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Statistics of electromagnetic transitions as a signature of chaos in many-electron atoms
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Using a configuration-interaction approach, we study statistics of the dipole matrix eler&dntn{pli-
tudes between the 14 lower states wili=4"~ and 21st to 100th even states wixk 4 in the Ce aton{1120
lines). We show that the distribution of the matrix elements is close to Gaussian, although the width of the
Gaussian distribution, i.e., the root-mean-square matrix element, changes with the excitation energy. The
corresponding line strengths are distributed according to the Porter-Thomas law which describes statistics of
transition strengths between chaotic states in compound nuclei. We also show how to use a statistical theory to
calculate mean-squared values of the matrix elements or transition amplitudes between chaotic many-body
states. We draw some support for our conclusions from the analysis of the 228 experimental line strengths in
Ce[J. Opt. Soc. Am8, 1545(1991)], although direct comparison with the calculations is impeded by incom-
pleteness of the experimental data. Nevertheless, the statistics observed give evidence that highly excited
many-electron states in atoms are indeed chaotic.
[S1050-294{@8)04207-3

PACS numbds): 31.10+2z, 32.70.Cs, 31.56-w, 05.45+b

[. INTRODUCTION eigenstates of these quantum systems must be completely
different, and it is clear that the eigenvalue statistics cannot
The aim of this work is to present more evidence thatreally tell us much about the origin of chaotic behavior, or
excitation spectra of complex open-shell atoms, and probindeed the structure of the chaotic eigenstates.
ably any other atom at sufficient excitation energies, display The first inquiry into the possibility of chaos in the eigen-
clear quantum chaotic features. This phenomenon is causetites of complex atoms was done by Chirikéy. He stud-
by strong mixing of many-electron excited states by the reied configuration compositions of eigenstates of the Ce atom
sidual two-body Coulomb interaction. It manifests itself, in using data from tablelsl0], and came to the conclusion that
particular, in Gaussian statistics of tl&l amplitudes for “eigenfunctions are random superpositions of some few ba-
these states. sic states.” Inspired by that work, we conducted an extensive
Since the time of Bohr's hydrogen atom theory, atomsnumerical study of the spectra and eigenstates of complex
were considered as perfectly regular dynamical systems. Aspen-shell atoms, using the rare-earth atom of Ce as an ex-
the classical theory of chaos evolved, it became apparent thample[11-13. This allowed us to investigate many-body
highly excited atomic states in the Rydberg range could bequantum chaos in a real system. We showed that atomic
come chaotic if an external field is applift], as long as the excited states are in fact similar to nuclear compound states,
underlying classical motion is chaotic. and developed a statistical approach for analyzing their prop-
On the other hand, it was also due to Bohr that the notiorerties.
of compound nuclei was introduced in physics. The behavior Unlike eigenvalues, the eigenfunctions are not observable
of these highly excited nuclear states is essentially quanturdirectly. To probe the structure of the chaotic eigenstates,
mechanical. Nevertheless, they display a number of chaotione can look at the transition probabilities or matrix elements
properties. For example, the statistics of their energy spectraf some external perturbation coupling them to each other, or
show certain universal features, and transition amplitudes into regular, simple eigenstatébke the ground staje The
volving compound states obey Gaussian stati$fi¢.sTo de-  matrix elements involving chaotic eigenstates must have
scribe these properties, it was suggested by Wigner that th8aussian statistics. We showed that its main characteristics
Hamiltonian of a compound nucleus could be modeled by a— the mean-squared value of the matrix element between
random matrix, and different characteristics found by averthe chaotic multiparticle statdsompound stat¢s— can be
aging over ensembles of such matri¢ese Refs[3,4]). calculated in terms of statistical parameters of the eigenstates
The first insight into quantum chaotic properties of com-and single-particle amplitudes and occupation numbers of
plex atoms was given by Rosenzweig and Poffgr who the orbitals present in the compound stdtEk, 14
analyzed experimental spectra of some neutral atoms, and In this work we have chosen the quantity most easily
showed that in heavy open-shell atoms the spectral statistiaccessible experimentally — tHel amplitudes. This also
are similar to those of compound nuclei. That analysis wagives us an opportunity to look for experimental signatures
later extended and refined in RE8]. Of course, the study of of chaos in the Ce atom using the work by Bisstral. [15],
eigenvalues provides valuable information about the systenwhere over 200 line strengths were measured for transitions
On the other hand, the spectral statistics observed in healyetween a large number of levels within 3.5 eV of the
open-shell atoms are similar to those of the hydrogen atom iground state. It should be mentioned that there are many
a strong magnetic field7], or even a particle in a two- other possible atomic systems to search for quantum chaos,
dimensional classically ergodic billiarfB]. However, the e.g., in doubly excited states and inner-shell excitation spec-
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tra of alkaline-earth aton4.6—-18, or even multiply excited . @ - "
states of light atom§19]. (P[M |‘1’1>:% Ci™(@;|M|®)C} (2)

