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Statistics of electromagnetic transitions as a signature of chaos in many-electron atoms

V. V. Flambaum, A. A. Gribakina, and G. F. Gribakin
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 28 January 1998!

Using a configuration-interaction approach, we study statistics of the dipole matrix elements (E1 ampli-
tudes! between the 14 lower states withJp542 and 21st to 100th even states withJ54 in the Ce atom~1120
lines!. We show that the distribution of the matrix elements is close to Gaussian, although the width of the
Gaussian distribution, i.e., the root-mean-square matrix element, changes with the excitation energy. The
corresponding line strengths are distributed according to the Porter-Thomas law which describes statistics of
transition strengths between chaotic states in compound nuclei. We also show how to use a statistical theory to
calculate mean-squared values of the matrix elements or transition amplitudes between chaotic many-body
states. We draw some support for our conclusions from the analysis of the 228 experimental line strengths in
Ce @J. Opt. Soc. Am.8, 1545~1991!#, although direct comparison with the calculations is impeded by incom-
pleteness of the experimental data. Nevertheless, the statistics observed give evidence that highly excited
many-electron states in atoms are indeed chaotic.
@S1050-2947~98!04207-3#

PACS number~s!: 31.10.1z, 32.70.Cs, 31.50.1w, 05.45.1b
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I. INTRODUCTION

The aim of this work is to present more evidence th
excitation spectra of complex open-shell atoms, and pr
ably any other atom at sufficient excitation energies, disp
clear quantum chaotic features. This phenomenon is ca
by strong mixing of many-electron excited states by the
sidual two-body Coulomb interaction. It manifests itself,
particular, in Gaussian statistics of theE1 amplitudes for
these states.

Since the time of Bohr’s hydrogen atom theory, ato
were considered as perfectly regular dynamical systems
the classical theory of chaos evolved, it became apparent
highly excited atomic states in the Rydberg range could
come chaotic if an external field is applied@1#, as long as the
underlying classical motion is chaotic.

On the other hand, it was also due to Bohr that the not
of compound nuclei was introduced in physics. The behav
of these highly excited nuclear states is essentially quan
mechanical. Nevertheless, they display a number of cha
properties. For example, the statistics of their energy spe
show certain universal features, and transition amplitudes
volving compound states obey Gaussian statistics@2#. To de-
scribe these properties, it was suggested by Wigner tha
Hamiltonian of a compound nucleus could be modeled b
random matrix, and different characteristics found by av
aging over ensembles of such matrices~see Refs.@3,4#!.

The first insight into quantum chaotic properties of co
plex atoms was given by Rosenzweig and Porter@5#, who
analyzed experimental spectra of some neutral atoms,
showed that in heavy open-shell atoms the spectral stati
are similar to those of compound nuclei. That analysis w
later extended and refined in Ref.@6#. Of course, the study o
eigenvalues provides valuable information about the syst
On the other hand, the spectral statistics observed in he
open-shell atoms are similar to those of the hydrogen atom
a strong magnetic field@7#, or even a particle in a two
dimensional classically ergodic billiard@8#. However, the
PRA 581050-2947/98/58~1!/230~8!/$15.00
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eigenstates of these quantum systems must be compl
different, and it is clear that the eigenvalue statistics can
really tell us much about the origin of chaotic behavior,
indeed the structure of the chaotic eigenstates.

The first inquiry into the possibility of chaos in the eige
states of complex atoms was done by Chirikov@9#. He stud-
ied configuration compositions of eigenstates of the Ce a
using data from tables@10#, and came to the conclusion tha
‘‘eigenfunctions are random superpositions of some few
sic states.’’ Inspired by that work, we conducted an extens
numerical study of the spectra and eigenstates of com
open-shell atoms, using the rare-earth atom of Ce as an
ample @11–13#. This allowed us to investigate many-bod
quantum chaos in a real system. We showed that ato
excited states are in fact similar to nuclear compound sta
and developed a statistical approach for analyzing their pr
erties.

Unlike eigenvalues, the eigenfunctions are not observa
directly. To probe the structure of the chaotic eigensta
one can look at the transition probabilities or matrix eleme
of some external perturbation coupling them to each other
to regular, simple eigenstates~like the ground state!. The
matrix elements involving chaotic eigenstates must h
Gaussian statistics. We showed that its main characteris
— the mean-squared value of the matrix element betw
the chaotic multiparticle states~compound states! — can be
calculated in terms of statistical parameters of the eigenst
and single-particle amplitudes and occupation numbers
the orbitals present in the compound states@11,14#.

