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Multiphoton detachment of electrons from negative ions

G. F. Gribakin* and M. Yu. Kuchiev†

School of Physics, University of New South Wales, Sydney 2052, Australia
~Received 5 December 1996!

A simple analytical solution for the problem of multiphoton detachment from negative ions by a linearly
polarized laser field is found. It is valid in the wide range of intensities and frequencies of the field, from the
perturbation theory to the tunneling regime, and is applicable to the excess-photon as well as near-threshold
detachment. Practically, the formulas are valid when the number of photons is greater than one. They produce
the total detachment rates, relative intensities of the excess-photon peaks, and photoelectron angular distribu-
tions for the hydrogen and halogen negative ions, in agreement with those obtained in other, more numerically
involved calculations in both perturbative and nonperturbative regimes. Our approach explains the extreme
sensitivity of the multiphoton detachment probability to the asymptotic behavior of the bound-state wave
function. Rapid oscillations in the angular dependence of then-photon detachment probability are shown to
arise due to interference of the two classical trajectories, which lead to the same final state after the electron
emerges at diametrically opposite sides of the atom when the field is close to maximal.
@S1050-2947~97!03205-8#

PACS number~s!: 32.80.Rm, 32.80.Gc, 32.80.Wr
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I. INTRODUCTION

In this paper we present an analytical solution to the pr
lem of multiphoton detachment from a negative ion by
linearly polarized laser field. It gives very reliable quantit
tive results for a wide range of intensities and frequencie
the laser field, from the weak-field regime, where the proc
is described by the perturbation theory, to the strong fie
where it proceeds as tunneling. The theory is valid when
number of photonsn is large, but usually gives good resul
as soon asn>2. We use it to calculate and examine vario
characteristics of the problem: the total multiphoton deta
ment rate, then-photon detachment cross sections, the sp
trum of excess-photon detachment~EPD! photoelectrons~the
analogue of above-threshold ionization in atoms!, and the
peculiar photoelectron angular distributions.

There are two important physical properties of the mu
photon detachment process.

~i! The frequency of the laser field is much lower than t
electron binding energy

v!uE0u, ~1!

whereE052k2/2 is the energy of the bound state~atomic
units are used throughout!. This means that multiphoton de
tachment is anadiabatic problem. The external field varies
slowly in comparison with the period of electron motion
the system. Therefore, the general adiabatic theory@1–3# is
applicable. As long as the laser field is weaker than
atomic field, the detachment probability is exponentia
small with respect to the adiabaticity parameteruE0u/v;n.

~ii ! The process of multiphoton detachment takes pl
when the electron is far away from the atomic particle~see
Sec. II!, at large distances,
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vA11g2D 1/2@1, ~2!

whereg5vk/F is the Keldysh parameter andF is the field
strength. In the weak field regimeg@1, Eq. ~2! gives
R.1/Av;k21A2n@1, wherek;0.3 for a typical negative
ion binding uE0u;1 eV. In the strong field regimeg,1,
estimate ~2! yields R.Ag/v5k21AF0 /F@1, where
F0[k3 is the typical atomic electric field andF!F0.

The two features,~i! and ~ii !, greatly simplify the multi-
photon detachment problem. Owing to~ii !, the final state of
the electron can be described by the Volkov wave funct
@4#, which takes into account the external field and negle
the atomic field. Moreover, the Volkov wave function d
scribes explicitly the variation of the electron energy in t
laser field. This makes it very convenient for application
the general adiabatic theory, as suggested by~i!.

Calculations based on the Volkov final-state wave fun
tion were first done by Keldysh@3#. Subsequently, the ide
was developed by Perelomov, Popov, and Terent’ev@5# and
later reconsidered by Faisal@6# and Reiss@7#. This approach
is usually supposed to give a correct qualitative picture
multiphoton processes. In this paper we demonstrate tha
fact, it produces very accurate quantitative results for
multiphoton detachment from negative ions. We reexam
and extend the Keldysh theory, paying particular attention
the following points. First, we show that the EPD can
described accurately by the theory. Originally, the theo
was developed for low-energy photoelectrons@3# with ki-
netic energies much smaller than the binding energy. T
present approach is valid at any photoelectron energy. S
ond, the angular distribution of photoelectrons is examin
in detail. We show that a nontrivial oscillatory pattern of th
angular distribution is caused by the simple and interes
physics. The photoelectron’s escape from the atomic part
is most probable when the field reaches its maximum. Th
are two such instants in every period of the laser fi
T52p/v, say, t50 and t5T/2. As a result, there are two
3760 © 1997 The American Physical Society
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55 3761MULTIPHOTON DETACHMENT OF ELECTRONS FROM . . .
classical trajectories which lead to the same final state of
photoelectron. Interference of the corresponding amplitu
gives rise to an oscillatory angular dependence of the det
ment rate. There is a similar effect in the single-photon
tachment in the presence of a static electric field, where
interference takes place between the two trajectories of
electron emitted up or down field@8,9#.