Chaotic many-body states is a sum of a large number of almost uncorrelated random
items [21]. Therefore, one should expect that such matrix
gments display Gaussian statistics with zero mean. Hence
€ probability distribution of the matrix elements between

Let us now recall briefly what chaotic many-electron
atomic eigenstates are. Suppose one uses a basis of soﬁi
3?3::? ﬂ:ggi?eg?:r? Igzsgls tsﬁzﬂ;i;t.r?rehgos(t::itg?g)% C::n compound states can be characterized by their mean-squared
be taken as single-determinant states corresponding to ce‘f"-’"”eAa'F’“e' ) ) o
tain configurations of a few valence electrons, or constructed !f M is a single-particle operator, e.g., the electric dipole
from them through some coupling scheme to be of definitemomentD=Eaﬁ(a|d|ﬁ>aza3 (e and B are single-particle

total angular momenturd. The true atomic eigenstates state$, it is convenient to express its matrix elements in
terms of the matrix elements of the density matrix operator
i i ~ ot
W) =2 C{’|Py) (2 c&'>2=1) (1) Pap=23,
k k

. W,|D| W)= d|B)(W,lalas ¥ )= d,zp2Y,
and eigenvaluesE() are obtained by diagonalizing the (W2lD[¥y) ang' [B)(Walasagl¥e) aEB apPap

Hamiltonian matrixH=(®;|H|®,). The coefficientsC{’ ()

describe mixing of the basis states by the residual Coulomb (21)_ -

interaction. In the multielectron excitation range the numbeMherepg =(W3lpagl¥1).

of basis state§d,) formed by distributing several electrons

among a few open orbitals is large. Many of these states are

nearly degenerate, and the mean spacing between the basis!n Refs.[14] and[11] a statistical approach to the calcu-

state energieE,=H, is likely to be smaller than the typical lation of mean-squared matrix elements between compound

value of the off-diagonal matrix elemeht;. . In this situa- states was developed. It is first based on the assumption that

tion the basis states are strongly mixed togef26}. contributions from different single-particle transitions
Apart from a few lowest levels, each of the eigenstates ig8— « in the matrix elemen(3) are uncorrelated. The mean-

a superposition of a large number of basis states. Of coursgguared value is then given by

by a simple perturbation theory argument, the mixing must

bg \_/veak for distant ba_15|_s statéargc_e|Ej— E.|). The strong |<‘1'z||5|‘1’1>|2=2 |daﬁ|2|PE,2,;1)|2, (4

mixing takes place within a certain energy rad@q— = ap

=<I'=27V?D, where D is the mean level spacingy? o
where averaging is done over a number of compound states

=¥, andI is called thespreading widthsince it charac-
terizes the spread of the eigenstates to which a given basffound ¥ and/or ¥,. The mean-squared value of the

. . . H H 21 ; ;
state contributes noticeably. One can estimate the number @nsity-matrix operatofp{;’|” is expressed in terms of the
principal componentsi.e., those that contribute significantly parameters of the compound states 1 ar@de, their ener-
to a given eigenstatél), asN~T'/D. The coefficient<C() ~ gies and spreading widthsand the average occupation num-

corresponding to the principal components have typical valbers of the single-particle statesand 3.
ues|C{’|~ 1/{N. Their statistics is close to that of indepen- In a spherically symmetric system where the states 1 and

dent random variables, and tends toward Gaussian when tife@/€ characterized by their total angular momehtaand
mixing is strong. In this case even the single-electron orbitaPIECtioNsMy ,, the Wigner-Eckhart theorem applies, and it

occupancies are far from integer and only the total angulalS convenient to deal with the reduced matrix elements

momentum, the parity, and the energy itself remain good ¥2||D[¥) independent of the projectiond,,. For ex-

quantum number$ll]. Thus we can talk abouuantum ample, the mean-squared value of the zero-rank reduced den-

chaosin the system. This situation is similar to that in com- Sity matrix operator J;=J,=J then) is obtained in the fol-

pound nuclei, and the corresponding chaotic eigenstates cd@wing two forms[11]:

be called atomic compound states. The model configuration-

interaction calculations performed for Ce produced a valuépgzli),?,,,jlz

of I'~2 eV, and demonstrated the existence of a dense spec-

trum of chaotic compound excited states witt=100 (D D, 3(Ty.T A)(
. 1 1.1 2,

~0.01 eV just few eV from the ground stafd.1].