In this work we have chosen the quantity most eas
accessible experimentally — theE1 amplitudes. This also
gives us an opportunity to look for experimental signatu
of chaos in the Ce atom using the work by Bissonet al. @15#,
where over 200 line strengths were measured for transit
between a large number of levels within 3.5 eV of t
ground state. It should be mentioned that there are m
other possible atomic systems to search for quantum ch
e.g., in doubly excited states and inner-shell excitation sp
230 © 1998 The American Physical Society



n
so

c
te
it

e

m
be
s
a

ba
l

s
rs
us

a
er
ly

a
n-

ita
ula
o

-
c

io
lu
pe

,
s

f

om
rix
nce

en
ared

le

in
tor

-
und
that
s
-

ates
e
e

-

and

it
nts

den-

and

g

PRA 58 231STATISTICS OF ELECTROMAGNETIC TRANSITIONS . . .
tra of alkaline-earth atoms@16–18#, or even multiply excited
states of light atoms@19#.

Chaotic many-body states

Let us now recall briefly what chaotic many-electro
atomic eigenstates are. Suppose one uses a basis of
single-electron orbitals~e.g., the Hartree-Fock ones! to con-
struct many-electron basis statesuFk&. The statesuFk& can
be taken as single-determinant states corresponding to
tain configurations of a few valence electrons, or construc
from them through some coupling scheme to be of defin
total angular momentumJ. The true atomic eigenstates

uC i&5(
k

Ck
~ i !uFk& S (

k
Ck

~ i !251D ~1!

and eigenvaluesE( i ) are obtained by diagonalizing th
Hamiltonian matrixH jk[^F j uĤuFk&. The coefficientsCk

( i )

describe mixing of the basis states by the residual Coulo
interaction. In the multielectron excitation range the num
of basis statesuFk& formed by distributing several electron
among a few open orbitals is large. Many of these states
nearly degenerate, and the mean spacing between the
state energiesEk[Hkk is likely to be smaller than the typica
value of the off-diagonal matrix elementH jk . In this situa-
tion the basis states are strongly mixed together@20#.

Apart from a few lowest levels, each of the eigenstate
a superposition of a large number of basis states. Of cou
by a simple perturbation theory argument, the mixing m
be weak for distant basis states~large uEj2Eku). The strong
mixing takes place within a certain energy rangeuEj2Eku
&G52pV2/D, where D is the mean level spacing,V2

5H jk
2 , andG is called thespreading width, since it charac-

terizes the spread of the eigenstates to which a given b
state contributes noticeably. One can estimate the numb
principal components, i.e., those that contribute significant
to a given eigenstate~1!, asN;G/D. The coefficientsCk

( i )

corresponding to the principal components have typical v
uesuCk

( i )u;1/AN. Their statistics is close to that of indepe
dent random variables, and tends toward Gaussian when
mixing is strong. In this case even the single-electron orb
occupancies are far from integer and only the total ang
momentum, the parity, and the energy itself remain go
quantum numbers@11#. Thus we can talk aboutquantum
chaosin the system. This situation is similar to that in com
pound nuclei, and the corresponding chaotic eigenstates
be called atomic compound states. The model configurat
interaction calculations performed for Ce produced a va
of G;2 eV, and demonstrated the existence of a dense s
trum of chaotic compound excited states withN*100 (D
;0.01 eV! just few eV from the ground state@11#.

II. MATRIX ELEMENTS BETWEEN CHAOTIC STATES

Consider two chaotic many-body states~compound states
for short! that are superpositions of large numbers of ba
states,uC1&5(kCk

(1)uFk& and uC2&5( jCj
(2)uF j&. If the ex-

pansion coefficientsCk
( i ) are random, the matrix element o

some operatorM̂
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^C2uM̂ uC1&5(
jk

Cj
~2!^F j uM̂ uFk&Ck

~1! ~2!

is a sum of a large number of almost uncorrelated rand
items @21#. Therefore, one should expect that such mat
elements display Gaussian statistics with zero mean. He
the probability distribution of the matrix elements betwe
compound states can be characterized by their mean-squ
value alone.

If M̂ is a single-particle operator, e.g., the electric dipo
momentD̂5(ab^audub&aa

†ab (a and b are single-particle
states!, it is convenient to express its matrix elements
terms of the matrix elements of the density matrix opera
r̂ab5aa

†ab ,

^C2uD̂uC1&5(
ab

^audub&^C2uaa
†abuC1&5(

ab
dabrab

~21! ,

~3!

whererab
(21)[^C2ur̂abuC1&.