Estimate~2! leads to a further simplification of the prob
lem, since the initial bound-state wave function of the atom
system should also be considered at large distances, wh
can be replaced by its simple asymptotic form. The com
cated behavior of the wave function inside the atom and
corresponding many-electron dynamics have little influe
on the multiphoton detachment. In contrast, use of the w
function with incorrect asymptotic behavior, e.g., that cor
sponding to the Hartree-Fock binding energy, introduces
error, which is exponentially large with respect toAn. Such
sensitivity has been noticed in the perturbation theory ca
lations of the two- and three-photon detachment from H2

@10#.
There have been a large number of papers where m

photon detachment from the hydrogen and halogen nega
ions is investigated. Perturbation theory calculations inclu
those based on the Hartree-Fock approximation@11#, adia-
batic hyperspherical approach@10#, model potential@12#, a
configuration-interaction procedure@13#, and the Lippmann-
Schwinger equation@14#. There are also numerous nonpe
turbative methods, such as the Floquet close-coup
method @15#, complex-scaling generalized pseudospec
method @16#, non-Hermitian Floquet Hamiltonian metho
@17#, and theR-matrix Floquet theory@18,19#. All the above
methods rely on much more involved numerical calculatio
than those needed in our analytical approach. However,
believe that the present theory provides accurate answer
most of the multiphoton detachment problems. For illust
tion purposes, we reproduce a variety of results obtai
earlier, including then-photon cross sections, total detac
ment probability, EPD spectrum and photoelectron angu
distributions for a large range of frequencies and intensi
of the field ~Sec. III!. We believe that in some cases o
results are more accurate than those obtained previously
to the correct asymptotic behavior of the bound-state w
function we use.

The good accuracy we have achieved within the Keldy
type theory is quite useful for the multiphoton detachm
problem. On the other hand, its validity is very important f
the development of an adiabatic theory of more complica
phenomena, such as double ionization@20–22#.

The formulas obtained in this paper can be used to e
mate probabilities of multiphoton ionization of neutral a
oms. However, the influence of the Coulomb field of t
positive ion on the wave function of the photoelectron can
be neglected@23,24# and our results for the multiphoton ion
ization would be less reliable.

II. THEORY

A. Basic equations

Consider the removal of a valence electron from an at
or a negative ion by the laser fieldF(t)5Fcosvt. The differ-
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ential detachment rate can be written as the sum o
n-photon processes@see Appendix A, Eq.~A8!#

dwn52p(
n

uApnu2d~Ep2E02nv!
d3p

~2p!3
, ~3!

whereApn is the amplitude of then-photon process

Apn5
1

TE0
T

Cp* ~r ,t !VF~ t !C0~r ,t !dr dt, ~4!

C0(r ,t)5e2 iE0tF0(r ) is the wave function of the initial
electron state in the atomic potentialU(r )

Fp22 1U~r !GF0~r !5E0F0~r !, ~5!

VF(t) is the interaction with the laser field,

VF~ t !52er•F~ t !, ~6!

in the length gauge,e521 for the electron, andCp(r ,t) is
the continuous spectrum solution of the time-depend
Schrödinger equation with the quasienerg
Ep5p2/21F2e2/4v2. It describes the outgoing photoele
tron in the laser field with the translational momentump, and
F2e2/4v2 is the electron quiver energy due to the field. T
subscriptn in Apn reminds one that the amplitude must b
calculated atEp5E01nv, provided by the energy conserva
tion in Eq. ~3!.

