
In the independent-process approximation, the two paths

(direct radiative or resonant) for recombination are summed
incoherently. The amplitude of resonant recombination is

A =
∑

ν

i
√

2πω/V 〈n|eq · D|ν〉〈ν|V̂ |p,μ; JiMi〉
Ei + ε − Eν + i�ν/2

, (A3)

where eq and ω define the polarization and frequency of
the photon, and V̂ is the Coulomb interaction. The dipole
approximation D = −∑

j erj is used for radiative transition.
V is the quantisation volume for the electromagnetic field,
and �ν is the total width of the resonance state |ν〉. The
corresponding cross section is

σ = 2π

p

∑
q,n

∫
|A|2δ(Ei + ε − ω − En)V

ω2dωd�

(2πc)3
. (A4)

In the isolated-resonance approximation, it can be written as
follows after integration over ω:

σ = 1

p

∑
q,n

∑
ν

∫
d�

ω3
νn

2πc3

|eq ·〈n|D|ν〉|2|〈ν|V̂ |p,μ; JiMi〉|2
(Ei + ε − Eν)2 + �2

ν/4
.

(A5)
Using the definition of autoionization width of the
resonance |ν〉,

�
(a)
νi = p

π (2Jν + 1)

∑
MνMiμ

∫
d�

4π
|〈p,μ; JiMi |V̂ |ν〉|2, (A6)

and the radiative width for transition to the final state |n〉,

�(r)
νn = 1

(2Jν + 1)

∑
qMnMν

∫
d�

ω3
νn

2πc3
|eq · 〈n|D|ν〉|2, (A7)

the final expression of the cross section is obtained as

σ = π

p2

∑
ν

(2Jν + 1)

2(2Ji + 1)

�
(a)
νi �(r)

ν

(ε − εν)2 + �2
ν/4

, (A8)

where εν = Eν − Ei is the energy of the resonance with
respect to the threshold, and �(r)

ν = ∑
n �(r)

νn is the total
radiative width of the resonance.

Using the orthogonality relations of spherical harmonics,∫
d�Ylλ(p̂)Y ∗

l′λ′(p̂) = δll′δλλ′ ,

062717-8



LEVEL-RESOLVED QUANTUM STATISTICAL THEORY OF . . . PHYSICAL REVIEW A 92, 062717 (2015)

and of Clebsch-Gordan coefficients,

∑
μλ

C
jm

lλ 1
2 μ

C
j ′m′

lλ 1
2 μ

= δjj ′δmm′ ,

we obtain the autoionization formula

�
(a)
νi = 2π

2Jν + 1

∑
MνMiμ

∫
d�

×
∣∣∣∣∣∣
∑
j lm

∑
λ

C
jm

lλ 1
2 μ

Ylλ(p̂)(−i)le−iδjl 〈ενj lm; JiMi |V̂ |ν〉
∣∣∣∣∣∣
2

= 2π

2Jν + 1

∑
MνMi

∑
j lm

|〈ενj lm; JiMi |V̂ |ν〉|2. (A9)

A further simplification is possible by coupling the continuum
orbital |εj lm〉 with the target ground state |JiMi〉 to construct

the constant angular momentum state |J,M〉:
|εj lm; JiMi〉 =

∑
JM

CJM
jmJiMi

|(εj l; Ji)JM〉. (A10)

Substituting it in (A9) provides the compact formula for
autoionization width:

�
(a)
νi = 2π

∑
j l

|〈(ενj l; Ji)JνMν |V̂ |ν〉|2. (A11)

The radiative width (A7) is also simplified by standard
manipulations to

�(r)
νn = 1

2Jν + 1

∑
MνMn

4

3

(
ωνn

c

)3

|〈JnMn|D|JνMν〉|2

= 1

2Jν + 1

4

3

(
ωνn

c

)3

|〈Jn‖D‖Jν〉|2, (A12)

where ωνn = Eν − En > 0 and 〈Jn‖D‖Jν〉 is the reduced
matrix element of the dipole transition.
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