2J+1
2j+1

~ 2J+1
IIl. MATRIX ELEMENTS BETWEEN CHAOTIC STATES D25(F1:F2:A)( 241

. nn/l/J
<nnli<1 2j+1)>2

Npij
<nn/|/]'( 1_ 21—+1

Consider two chaotic many-body statesmpound states, (5)
for shord that are superpositions of large numbers of basis

states| W)= 3,C{M|®,) and|¥,)==,C!?)|d;). If the ex-  whereD; , are the mean level spacings near the states 1 and
pansion coefficientQ(k') are random, the matrix element of 2 ny; andn,.,/; are the orbital occupation numbers, s

some operatoM a “finite-width & function.” It depends on the spreading
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widthsT'; , of the compound states and on the energy differ-Eq. (8) allows one to estimateean line strengthfor tran-
ence A=wprj nj— EW+E?@ between the transition fre- sitions involving compound states.

quency for the compound many-electron stafé® — E(?) It is interesting to note that the statistical theory expres-
and the frequency,,|; ,; of the single-particle transition sion (8) satisfies the dipole sum ru[@6] (in atomic unitg
between the orbitalslj and_n’l’j. The functiond ha; a > E2_E® i

maximum atA =0, and describes the energy conservation for 3 > 531 (W ,||D]| ¥ )P~n, 9

the compound states. Its width is determined by the spread- Jp,E? 1

ing widthsI'; ,. Note that(---); ,in Eq. (5) denotes averag- _ _ . _
ing of the occupation-number factors over the compoundvheren is the number of active valence electrons included in
states 1 or 2. Note also that the exact form of the functiorthe configuration space of the problem. To obtain this result,

$(I'y,T,,A) depends on the spreading of the compounoone should replace summation over the final states 2 with

T, . ; ) ) ;

states over the basis components, i.e., on the “shapes” of thigtegration overd E )/EZ' take into account thaf (E*)

eigenstates. In the simplest approximation this spreading is E)8(I'1,I'2,A)dE® = wpy; o1/ [see Eq.(6)], neglect

described by the Breit-Wigner formulaee numerical stud- the “emptiness” factor (1—[ny;/(2j+1)])~1, use

ies in Ref.[11]), and s is also a Breit-Wigner profile Zppj(nr)a=n, and rely on the single-particle sum
rules for the orbitalr’l’j’ occupied in the initial statd,,

1 r+r

1 2 (6) 2

=5= . Onlj,n’1’j’ . S
27 A2+ (I +T)%4 §n2”_ ﬁl(nljlldlln 1]y P~1. (10)

By, T5,A)

To calculate the mean-squared value of BEieamplitude,
we now need a formula for the reduced density-matrix op-  lll. NUMERICAL RESULTS FOR THE CE ATOM

erator of the first rank. Starting from the definitiphil| A. Energy levels

J 1 J.\! Cerium,Z=58, is the second of the lanthanide atoms. Its
(211 =(=1 J,—My 2 1 . A .o 6
o =(—1) -M, gq M, electronic structure consists of the Xe-like“l. . 5p” core
and four valence electrons. The atomic ground state is de-
3 j=m i 1 ") @ scribed by the #6s?5d configuration withJ™=4" [10].
Xmm, (=1) -m g m Prljm,nr1jrm The origin of the extremely complex and dense excitation

spectra of the rare-earth atoms is the existence of several
(@) open orbitals near the ground state, namely, 5, 5d, and

) o L . 6p, or, in relativistic notation, #,, 4f;5, 6S15, 5dj5,
for g=0 (linear polarization along the quantization gxis 5ds,, 6py,, and @s,. These make a total oR =32

and assuming that transitions between different magnetigingle-electron states. For Ce with=4 valence electrons
sublevelan are uncorrelatt(ajd,hwe can (_jenveba fprmhula for theyhare are about N)™n!~4x 10" possible many-electron
mean square of Ed7), and then use it to obtain the mean- 4104 constructed of them. If we allow for two possible pari-
squaredel amplitude ties, about ten possible total angular momedtaand 2J