In Refs.@14# and @11# a statistical approach to the calcu
lation of mean-squared matrix elements between compo
states was developed. It is first based on the assumption
contributions from different single-particle transition
b→a in the matrix element~3! are uncorrelated. The mean
squared value is then given by

u^C2uD̂uC1&u25(
ab

udabu2urab
~21!u2, ~4!

where averaging is done over a number of compound st
around C1 and/or C2. The mean-squared value of th
density-matrix operatorurab

(21)u2 is expressed in terms of th
parameters of the compound states 1 and 2~i.e., their ener-
gies and spreading widths!, and the average occupation num
bers of the single-particle statesa andb.

In a spherically symmetric system where the states 1
2 are characterized by their total angular momentaJ1,2 and
projectionsM1,2, the Wigner-Eckhart theorem applies, and
is convenient to deal with the reduced matrix eleme

^C2iD̂iC1& independent of the projectionsM1,2. For ex-
ample, the mean-squared value of the zero-rank reduced
sity matrix operator (J15J2[J then! is obtained in the fol-
lowing two forms@11#:

urnl j ,n8 l 8 j
~21!0 u2

55 D1d̃~G1 ,G2 ,D!S 2J11

2 j 11 D K nnl j S 12
nn8 l 8 j

2 j 11D L
2

D2d̃~G1 ,G2 ,D!S 2J11

2 j 11 D K nn8 l 8 j S 12
nnl j

2 j 11D L
1

,

~5!

whereD1,2 are the mean level spacings near the states 1
2, nnl j andnn8 l 8 j are the orbital occupation numbers, andd̃ is
a ‘‘finite-width d function.’’ It depends on the spreadin
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widthsG1,2 of the compound states and on the energy diff
ence D5vn8 l 8 j ,nl j2E(1)1E(2) between the transition fre
quency for the compound many-electron statesE(1)2E(2)

and the frequencyvn8 l 8 j ,nl j of the single-particle transition
between the orbitalsnl j and n8l 8 j . The function d̃ has a
maximum atD50, and describes the energy conservation
the compound states. Its width is determined by the spre
ing widthsG1,2. Note that̂ •••&1,2 in Eq. ~5! denotes averag
ing of the occupation-number factors over the compou
states 1 or 2. Note also that the exact form of the funct
d̃(G1 ,G2 ,D) depends on the spreading of the compou
states over the basis components, i.e., on the ‘‘shapes’’ o
eigenstates. In the simplest approximation this spreadin
described by the Breit-Wigner formula~see numerical stud
ies in Ref.@11#!, and d̃ is also a Breit-Wigner profile

d̃~G1 ,G2 ,D!5
1

2p

G11G2

D21~G11G2!2/4
. ~6!

To calculate the mean-squared value of theE1 amplitude,
we now need a formula for the reduced density-matrix
erator of the first rank. Starting from the definition@11#

rnl j ,n8 l 8 j 8
~21!1

5~21!J22M2S J2

2M2

1
q

J1

M1
D 21

3 (
mm8

~21! j 2mS j
2m

1
q

j 8
m8 D rnl jm,n8 l 8 j 8m8

~21!

~7!

for q50 ~linear polarization along the quantization axis!,
and assuming that transitions between different magn
sublevelsm are uncorrelated, we can derive a formula for t
mean square of Eq.~7!, and then use it to obtain the mea
squaredE1 amplitude

u^C2iD̂iC1&u25
2J111

3
D2 (

nl j ,n8 l 8 j 8
z^nl j idin8l 8 j 8& z2

3 d̃~G1 ,G2 ,D!K nn8 l 8 j 8

2 j 811
S 12

nnl j

2 j 11D L
1

,

~8!

analogous to the lower formula in Eq.~5!, or an alternative
form with D1 and ^nnl j /(2 j 11) „12 @nn8 l 8 j 8 /(2 j 811)#…&2
on the right-hand side. The factor1

3 on the right-hand side o
Eq. ~8! is due to the fact that there are three final-state m
menta J25J1 and J161 accessible from a givenJ1 by
means of a dipole transition. In deriving this expression,
additional assumption has been made that the occupanci
the nl jm and n8l 8 j 8m8 states are statistically independen
and the states with differentm within the samenl j shell are
equally populated. This supposition influences only
‘‘emptiness’’ factors„12 @nnl j /(2 j 11)#…, which are close
to unity anyway when the number of single-electron sta
available is much greater than the number of active electr

The square of the reduced dipole matrix elementS(2,1)
5 z^C2iD̂iC1& z2 is called the strength of the line 1→2, so
-
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Eq. ~8! allows one to estimatemean line strengthsfor tran-
sitions involving compound states.