As we show below, the detachment probability is det
mined by the asymptotic behavior of the bound-state w
function at large distances. This means that the role of e
tron correlations in the multiphoton detachment of a sin
electron is small, providedF0(r ) correctly represents the
asymptotic behavior of the true many-electron wave funct
of the system

CN~r1 , . . . ,rN21 ,r ! .
r@1

CN21~r1 , . . . ,rN21!F0~r !, ~7!

where CN is the ground-state wave function of th
N-electron system, andCN21 is the wave function of the
N21-electron atomic residue.

If we neglect the influence of the atomic potentialU(r )
on the photoelectron, the final state is given by the Volk
wave function

Cp~r ,t !5expF i ~p1kt!•r2
i

2E
t

~p1kt8!
2dt8G , ~8!

wherekt5e* tF(t8)dt8 is the classical electron momentu
due to the field. By omitting the lower integration limit w
mean that we set its contribution to zero, as if the integrat
is performed from2` and the integrand is switched on adi
batically. For the Volkov function~8! this gives the same
phase as in@21#, 2 ( i /2) *0

t (p1kt8)
2dt81 ipF/v2, and pro-

vides Cp(r ,t) with a convenient symmetry property wit
respect to inversion:

C2p~r ,t !5Cp~2r ,t1T/2!exp~ iEpT/2!. ~9!

The wave function~8! satisfies the Schro¨dinger equation
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i
]Cp

]t
5Fp22 1VF~ t !GCp . ~10!

The neglect of the short-range potentialU(r ) for the photo-
electron is justified in multiphoton processes, e.g., in
multiphoton detachment from negative ions~see end of Sec
IIB !.

Using the complex conjugates of Eqs.~8! and ~10! and
i ]C0 /]t5E0C0, we transform amplitude~4! into

Apn5
1

TE0
TFE02

~p1kt!
2

2 GF̃0~p1kt!

3expF i2E t

~p1kt8!
2dt82 iE0t Gdt, ~11!

whereF̃0(q) is the Fourier transform ofF0(r )

F̃0~q!5E dre2 iq•rF0~r !. ~12!

Note that in the velocity gauge

VF~ t !52
e

c
A~ t !•p1

e2

2c2
A2~ t !, A~ t !52cE t

F~ t8!dt8,

~13!

the Volkov wave function looks simpler,

Cp~r ,t !5expF ip•r2 i

2E
t

~p1kt8!
2dt8G . ~14!

This gauge, which apparently ‘‘leads to an analytical si
plicity’’ @7#,

Apn5
1

T SE02
p2

2 D F̃0~p!E
0

T

3expF i2E t

~p1kt8!
2dt82 iE0t Gdt, ~15!

is less physical though than the length gauge in this probl
The amplitude~4! is not gauge invariant whenU(r ) is ne-
glected for the final state@compare~11! with ~15!#, except
for the zero-ranges-wave initial stateF0(r )5Ar21e2kr /
A4p. The length gauge interaction~6! emphasizes large dis
tances, where the bound-state wave functionF0(r ) has a
well-defined asymptotic behavior. We will see in the ne
section that this gives it a major advantage over the velo
gauge. In the limitv→0 the length-gauge calculation repr
duces the static-field result@25,26#.

B. Adiabatic approximation

For multiphoton processes the integral over time in
amplitude ~11! contains a rapidly oscillating exponen
exp@iS(vt)#, where S(vt);2pn is the coordinate-
independent part of the classical action

S~vt !5
1

2E
t

~p1kt8!
2dt82E0t. ~16!
e

-

.

t
ty

e

This makes the amplitudeApn exponentially small and the
integral*0

T . . .dt should be calculated using the saddle-po
method. The positions of the saddle points are given
dS(vt)/dt50, which yields

~p1kt!
21k250. ~17!

The saddle-point method in this problem has simple and
portant physical contents. The two terms on the right-ha
side of Eq.~16! describe the energy of the electron in th
initial and final states,E0 and (p1kt)

2/2, respectively. Ac-
cording to the general adiabatic theory@2#, the transition
from the initial to the final state happens at the moment
time when their energies are equal. This is exactly the me
ing of Eq. ~17!.