+ 1 different projectionganother factor of 10 there will be

(W, D||W,)|2= 2\]1;1D2 > Knljldln’17j") still hundreds of energy levels within a_g!ve?ﬁ mar?ifold..
nlj,n’1’j’ In the present work we perform relativistic configuration-
interaction calculations in the Hartree-Fock-Dirac basis

XE(F r,,A) Mnryrjr /1_ Npj ) analogous to those in Refll]. In that work, we limited
vhe 2j/+1\ 2j+1 1’ ourselves to just seven nonrelativistic configurations con-

structed of the #, 6s, 5d, and & orbitals, for both odd and
(8) even states, which produced 260 and 276 states With
=4~ and 4", respectively. To make the results more realis-
analogous to the lower formula in E(p), or an alternative tic, we have extended the configuration basis set by nine odd
form with D; and(ny;/(2j+1) (1= [nn/(2)"+1)]))2  and 23 even nonrelativistic configurations. Basically, the ad-
on the right-hand side. The factgron the right-hand side of gjtional configurations were obtained by exciting one of the
Eq. (8) is due to the fact that there are three final-state mofour electrons of an “old” configuration into the next or-
mentaJ,=J; and J;+1 accessible from a gived; by bital, e.g., the lowest evenfd6s? configuration would pro-
means of a dipole transition. In deriving this expression, arjuce 46s°5f, 4f6s%7p, 4f26s7s, and 426s6d configura-
additional assumption has been made that the occupanciesns. To keep the size of the configuration space reasonable,
thenljm andn’l’j'm’ states are statistically independent, we included only the configurations with mean energies
and the states with differemt within the samenlj shell are  within about 10 eV from the Ce ground state. This increased
equally populated. This supposition influences only thethe total number of 4 and 4" states to 862 and 1433, re-
“emptiness” factors(1— [ny;/(2j+1)]), which are close spectively. Note thal=4 states have been chosen because
to unity anyway when the number of single-electron stateshese manifolds are among the most abundant.
available is much greater than the number of active electrons. as a result, the level densitp(E)==,5(E—E®M) has
The square of the reduced dipole matrix elem8®,1) increased greatly above 4 eV and become closer to that ob-
=|(¥,||D||¥,)|? is called the strength of the line-12, so  served experimentally. Of course, to be meaningful, the level
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I T pa(B)=po explaE—Ey), (12

x'(29)=41.782 ]

08 [

wherep, anda are some constants, aig, is the ground-
state energy of the system. This dependence also follows
1 from the thermodynamic definition of the temperatufe}

7 =d{In[p(E) }/dE, combined with the estimates of the aver-

400 — 1433 states —

300 —

= 1 age number of excited Fermi particles,o T, and that of the
= w b 7 excitation energylz — E,~ ne,T. The experimental spectra of
L P 1 rare-earth atoms and their ions examined in Réf.are in
276 states ] agreement with Eq(12).

100 —

d Figure 1 shows that the calculated cumulative level num-
1 ber plot is fitted well by

" L L L L 1 E
0 2 E4 (eV) [} 8 N(E): ngpa(E,)dE,, (13)
FIG. 1. Energy spectra and level statistics of #ife=4* states

; _ 1 4 172 “
in Ce. The dashed line shows the cumulative number of SK{E$ With po=0.65 eV™", a=2.55 eV™, and the “ground

for the calculation with 276 basis statgsl]; the dotted line is the state” energy of the 4 sequenceEg shifted by 0.25 eV up

present calculation with 1433 basis states; the thick solid line iJr_Om the trueJ"=4 .ground state of Ce. Thus E(q12)
N(E) for 132 experimental levels from Ré1L0]. The thin solid line ~ 91VeS & good overall fit of the calculated level density below
is the cumulative level number corresponding to the independent6 ev. )

particle fit(13). Shown in the inset are the statistics of the normal-  1he second feature typical for the spectra of complex

ized level spacings for the lowest 500 levels, compared with the Many-body systems is level repulsion. It is a basic quantum
Wigner distribution(14). mechanics fact that two levels with identical quantum num-

bers cannot be degenerate if they are coupled by nonzero
density must be averaged over some small energy interval t@atrix elements — they “repel” each other. In quantum
obtain a smooth function rather than a set of spikes. Arfhaotic systems, this repulsion is characterized by the
alternative procedure is to look at the cumulative number ofVigner level spacing distribution
levels