It is interesting to note that the statistical theory expr
sion ~8! satisfies the dipole sum rule@26# ~in atomic units!

2

3 (
J2 ,E~2!

E~2!2E~1!

2J111
z^C2iD̂iC1& z2'n, ~9!

wheren is the number of active valence electrons included
the configuration space of the problem. To obtain this res
one should replace summation over the final states 2 w
integration overdE(2)/D2, take into account that*(E(2)

2E(1)) d̃(G1 ,G2 ,D)dE(2)5vnl j ,n8 l 8 j 8 @see Eq.~6!#, neglect
the ‘‘emptiness’’ factor „12 @nnl j /(2 j 11)#…'1, use
(n8 l 8 j 8^nn8 l 8 j 8&15n, and rely on the single-particle sum
rules for the orbitalsn8l 8 j 8 occupied in the initial stateC1,

2

3(nl j

vnl j ,n8 l 8 j 8

2 j 811
z^nl j idin8l 8 j 8& z2'1. ~10!

III. NUMERICAL RESULTS FOR THE CE ATOM

A. Energy levels

Cerium,Z558, is the second of the lanthanide atoms.
electronic structure consists of the Xe-like 1s2. . . 5p6 core
and four valence electrons. The atomic ground state is
scribed by the 4f 6s25d configuration withJp542 @10#.

The origin of the extremely complex and dense excitat
spectra of the rare-earth atoms is the existence of sev
open orbitals near the ground state, namely, 4f , 6s, 5d, and
6p, or, in relativistic notation, 4f 5/2, 4f 7/2, 6s1/2, 5d3/2,
5d5/2, 6p1/2, and 6p3/2. These make a total ofNs532
single-electron states. For Ce withn54 valence electrons
there are about (Ns)

n/n!'43104 possible many-electron
states constructed of them. If we allow for two possible pa
ties, about ten possible total angular momentaJ, and 2J
11 different projections~another factor of 10!, there will be
still hundreds of energy levels within a givenJp manifold.

In the present work we perform relativistic configuratio
interaction calculations in the Hartree-Fock-Dirac ba
analogous to those in Ref.@11#. In that work, we limited
ourselves to just seven nonrelativistic configurations c
structed of the 4f , 6s, 5d, and 6p orbitals, for both odd and
even states, which produced 260 and 276 states withJp

542 and 41, respectively. To make the results more real
tic, we have extended the configuration basis set by nine
and 23 even nonrelativistic configurations. Basically, the
ditional configurations were obtained by exciting one of t
four electrons of an ‘‘old’’ configuration into the next or
bital, e.g., the lowest even 4f 26s2 configuration would pro-
duce 4f 6s25 f , 4f 6s27p, 4f 26s7s, and 4f 26s6d configura-
tions. To keep the size of the configuration space reasona
we included only the configurations with mean energ
within about 10 eV from the Ce ground state. This increas
the total number of 42 and 41 states to 862 and 1433, re
spectively. Note thatJ54 states have been chosen beca
these manifolds are among the most abundant.

As a result, the level densityr(E)5( id(E2E( i )) has
increased greatly above 4 eV and become closer to that
served experimentally. Of course, to be meaningful, the le
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density must be averaged over some small energy interv
obtain a smooth function rather than a set of spikes.
alternative procedure is to look at the cumulative numbe
levels

N~E!5E
2`

E

r~E8!dE8, ~11!

which we present in Fig. 1 forJp541 states. EachN(E)
plot is a staircase of steps of the unit height occurring
successive excited state energies. The level density ca
easily estimated from the slope of theN(E) plot. The experi-
mental data for the 132 even levels withJ54 known from
Ref. @10# is shown by the solid-line staircase, and the en
gies are given with respect to either the experimental or
culated ground-state energy. They can be compared with
dashed line that showsN(E) for our earlier small-basis cal
culation@11# ~276 states!, and the dotted line for the prese
calculation~1433 states!. The improvement is obvious, how
ever, the agreement is not perfect. We believe that the
maining disagreement is not due to some missing config
tions in the CI calculation, but rather due to an over
‘‘softening’’ of the spectra due to screening of the Coulom
repulsion between the valence electrons by the electron
the core@22#. In the CI language this effect is produced b
the high-energy excitations of the valence electrons into
continuum together with the electron excitations from t
core.