Note that condition~17! coincides with the positions o
singularities of the Fourier transformF̃0(p1kt) in the am-
plitude~11!. Indeed, the general asymptotic form ofF0(r ) is

F0~r ! .
r@1

Arn21exp~2kr !Ylm~ r̂ !, ~18!

where n5Z/k, Z is the charge of the atomic residu
(n5Z50 for the negative ion!, andr̂5r /r is the unit vector.
It is easy to see that due to~18! the Fourier transform~12! is
singular atq252k2. Using @27# we derive the following
asymptotic form ofF̃0(q) for q→6 ik:

F̃0~q!.4pA~6 ! lYlm~ p̂!
~2k!nG~n11!

~q21k2!n11 , ~19!

where (6) l[(61)l corresponds toq→6 ik.
Therefore, when the length-form amplitude is calculat

by the saddle-point method, we do not need to know
behavior of the bound-state wave function in the who
space. In contrast, when using the velocity-form amplitu
~15!, the value of the Fourier transform for the true final-sta
momentump is needed. To calculate it one must know t
exact wave function at all distances, includingr;1. What
makes the problem even harder is that many-electron co
lations become essential there.

Equation~17! for the saddle points, presented explicitly

S p1
eF

v
sinvtmD 21k250, ~20!

defines complex valuestm where the transition from the
bound state into the Volkov state takes place. Equation~20!
has two pairs of complex conjugate roots in the inter
0<Re(vt),2p. According to the general theory of adia
batic transitions@2#, in the case where the final-state ener
Ep is greater than the initial energyE0, we should take into
account the two saddle points in the upper half-plane of co
plex t.

Changing the integration variable tovt and substituting
the asymptotic expression for the Fourier transform near
singularity~19!, we can write amplitude~11! as the sum over
the two saddle points
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2
1

2p (
m51,2

E @~p1kt!
21k2#

3
4pA~6 ! lYlm~ p̂m!~2k!nG~n11!

2@~p1kt!
21k2#n11 exp@ iS~vt !#d~vt !,

~21!

where the integral is taken over the vicinity of themth saddle
point, p̂m is the unit vector in the direction o
p1(eF/v)sinvtm , and the two signs in (6) correspond to
m51,2. Note that for the initial electron state bound
short-range forces, as in a negative ion, the integrand in~21!
has no singularity (n50) and the application of standar
saddle-point formulas is straightforward. Having the gene
case in mind, we will calculate the amplitude for arbitra
n, taking into account the singularity at the saddle point. T
is also useful if one wants to calculate the amplitude in
original form ~4! without using the transformation that lead
to Eq. ~11!.

Using dS(vt)/d(vt)5@(p1kt)
21k2#/2v, we can re-

write Eq. ~21! as

22pAG~n11!S k

v D n 1

2p (
m51,2

~6 ! lYlm~ p̂m!

3E exp@ iS~f!#

@S8~f!#n df, ~22!

where f5vt. In the vicinity of the saddle pointfm ,
S8(fm)50, we haveS8(f).S9(fm)(f2fm). The contri-
bution of this saddle point is then given by the followin
integral:

E exp@ iS~f!#

@S8~f!#n d~f!5
1

@S9~fm!#nE exp@ iS~f!#

~f2fm!n df,

~23!

which is calculated in Appendix B.
The explicit form of the action~16! is

S~f!5nf2j cosf2
z

2
sin2f, ~24!

wherez5e2F2/4v3 is the mean quiver energy of the ele
tron in the laser field in units ofv, j5eFp/v2 depends on
the angleu between the photoelectron momentump and the
field F, and we putEp2E05nv due to the energy conse
vation in ~3!. Thus, we obtain the final expression for th
amplitude by the saddle-point method:

Apn522pAG~11n/2!2n/2S k

v D n

(
m51,2

~6 ! lYlm~ p̂m!

3
~cm1 ism!nexp@2 icm~j1zsm!#

A2p~2 iSm9 !n11
, ~25!

where

sinvtm5~2j6 iA8z~n2z!2j2!/4z[sm , ~26!
l

s
e

cosvtm56A12sm
2[cm , ~27!