— 7S —mws?l4

E P(s)= e ) (14)
N(E)ZJ p(E")dE’, 11

wheres is the nearest-neighbor level spacing normalized so

g1all. As we pointed out in Sec. |, spectral statistics do not
tell much about the eigenstates of the system. However, Eq.
(14) is still a good test for some possible hidden quantum
numbers, e.g., the total spin or orbital momentum, which

easily estimated from the slope of tN€E) plot. The experi-
mental data for the 132 even levels witlk-4 known from
Ref.[10] is shown by the solid-line staircase, and the ener- . A
gies are given with respect to either the experimental or calr—n'.ght characterize atomic eigenstates besitfedf these do

; t, small level spacing§‘degeneracies) will be more
culated ground-state energy. They can be compared with th IS . S
dashed line that shows(E) for our earlier small-basis cal- ahunliiadn:c than predlcteq by 2%4)1.1T1h69§e stgtlst:cslvze:je
culation[11] (276 statel and the dotted line for the present le(j:l_ ed for rr|1any texp_erlmen[t N ,”$an fca cu ? € |
calculation(1433 states The improvement is obvious, how- [11,17) complex atomic spectra, as well as for molecular

ever, the agreement is not perfect. We believe that the re\{'bron'C spectra[24]. . o
maining disagreement is not due to some missing configurg- As seen from Fig. 1 the level density changes significantly
tions in the Cl calculation. but rather due to an overall or the first 500 levels of the calculated spectrum. To analyze

“softening” of the spectra due to screening of the Coulombthe distribution of the corresponding level spacings we use

repulsion between the valence electrons by the electrons 6Ipe analytical density fip,(E) to normalize the spacings:

the core[22]. In the CI language this effect is produced by Sy=(Eps1—En)palEp). (15)
the high-energy excitations of the valence electrons into the
continuum together with the electron excitations from theTheir distribution shown on the inset in Fig. 1 is in reason-
core. able agreement with the Wigner formula. The deviations are
Two typical features can be observed in the spectra oprobably due to the long-range fluctuations of the level den-
complex atomg6]. The first, clearly seen in Fig. 1, is the sity, not accounted for by the simple exponentil). In the
rapid increase of the level densipyE) with energy[23]. Its  previous calculatioi11], where only the lowest orbitals of
origin is purely combinatorial — the larger the excitation each symmetry were included, we also observed the Wigner
energy, the greater the number of ways it can be distributedistribution. When orbitals with higher principal quantum
among a few single-particle excitations. In the independentrumbers become involveths seen from Fig. 1 above 3.5
particle model this dependence is described by the followingV), the spatial extent of the eigenstates increases. This
exponen{2]: should cause a decrease of the residual Coulomb interaction
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between the electrons. On the other hand, the level spacings L T
also become smaller. As a result, the state mixing at these T
excitation energies remains strong, which is confirmed by the 04 |
agreement with the Wigner distribution, and the eigenstates i
are chaotic. Our estimate of the number of principal compo-
nentsN shows that it becomes even greater as the energy
increases, in accord with the estim&te-I'/D~300 (' ~1

eV, and the mean level spacif=0.003 eV atE~6 eV).

o
v
T

o
® o
——

o
S
T
1

o

n
T
|

B. Dipole matrix elements

In Sec. Il, we explained that matrix elements involving
chaotic compound states should have Gaussian statistics, and
the mean squared value of the matrix elements could be es-
timated in terms of some average characteristics of the com-
pound states. In this section, we concentrate on the dipole 02 [ 3
matrix elements E1 amplitudes dy=(* D[ ¥4 ) be- F I L
tween the 14 lowest states wilf=4"~ and 80 consecutive . (d) ]
4% states obtained numerically in our CI calculations of Ce. 06 ]
We have chosen this energy region to cover the range ex- 04 [ .
plored in the experimentl5], where absolute values were o2 [ E
derived for 228 of the most intense lines of neutral Ce be- : | ]
tween 10 706 and 22 184 crh. o 2 0 2 .