Two typical features can be observed in the spectra
complex atoms@6#. The first, clearly seen in Fig. 1, is th
rapid increase of the level densityr(E) with energy@23#. Its
origin is purely combinatorial — the larger the excitatio
energy, the greater the number of ways it can be distribu
among a few single-particle excitations. In the independe
particle model this dependence is described by the follow
exponent@2#:

FIG. 1. Energy spectra and level statistics of theJp541 states
in Ce. The dashed line shows the cumulative number of statesN(E)
for the calculation with 276 basis states@11#; the dotted line is the
present calculation with 1433 basis states; the thick solid line
N(E) for 132 experimental levels from Ref.@10#. The thin solid line
is the cumulative level number corresponding to the independ
particle fit ~13!. Shown in the inset are the statistics of the norm
ized level spacingss for the lowest 500 levels, compared with th
Wigner distribution~14!.
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ra~E!5r0 exp~aAE2Eg!, ~12!

wherer0 and a are some constants, andEg is the ground-
state energy of the system. This dependence also foll
from the thermodynamic definition of the temperature,T21

5d$ ln@r(E)#%/dE, combined with the estimates of the ave
age number of excited Fermi particles,nex}T, and that of the
excitation energy,E2Eg;nexT. The experimental spectra o
rare-earth atoms and their ions examined in Ref.@6# are in
agreement with Eq.~12!.

Figure 1 shows that the calculated cumulative level nu
ber plot is fitted well by

N~E!5E
Eg

E

ra~E8!dE8, ~13!

with r050.65 eV21, a52.55 eV21/2, and the ‘‘ground
state’’ energy of the 41 sequenceEg shifted by 0.25 eV up
from the trueJp542 ground state of Ce. Thus Eq.~12!
gives a good overall fit of the calculated level density bel
6 eV.

The second feature typical for the spectra of comp
many-body systems is level repulsion. It is a basic quant
mechanics fact that two levels with identical quantum nu
bers cannot be degenerate if they are coupled by non
matrix elements — they ‘‘repel’’ each other. In quantu
chaotic systems, this repulsion is characterized by
Wigner level spacing distribution

P~s!5
ps

2
e2ps2/4, ~14!

wheres is the nearest-neighbor level spacing normalized
that s̄5*sP(s)ds51. Equation~14! shows that the prob-
ability of finding small level spacings is indeed vanishing
small. As we pointed out in Sec. I, spectral statistics do
tell much about the eigenstates of the system. However,
~14! is still a good test for some possible hidden quant
numbers, e.g., the total spin or orbital momentum, wh
might characterize atomic eigenstates besidesJp. If these do
exist, small level spacings~‘‘degeneracies’’! will be more
abundant than predicted by Eq.~14!. These statistics were
checked for many experimental@5,6,11,16,18# and calculated
@11,17# complex atomic spectra, as well as for molecu
vibronic spectra@24#.

As seen from Fig. 1 the level density changes significan
for the first 500 levels of the calculated spectrum. To anal
the distribution of the corresponding level spacings we
the analytical density fitra(E) to normalize the spacings:

sn5~En112En!ra~En!. ~15!

Their distribution shown on the inset in Fig. 1 is in reaso
able agreement with the Wigner formula. The deviations
probably due to the long-range fluctuations of the level d
sity, not accounted for by the simple exponential~12!. In the
previous calculation@11#, where only the lowest orbitals o
each symmetry were included, we also observed the Wig
distribution. When orbitals with higher principal quantu
numbers become involved~as seen from Fig. 1 above 3.
eV!, the spatial extent of the eigenstates increases. T
should cause a decrease of the residual Coulomb interac

is

t-
-
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between the electrons. On the other hand, the level spac
also become smaller. As a result, the state mixing at th
excitation energies remains strong, which is confirmed by
agreement with the Wigner distribution, and the eigensta
are chaotic. Our estimate of the number of principal com
nentsN shows that it becomes even greater as the ene
increases, in accord with the estimateN;G/D;300 (G;1
eV, and the mean level spacingD'0.003 eV atE'6 eV!.

B. Dipole matrix elements

In Sec. II, we explained that matrix elements involvin
chaotic compound states should have Gaussian statistics
the mean squared value of the matrix elements could be
timated in terms of some average characteristics of the c
pound states. In this section, we concentrate on the di

matrix elements (E1 amplitudes! dik5^C i
41

iD̂iCk
42

& be-
tween the 14 lowest states withJp542 and 80 consecutive
41 states obtained numerically in our CI calculations of C
We have chosen this energy region to cover the range
plored in the experiment@15#, where absolute values wer
derived for 228 of the most intense lines of neutral Ce
tween 10 706 and 22 184 cm21.