Sm9 5cm~j14zsm!, ~28!

and the signs6 correspond to the two saddle poin
m51,2. The usual definition of the spherical harmonics@28#

Ylm~q,w!5
1

A2p
eimw~21!

m1umu
2 F2l11

2

~ l2umu!!
~ l1umu!! G

1/2

3Pl
umu~cosq!, ~29!

is generalized naturally to calculateYlm(p̂m) for complex
vectors by setting

cosq5
~p1kt!•F

A~p1kt!
2F

5S 11
p'
2

k2 D 1/2, ~30!

where the last equality is valid at the saddle points, a
p'5psinu is the component ofp perpendicular toF. The
real physical angleu should not be confused with the com
plex angleq from Eqs.~29! and ~30!. The azimuthal angle
w is the same in both cases.

Using ~9! and the symmetry of the spherical harmoni
Ylm , one can show that the amplitude~4! has the following
symmetry properties:Apn→(21)n1 lApn , upon inversion
p→2p (u→p2u, w→w1p), andApn→(21)n1 l1mApn ,
upon reflection in the plane perpendicular to the direction
the field (u→p2u). Consequently, the amplitude is zero f
p perpendicular to the field, ifn1 l1m is odd.

It is easier to look at the physics behind Eqs.~25!–~28! in
the case where the photoelectron momentum is sm
p!k. The following simpler formulas for the saddle poin
can be obtained from~26!–~28! by settingj50:

sinvtm56 ig, cosvtm56A11g2, Sm9 5 igA11g2
F2

v3 ,

~31!

whereg5kv/F is the Keldysh parameter. Thus, for sma
photoelectron momenta the saddle points arevt15 isinh21g
and vt25p1 isinh21g, and the detachment takes place
the two instances when the external field is maximal,t50
and T/2 on the real axis. Accordingly, the total amplitud
~25! is the sum of the two contributions from these poin
This results in oscillations in the photoelectron angular d
tribution, which we discuss in greater detail below.

The original approach used in@3,5# was to expand Eqs
~26! and ~27! and the action~24! in powers ofp/k to the
second order~see Sec. IID2!, thus obtaining corrections to
~31!. In this regime,g remains the main parameter whic
determines the probability of multiphoton detachment@29#.
However, the applicability of the saddle-point result~25! is
essentially narrowed by such expansion~Sec. III!.

The adiabatic nature of the problem allows us to estim
the radial distances that are important in the multipho
detachment process. We have already seen that the sa
points in the integral in~11! coincide with the poles of the
Fourier transformF̃0(q). The form ofF̃0(q) at q→6 ik is
given by the behavior ofF0(r ) at r→`. To estimate the
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essential distances look at Eq.~22!. The range off where
the integral is saturated is determined
uS9(fm)(df)2u;1, which gives df;uS9(fm)u21/2. The
corresponding range of momentap1kt is given by

dq;
F

v
cosfmdf;S vA11g2

g D 1/2[ 1

R
, ~32!

where we use Eq.~31!. The essential distances are obtain
from rdq;1, which yields estimate~2!. It is important that
R@1 in both weak- and strong-field regimes. This makes
Keldysh approach valid for short-range potentials. There
another physical reason which helps to clarify why t
atomic potential can be neglected for the photoelectr
When a large number of photons is absorbed by the ph
electron, higher-angular-momentum partial waves are po
lated. The influence of the short-range potential upon them
small. For a given electron momentump the importantl
values can be estimated asl;pR. In the perturbation theory
regime this estimate yieldsl;(p/k)An, which suggests tha
the spread of the probability of finding the photoelectr
with given l is described by a random walk ofn steps.

Estimate~2! also explains the extreme sensitivity of th
multiphoton detachment rates to the asymptotic behavio
the bound-state wave function. Suppose a bound-state w
function characterized byk8 instead of the truek is used.
The error in the amplitude~4! introduced by replacingk by
k8 comes in as a factor exp@2DkR#, whereDk5k82k. The
value ofR is large; thus, even a smallDk can produce an
exponential error in the amplitude. Using the perturbatio
theory regime estimate ofR we obtain the error factor o
exp@22(Dk/k)A2n# for the detachment rate.

C. Detachment rates

The differentialn-photon detachment rate for the electr
in the initial statelm is obtained from Eqs.~3! and~25! after
integration overw andp,

dwn

dV
5
pA2

4p S k

v D 2n

2nG2~11n/2!~2l11!
~ l2umu!!
~ l1umu!!