Of course, low-lying atomic states, e.g., the ground state,
have a well-defined configuration composition and are not
chaotic; hence th&1 amplitudes between them should not  FIG. 2. Probability distributions of thE1 amplitudes in Ce for
be distributed in any particular statistical way. However, thetransitions between the 14 lowest 4tates and groups of 20 states
matrix elements(2) will become random(and close to with J™=4": (a) 21-40, (b) 41-60,(c) 61-80, and(d) 81-100.
Gaussiahas soon as at least one of the states involved, thens values of the amplitudes are shown next to the histograms.
initial or the final, moves into the compound-state energySmooth curves are Gaussian fits that minimjZzdor 21-17 central
range and becomes a superposition of many random compbins of the histogramésee Table)l
nents. Besides that, the mean-squared value of the matrix
element is expected to show some smooth secular variatioformalizedE1 amplitudes for the 21-100 even states are
with the energy of the states involved. For these reasons Weistributed according to the normal law. The inset shows the
skip the first 20 states with”=4", and analyze the statis- dependence of the rni&l amplitude{d2)Y2 on the energy of
tics of the 14<80=1120E1 amplitudes for the following 80 the even stat&. Fluctuations aside, it is in agreement with
even states by grouping them in bunches of 20 — 21-4Ghe rms values calculated from the statistical thery. (8)]
41-60, 61-80, and 81-100 — which correspond 0 th&yt the energies of the 30th, 50th, 70th, and 90th even states.
mean excitation energies of 2.49, 2.95, 3.40, and 3.70 €%he numerical values of the mi&l amplitudes are listed in
above the atomic ground stafiie mean energy of the low- Taple |I.
est 14 odd states is 0.68 g\Thus each plate in Fig. 2 shows  Note that we have chosen E@) with 1 standing for the
the distribution of the 280 reduced dipole matrix elementsyqq states and 2 for the even ones. In our numerical example
together with their rms value. Also shown in Fig. 2 are the\ye consider the dependence of the s amplitude on the
Gaussian distributiong(d) =exp(—d?/2d3)/\27dj, where  energy of the even states, and keep the odd states the same.
the rms parameted, has been adjusted to minimi
around the center of the histogram. The valuedpand y?

o

©
=
|

06 [

0.4 [ 3

Probability density

El1 amplitude

TABLE |. Root-mean-squar&1 amplitudes for transitions be-

are given in Table |. o _ ~ tween the 14"=4" and 80J"=4" states in Ce.
Two effects can be seen in Fig. 2. First, the distributions
of the matrix elements are indeed close to Gaussian. Second, rms E1 amplitudesa.u)

the width of the distributiongthe mean-squared value of the — . - 0
matrix elementsvaries with the energy of the even states. Iteven levels (d3)*22 fromEq.(8)° do® n® x“(n—1)
is mostly this effect that is responsible for the visible dis-

: - . ) 1-40 0.853 0.813 0.729 21 24.4
crepancies between the histograms and the Gaussian fits. 49 60 0.891 0.746 0824 21 23.9
eliminate it, we can use a running average procedure to nor= ' ' ' '
malize the amplitudes, 61-80 0.736 0.674 0.671 17 36.6

81-100 0.627 0.566 0.632 17 24.7
d= di (16) %0btained directly from the ClI calculation.

bCalculated from the statistical theory, Sec. Il.

®Values that minimizey? for the Gaussian fits shown in Fig. 2.
where(d?)? is the rms value over the 14 odd states, calcu-“Number of bins around the center of the histogram used for calcu-
lated for every even staie Figure 3 confirms that the 1120 lation of x2.
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06 ——————— — ———— 03 — 7
. 06 ———
PT: 21)=9.426 > [
states 21 to 100 X (1) = i (8)=12.7211
X(26)=22.9385 MPT: (24)=10.649 § o4 [
2 ey z
w04 - ‘w02 = o r 7
g <t 7 02
) ] ) © 8
FU Lol I L] o S F
o Lo b e
ey 25 3 35 = & L L
= Energy (eV) = 2 4 [
ﬁ o Line strength (a.u.)
3 5
o o0z - 2 o1 N
o a.
0 f 1 1 1 — 0 |—\_\—,—
4 2 o 4 0 5 o0 15 20 25
Normalized E1 amplitude Line strength (a.u.)
FIG. 3. Probability distributions of the normalizégfl ampli- FIG. 4. Comparison of the line strengths measured in Ce by

tudes in Ce for transitions between the 14 lowest states and  Bisson et al. [15] with the Porter-Thomas and modified Porter-
21-100 states witd™=4", compared to the normal distribution Thomas distributions. The solid line is the PT distributi@0) with
(solid line). The inset shows the dependence of the Efisampli- A=2.07 andS=3.3 a.u., and the dashed line is the modified PT
tude averaged over the 14 odd states on the energy of the even stafigtribution (21) with A=6.22,S,=1.12, andS= 2.4 a.u. Shown in
(thin solid ling. Solid circles connected by a thick solid line are the the inset is the probability distribution of the 30 lines measured

rms values of th&1 amplitude obtained from the statistical theory from branching ratios and delayed photoionization, fitted by a PT
[Eq. (8)] at the energies of the 30th, 50th, 70th, and 90th everyigirinution withS=2.15 a.u.