Of course, low-lying atomic states, e.g., the ground st
have a well-defined configuration composition and are
chaotic; hence theE1 amplitudes between them should n
be distributed in any particular statistical way. However,
matrix elements~2! will become random~and close to
Gaussian! as soon as at least one of the states involved,
initial or the final, moves into the compound-state ene
range and becomes a superposition of many random com
nents. Besides that, the mean-squared value of the m
element is expected to show some smooth secular varia
with the energy of the states involved. For these reasons
skip the first 20 states withJp541, and analyze the statis
tics of the 1438051120E1 amplitudes for the following 80
even states by grouping them in bunches of 20 — 21–
41–60, 61–80, and 81–100 — which correspond to
mean excitation energies of 2.49, 2.95, 3.40, and 3.70
above the atomic ground state~the mean energy of the low
est 14 odd states is 0.68 eV!. Thus each plate in Fig. 2 show
the distribution of the 280 reduced dipole matrix eleme
together with their rms value. Also shown in Fig. 2 are t
Gaussian distributionsg(d)5exp(2d2/2d0

2)/A2pd0
2, where

the rms parameterd0 has been adjusted to minimizex2

around the center of the histogram. The values ofd0 andx2

are given in Table I.
Two effects can be seen in Fig. 2. First, the distributio

of the matrix elements are indeed close to Gaussian. Sec
the width of the distributions~the mean-squared value of th
matrix elements! varies with the energy of the even states
is mostly this effect that is responsible for the visible d
crepancies between the histograms and the Gaussian fit
eliminate it, we can use a running average procedure to
malize the amplitudes,

dik
~n![

dik

^d2& i
1/2

, ~16!

where^d2& i
1/2 is the rms value over the 14 odd states, cal

lated for every even statei . Figure 3 confirms that the 112
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normalizedE1 amplitudes for the 21–100 even states a
distributed according to the normal law. The inset shows
dependence of the rmsE1 amplitudê d2& i

1/2 on the energy of
the even stateE( i ). Fluctuations aside, it is in agreement wi
the rms values calculated from the statistical theory@Eq. ~8!#
at the energies of the 30th, 50th, 70th, and 90th even sta
The numerical values of the rmsE1 amplitudes are listed in
Table I.

Note that we have chosen Eq.~8! with 1 standing for the
odd states and 2 for the even ones. In our numerical exam
we consider the dependence of the rmsE1 amplitude on the
energy of the even states, and keep the odd states the s

FIG. 2. Probability distributions of theE1 amplitudes in Ce for
transitions between the 14 lowest 42 states and groups of 20 state
with Jp541: ~a! 21–40, ~b! 41–60, ~c! 61–80, and~d! 81–100.
rms values of the amplitudes are shown next to the histogra
Smooth curves are Gaussian fits that minimizex2 for 21–17 central
bins of the histograms~see Table I!.

TABLE I. Root-mean-squareE1 amplitudes for transitions be
tween the 14Jp542 and 80Jp541 states in Ce.

rms E1 amplitudes~a.u.!

even levels (dik
2 )1/2 a from Eq. ~8! b d0

c n d x2(n21)

21–40 0.853 0.813 0.729 21 24.4
41–60 0.891 0.746 0.824 21 23.9
61–80 0.736 0.674 0.671 17 36.6
81–100 0.627 0.566 0.632 17 24.7

aObtained directly from the CI calculation.
bCalculated from the statistical theory, Sec. II.
cValues that minimizex2 for the Gaussian fits shown in Fig. 2.
dNumber of bins around the center of the histogram used for ca
lation of x2.
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Therefore, as in Eq.~8!, we only need to know the averag
occupation numbers for the lowest 14 odd states, and
result depends on the final even state via its energyE(2),
mean level spacingD2 , and spreading widthG2. As we saw
in our previous calculations@11#, the even states of Ce wit
J54 become very much chaotic at excitation energies of
2 eV, i.e., from the 20th level up. Also, as earlier in Re
@11#, we use average configuration energies rather t
single-particle Hartree-Fock energies to determine the t
sition frequenciesvn8 l 8 j ,nl j needed for calculation ofD in
Eq. ~8!. The ground state of Ce is described as 4f 6s25d;
however, the dominant configuration among the 14 low
odd states is 4f 6s5d2, and we used it to calculate the tra
sition energies. For example, the energy of the 6s-6p tran-
sition v6p,6s was determined as the difference between
average energies of the 4f 5d26p and 4f 6s5d2 configura-
tions. Physically, this corresponds to choosing a particu
mean field close to that of the low-lying odd states of Ce
calculation of the transition energies. It should be mention
however, that the results obtained with the Hartree-Fock
quenciesvnl j ,n8 l 8 j 85enl j2en8 l 8 j 8 were not too different.