3uPl
umu~A11p2sin2u/k2!u2

3U (
m51,2

~6 ! l1m
~cm1 ism!n

A2p~2 iSm9 !n11
exp@2 icm~j

1zsm!#U2, ~33!

where p5A2(nv2F2/4v21E0) is the photoelectron mo
mentum determined by the energy conservation andn50 for
negative ions. According to the symmetry properties
Apn , the differentialn-photon detachment rate is exact
zero atu5p/2 for oddn1 l1m.

The totaln-photon detachment rate of thelm state is ob-
tained by integrating~33!,

wn
~ lm!52pE

0

pdwn

dV
sinudu, ~34!
d

e
is

n.
o-
u-
is

of
ve

-

f

and if we are interested in the total detachment rate fo
closed shell, the sum overm and the electron spin projec
tions must be completed:

wn52 (
m52 l

l

wn
~ lm! . ~35!

The dominant contribution to this sum is given by th
m50 state, since it is extended along the direction of
field ~see Sec. IID2!.

It is very easy to take the effect of fine-structure splitti
into account. The two fine-structure componentsj5 l6 1

2 of a
closed shell are characterized by different binding energ
uE0u and values ofk. Then-photon detachment rate for th
j sublevel is then given by

dwn
~ j !

dV
5
2 j11

2l11 (
m52 l

l
dwn

dV
, ~36!

which is exactly what one would expect from naive statis
cal considerations.

Of course, one can easily obtain the total detachment
by summing then-photon rates overn. The smallestn is
given by the integer part of@(uE0u1F2/4v2)/v#11.

D. Limits

There are two limits which can be usefully explored wi
the help of Eq.~33!. The first is the perturbation theory limit
where the detachment rate is proportional to thenth power of
the photon fluxJ5cF2/(8pv), and the process is describe
by the generalizedn-photon cross section

dsn

dV
5
dwn

dV
J2n. ~37!

The other is the low-photoelectron energy limit studied e
lier in @3,5#. It enables one to recover the static-field resu
@25,26#.

1. Perturbation-theory limit

To obtain the perturbation-theory limit, it is convenient
rewrite the saddle-point equation~26! for sinvtm in the fol-
lowing form:

sm5
v

F
~pi6 iAk21p'

2 !, ~38!

wherepi5pcosu is the momentum component parallel to th
field. The weak-field regimeg@1 infers usmu@1, hence we
obtain for cosvtm

cm56A12sm
2.2 ism1

i

2sm
1O~sm

22!. ~39!

Using Eqs.~38! and ~39! to calculate the amplitude~25! for
n50, and retaining only the leading term incm everywhere,
except incm1 ism , where the second term is necessary,
arrive at the followingn-photon detachment cross section
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dsn

dV
5

pA2v

4p2A2nv
~2l11!

~ l2umu!!
~ l1umu!!

3uPl
umu~A11p'

2 /k2!u2S pe

ncv2D n

3
exp~pi

2/v!

Ak21p'
2 @11~21!n1 l1mcosJ#, ~40!

where p5A2nv2k2, c'137 is the speed of light
e52.71. . . , andJ is the momentum-dependent contrib
tion to the relative phase of the two saddle-point terms in
amplitude,

J5~2n11!tan21
pi

Ak21p'
2

1
piAk21p'

2

v
. ~41!
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This phase varies with the ejection angle of the photoelec
from J05(2n11)tan21(p/k)1pk/v to 2J0, and can be
quite large, even for the lowest n process,
p;Av, J0;An, thus producing oscillations in the photo
electron angular distribution. Note that in accordance w
the general symmetry properties, the cross section is zer
u5p/2, whenn1 l1m is odd.