states, and open circles are values from the CI calculdsee

Table ). calculations of dipole excitations in complex atof@§], and

transitions between the vibronic levels in molecules mea-
Therefore, as in Eq8), we only need to know the average sured in Ref[24].

occupation numbers for the lowest 14 odd states, and the
result depends on the final even state via its endE&,
mean level spacin®,, and spreading width',. As we saw

in our previous calculationgl1], the even states of Ce with | Ref.[15] absolute values afA were obtained for 228
J=4 become very much chaotic at excitation energies of jusbf the most intense observed lines between 10706 and
2 eV, i.e., from the 20th level up. Also, as earlier in Ref. 22 184 cm* in Ce. It is interesting to analyze these data to

[11], we use average configuration energies rather thagee whether they support our theoretical and numerical con-
single-particle Hartree-Fock energies to determine the trarsiderations.

IV. ANALYSIS OF EXPERIMENTAL DATA

sition frequenciesw,+; ; needed for calculation oA in The values ofgA listed in Ref.[15] are defined agA
Eq. (8). The ground state of Ce is described ad6¢5d; =(2J,+1)A;, where

however, the dominant configuration among the 14 lowest

odd states is #6s5d?, and we used it to calculate the tran- 46203

sition energies. For example, the energy of tlse6p tran- Aki:3—k'|<i||f)||k>|2 (18
sition wep, ¢s Was determined as the difference between the 3fic (23, +1)

average energies of thef8d?6p and 4f6s5d? configura-

tions. Physically, this corresponds to choosing a particulais theE1 transition rate from the upper levelinto the lower
mean field close to that of the low-lying odd states of Ce forlevel i [26]. We use the experimental values @A and Jy
calculation of the transition energies. It should be mentionedand transition frequencies,; to extract values of the line
however, that the results obtained with the Hartree-Fock frestrengths

quencieswnj 17 = €nij— €n17j Were not too different.

Gaussian statistics of the dipole matrix elements result in ~ 3
the Porter-ThomagPT) distribution of the line strengths S(i,k)=[ilIDIk)P=gA——. (19
S(i k) =df, & wyi

In Fig. 4, the probability distribution of the 228 experimental
1 S line strengths is shown. Compared to the expected PT for-

f(S)= —— exp( — __> , (17 mula (17), there is a clear lack of small line strengths. Nev-
27SS 2S ertheless, the decreasing part of the histogram can be fitted

well by a PT distribution with an additional normalization

factor A,

whereS is the mean line strength. Divergence of this func- o
tion at smallS means that if th&1 amplitudes are Gaussian, A exp —S/2S)
there should be many weak lines in the spectrum. Earlier fA(S) = ——F—=—

—, (20)
evidence of the PT statistics of line strengths can be found in V27SS



236 V. V. FLAMBAUM, A. A. GRIBAKINA, AND G. F. GRIBAKIN PRA 58

shown in Fig. 4 by a solid line foA=2.07 andS=3.3 a.u. pears that to make firm conclusions about Gaussian statistics

that minimizey? for the 22 bins withS>3 a.u. of the E1 amplitudes, a much more thorough experimental
It would be tempting to say that the excellent agreemensurvey is needed. On the other hand, even relative measure-

between the PT curve and the histogram is a confirmation ofments of a large number of line strengths could be very valu-

the Gaussian statistics of tlel amplitudes in Ce. The value able for examining these statistit4].

of A would then indicate that about one-half of all lines are

missing in the experimental data. However, the valuéof

=3.3 a.u. corresponds to the rfa4 amplitude of 1.8, which V. CONCLUSIONS

is more than two times greater than our numerical results in

Figs. 2 and Jinsed, and in Table I. On the other hand, the  In this work, we have extended the configuration-
experimentally observed 228 lines include transitions beinteraction approach of Refl1] to calculate large numbers
tween levels with various total angular momenta betw&en of eigenstates in Ce. In agreement with our earlier studies,
=1 and 8 (J;—J,|<1, of cours¢ whereas we have about the energy-level statistics indicate that the simple configura-
500 hundred lines with juslj=J,=4 in our calculation in  tjona| basis states are strongly mixed together by the residual
the analogous energy range. This means that in R&l  gjectron interaction, and the only good quantum numbers in

only the strongest 10% or less of all lines have in fact beeny,o spectrum are parity and the total angular momentum. The
measured. The very suggestive agreement with the PT distr,

bution in Fia. 4 should then b idered v fort fotal orbital momentunt. and spinS are not conserved due
it(L)Julzc;m N F1g. = shou en be considered as merely Tortuy, e spin-orbit interaction, whose effect is dynamically en-