Gaussian statistics of the dipole matrix elements resu
the Porter-Thomas~PT! distribution of the line strengths
S( i ,k)5dik

2 ,

f ~S!5
1

A2pSS̄
expS 2

S

2S̄
D , ~17!

whereS̄ is the mean line strength. Divergence of this fun
tion at smallS means that if theE1 amplitudes are Gaussian
there should be many weak lines in the spectrum. Ear
evidence of the PT statistics of line strengths can be foun

FIG. 3. Probability distributions of the normalizedE1 ampli-
tudes in Ce for transitions between the 14 lowest 42 states and
21–100 states withJp541, compared to the normal distributio
~solid line!. The inset shows the dependence of the rmsE1 ampli-
tude averaged over the 14 odd states on the energy of the even
~thin solid line!. Solid circles connected by a thick solid line are t
rms values of theE1 amplitude obtained from the statistical theo
@Eq. ~8!# at the energies of the 30th, 50th, 70th, and 90th e
states, and open circles are values from the CI calculation~see
Table I!.
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calculations of dipole excitations in complex atoms@25#, and
transitions between the vibronic levels in molecules m
sured in Ref.@24#.

IV. ANALYSIS OF EXPERIMENTAL DATA

In Ref. @15# absolute values ofgA were obtained for 228
of the most intense observed lines between 10 706
22 184 cm21 in Ce. It is interesting to analyze these data
see whether they support our theoretical and numerical c
siderations.

The values ofgA listed in Ref. @15# are defined asgA
5(2Jk11)Aki , where

Aki5
4e2vki

3

3\c3~2Jk11!
z^ i iD̂ik& z2 ~18!

is theE1 transition rate from the upper levelk into the lower
level i @26#. We use the experimental values ofgA and Jk
and transition frequenciesvki to extract values of the line
strengths

S~ i ,k![ z^ i iD̂ik& z25gA
3\c3

4e2vki
3

. ~19!

In Fig. 4, the probability distribution of the 228 experiment
line strengths is shown. Compared to the expected PT
mula ~17!, there is a clear lack of small line strengths. Ne
ertheless, the decreasing part of the histogram can be fi
well by a PT distribution with an additional normalizatio
factor A,

f A~S!5
A exp~2S/2S̄!

A2pSS̄
, ~20!

tate

n

FIG. 4. Comparison of the line strengths measured in Ce
Bisson et al. @15# with the Porter-Thomas and modified Porte
Thomas distributions. The solid line is the PT distribution~20! with

A52.07 andS̄53.3 a.u., and the dashed line is the modified

distribution~21! with A56.22,S051.12, andS̄52.4 a.u. Shown in
the inset is the probability distribution of the 30 lines measu
from branching ratios and delayed photoionization, fitted by a

distribution with S̄52.15 a.u.
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shown in Fig. 4 by a solid line forA52.07 andS̄53.3 a.u.
that minimizex2 for the 22 bins withS.3 a.u.

It would be tempting to say that the excellent agreem
between the PT curve and the histogram is a confirmatio
the Gaussian statistics of theE1 amplitudes in Ce. The valu
of A would then indicate that about one-half of all lines a
missing in the experimental data. However, the value oS̄
53.3 a.u. corresponds to the rmsE1 amplitude of 1.8, which
is more than two times greater than our numerical result
Figs. 2 and 3~inset!, and in Table I. On the other hand, th
experimentally observed 228 lines include transitions
tween levels with various total angular momenta betweeJ
51 and 8 (uJi2Jku<1, of course! whereas we have abou
500 hundred lines with justJi5Jk54 in our calculation in
the analogous energy range. This means that in Ref.@15#
only the strongest 10% or less of all lines have in fact be
measured. The very suggestive agreement with the PT d
bution in Fig. 4 should then be considered as merely fo
itous.

It is worth noting that in experiment the lines are selec
by their intensities proportional togA, rather than strengths
Hence even lines with large strengths can be omitted if th
frequencies are small. Let us look at the simplest mode
this effect and see how it influences the observed stren
distribution. Assume that transitions in a certain frequen
range 0,v,vmax are studied, and different values with
this interval are equally probable. The observed intensitie
the lines are proportional tov3S. If we assume that there i
a minimal threshold intensity that can be registered,
original PT distribution of strengths would be modified
follows:

f 1~S!