It is worth noting that in experiment the lines are selecteopanced’ just as that of any other perturbation in a chaotic

by their intensities proportional t9A, rather than strengths. many-body systerﬁl;]. : L .
Hence even lines with large strengths can be omitted if their Th.e s_trong conﬂgurapon mixing makes ”.‘”'“e'ec”oﬁ
frequencies are small. Let us look at the simplest model of"tor_n'(,: eigenstates ChaOt'C' This in turn resglts n a,GaL,JSS'an
this effect and see how it influences the observed strengtRtatistics of the matrix elements for chaotic atomic eigen-
distribution. Assume that transitions in a certain frequencystatés(compound statgs This understanding is fully con-
range 0<w< w g are studied, and different values within firmed by our numerical calculations of the 112@ ampli-
this interval are equally probable. The observed intensities dtides between the 14 lowesf=4" states and 807=4"
the lines are proportional t63S. If we assume that there is States above 2 eV. It is important that the parameter of the
a minimal threshold intensity that can be registered, thésaussian, the rmg1l amplitude, varies slowly with the ex-
original PT distribution of strengths would be modified ascitation energy. This effect should be taken into account
follows: when analyzing the statistics of the matrix elements.
We also show that a statistical theory can be used to es-
f1(S) timate mean-squared matrix elements involving compound
0, s<s, states. It enables one to express the answer in terms of the
single-particle matrix elements and occupation numbers, and
= A S So\ M parameters of the compound states, namely, the number of
exp -~ =1~ s v S>So, principal components and the spreading width. This ap-
2S . . .
proach has already been applied to a calculation of matrix
(21 elements between compound states in njdiéj. It could be
useful in various other many-body systems, e.g., atomic clus-
whereS, is the minimal strength that can be observedvat ters or quantum dots, where direct diagonalization of the
= wmax, aNdA is the normalization factor. As seen from Fig. Hamiltonian matrix is not feasible because of a huge size of
4, Eq._(21) also gives a very good fit of the experimental datathe Hilpert space of the problem.
with S=2.4, S;=1.12, andA=6.22 [27]. Note, however, An attempt has been made to analyze existing experimen-
that the value of the mean line strength is 1.5 times smallefal data for the line strengths in G&5]. It appears that the
than the one we had from the pure PT fit. Therefore, thestatistics of the measured line strengths is compatible with
assumptions used in our processing of the experimental dafie Porter-Thomas distribution, with allowance for the miss-
affect the estimates of the experimental rik amplitudes,  jng weak lines. However, the discrepancy between the cal-
and we should not be too concerned about the apparent digy|ated rmsE1 amplitudes and those inferred from the ex-
agreement with our numerical calculations. In addition, €xy,erimental data does not allow us to say that the existence of
traction of absolute line str_engths_from th_e experimental dat uantum chaos in the Ce eigenstates has been confirmed ex-
is not free from uncertainties estimated in R@fS] at 10— orimentally. To make this statement, one would have to do

0, .. .
20 %. . . . a much more complete survey and statistical analysis of the
For 30 transitions in Ce, thgA values were obtained o strengths in the Ce spectrum

more accurately from branching ratios and delayed photoion- 5, the “other hand, this means that a comparison between
Ization measurements of lifetiméRef. [15], Tgble_a. When the experimental and theoretical line strengths in Ce is not
we lOOk. at the statistics of t.he .correspond|.ng _Ilne_ strength@et possible, even at the level of their mean values. Theoreti-
(Fig. 4, inse}, and compare it with the PT distributidd?), ¢4y to calculate precisely the dipole matrix elements be-

a value ofS=2.15 is obtained, much smaller than the esti-tween particular levels in the compound-state energy range
mates ofS from the statistics of the 228 lines. Thus it ap- of complex atoms like Ce looks like a prohibitively difficult

27SS
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problem. Experimentally, identification of specific lines in chaos in many-body systems on the whole, and in complex
enormously complicated spectra is also a very difficult taskopen-shell atoms, in particular.

However, we would like to suggest that extraction of mean

characteristics from the experiment and comparison with the ACKNOWLEDGMENTS

corresponding theoretical estimates is a meaningful way of We would like to thank O. P. Sushkov for useful discus-
exploring such complex systems. As a result, one might hopsions, and acknowledge support of this work by the Austra-

to obtain a deeper insight into the existence of quantunlian Research Council.
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