5H 0, S<S0

A

A2pSS̄
expS 2

S

2S̄
D F12S S0

S
D 1/3G , S.S0 ,

~21!

whereS0 is the minimal strength that can be observed av
5vmax, andA is the normalization factor. As seen from Fi
4, Eq.~21! also gives a very good fit of the experimental da
with S̄52.4, S051.12, andA56.22 @27#. Note, however,
that the value of the mean line strength is 1.5 times sma
than the one we had from the pure PT fit. Therefore,
assumptions used in our processing of the experimental
affect the estimates of the experimental rmsE1 amplitudes,
and we should not be too concerned about the apparent
agreement with our numerical calculations. In addition,
traction of absolute line strengths from the experimental d
is not free from uncertainties estimated in Ref.@15# at 10–
20 %.

For 30 transitions in Ce, thegA values were obtained
more accurately from branching ratios and delayed photo
ization measurements of lifetimes~Ref. @15#, Table 2!. When
we look at the statistics of the corresponding line streng
~Fig. 4, inset!, and compare it with the PT distribution~17!,
a value ofS̄52.15 is obtained, much smaller than the es
mates ofS̄ from the statistics of the 228 lines. Thus it a
t
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pears that to make firm conclusions about Gaussian stati
of the E1 amplitudes, a much more thorough experimen
survey is needed. On the other hand, even relative meas
ments of a large number of line strengths could be very va
able for examining these statistics@24#.

V. CONCLUSIONS

In this work, we have extended the configuratio
interaction approach of Ref.@11# to calculate large number
of eigenstates in Ce. In agreement with our earlier stud
the energy-level statistics indicate that the simple configu
tional basis states are strongly mixed together by the resi
electron interaction, and the only good quantum number
the spectrum are parity and the total angular momentum.
total orbital momentumL and spinS are not conserved du
to the spin-orbit interaction, whose effect is dynamically e
hanced, just as that of any other perturbation in a cha
many-body system@11#.

The strong configuration mixing makes multielectro
atomic eigenstates chaotic. This in turn results in a Gaus
statistics of the matrix elements for chaotic atomic eige
states~compound states!. This understanding is fully con
firmed by our numerical calculations of the 1120E1 ampli-
tudes between the 14 lowestJp542 states and 80Jp541

states above 2 eV. It is important that the parameter of
Gaussian, the rmsE1 amplitude, varies slowly with the ex
citation energy. This effect should be taken into acco
when analyzing the statistics of the matrix elements.

We also show that a statistical theory can be used to
timate mean-squared matrix elements involving compou
states. It enables one to express the answer in terms o
single-particle matrix elements and occupation numbers,
parameters of the compound states, namely, the numbe
principal components and the spreading width. This
proach has already been applied to a calculation of ma
elements between compound states in nuclei@14#. It could be
useful in various other many-body systems, e.g., atomic c
ters or quantum dots, where direct diagonalization of
Hamiltonian matrix is not feasible because of a huge size
the Hilbert space of the problem.

An attempt has been made to analyze existing experim
tal data for the line strengths in Ce@15#. It appears that the
statistics of the measured line strengths is compatible w
the Porter-Thomas distribution, with allowance for the mis
ing weak lines. However, the discrepancy between the
culated rmsE1 amplitudes and those inferred from the e
perimental data does not allow us to say that the existenc
quantum chaos in the Ce eigenstates has been confirme
perimentally. To make this statement, one would have to
a much more complete survey and statistical analysis of
line strengths in the Ce spectrum.

On the other hand, this means that a comparison betw
the experimental and theoretical line strengths in Ce is
yet possible, even at the level of their mean values. Theo
cally, to calculate precisely the dipole matrix elements b
tween particular levels in the compound-state energy ra
of complex atoms like Ce looks like a prohibitively difficu
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problem. Experimentally, identification of specific lines
enormously complicated spectra is also a very difficult ta
However, we would like to suggest that extraction of me
characteristics from the experiment and comparison with
corresponding theoretical estimates is a meaningful way
exploring such complex systems. As a result, one might h
to obtain a deeper insight into the existence of quant
hir

y,

d
,

.

s.

s.

-
-

. A

e

.
n
e

of
e

chaos in many-body systems on the whole, and in comp
open-shell atoms, in particular.
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