2. Low photoelectron energies and the static-field limit

Another simplification of the general formula~33! is
achieved when the energy of the photoelectron is low co
pared to the binding energyp2!k2. Then, following @3,5#
one can expand the actionS(fm) and other quantities calcu
lated at the saddle points up in powers ofp to the second
order. Forn50, which corresponds to the multiphoton d
tachment from a negative ion, we obtain
dwn

dV
5

pA2vg

2puE0uA11g2

1

~2umuumu! !2
2l11

4p

~ l1umu!!
~ l2umu!!

expH 22
uE0u
v F S 11

1

2g2D sinh21g2
A11g2

2g G J
3expF2S sinh21g2

g

A11g2D p2v GexpS 2
gp2sin2u

vA11g2D S psinuk D 2umuF11~21!n1 l1mcosS 2kpcosuA11g2

vg D G .
~42!
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This formula coincides with Eq.~53! of Ref. @5#. The
cos (•••) in the last square brackets of Eq.~42! appears due
to the interference between the contributions of the t
saddle points in amplitude~25! and is the analogue o
cosJ in Eq. ~40!. It determines the oscillatory behavior o
the angular dependence of then-photon detachment rate
which would otherwise simply peak along the direction
the fieldu50, or u5p, for m50.

Formula~42! also shows clearly that the detachment r
for the states withmÞ0 is much smaller than that o
m50, due to the factor (psinu/k)2umu. It comes from the lead-
ing term in the expansion of the associated Legendre p
nomialPl

umu(x) in Eq. ~33! at x'1.
As shown by Perelomov, Popov, and Terent’ev@5#, in the

limit v→0 Eq. ~42! allows one to recover the well-know
formula for the ionization rate in the static electric fieldF
@26#

wstat5
A2

2k2n21

~2l11!~ l1umu!!
2umuumu! ~ l2umu!! S 2F0

F D 2n2umu21

3expS 2
2F0

3F D ~43!

for negative ion casen50. It has been shown recently@30#
that the account of the polarization potential2ae2/2r 4 act-
ing between the outer electron and the atomic residue in
negative ion changes the numerical pre-exponential facto
Eq. ~43!. However, this correction is not very large, e.g.,
o

f

e
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increases the detachment rate for Ca2 by a factor of 2, in
spite of the large polarizabilitya(Ca)5170 a.u.

It is worth noting that the perturbation theory formu
~40! and the low electron energy limit~42! have a common
range of applicability. If we usep!k in the first and take the
perturbation theory limitg@1 in the second, the two formu
las yield identical results.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we use the formulas we obtained within
adiabatic theory to calculate the photodetachment rates, E
spectra, and photoelectron angular distributions for H2 and
halogen negative ions. These are the most studied speci
far, which enables us to make comparisons with results
other calculations. Our aim is to show that our theo
achieves good accuracy in describing multiphoton deta
ment in both perturbative and strong-field regimes.

To apply the theory, all we need is the asymptotic para
etersA andk of the corresponding bound-state wave fun
tions. The values ofA are tabulated in various sources a
we use those from@32#. The values ofk are calculated using
the corresponding binding energiesk5A2uE0u. They are
taken from the electron affinity tables@33#, or obtained by
combining those with the fine-structure intervals of t
atomic ground states@34#, when we consider the detachme
of p1/2 electrons from the halogens.

In Fig. 1 we present the generalizedn-photon detachmen
cross sections for H2 obtained by integrating the differentia
cross sections from Eq.~40! with A50.75 andk50.2354
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overu. The cross section has been multiplied by 2 to acco
for the two spin states@cf. Eq. ~36! with l50, j51/2#. The
results of the perturbation-theory calculations@12# are shown
for comparison. In the latter, the interaction of the electr
with the atomic core was described by a model poten
which accounted for the polarizational attraction between
electron and the atomic core, and was chosen to reprod
the binding energy of H2, as well as the electron-hydroge
scattering phase shifts. Figure 1 shows that there is g
agreement between our results and those of@12#. We
checked that even forn53 the difference does not excee
20% at the cross section maximum.

Laughlin and Chu note@12# that their model-potential re
sults are close to those obtained in@10# using the hyper-
spherical method, which accounts for correlations betw
the two electrons in H2. They are also in agreement with th
two-electron perturbation-theory calculations of@14# and the
recentR-matrix Floquet-theory calculations@18#, which also
take into account electron correlations. The main idea beh
those approaches was to reproduce the negative-ion w
function as correctly as possible at all distances, particul

FIG. 1. Frequency dependence of the generalizedn-photon de-
tachment cross sections for H2, n55,6,7. Solid curve: present ca
culation, Eq. ~40!, integrated over angles; open circle
perturbation-theory calculations of Laughlin and Chu@12#.
nt
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near the atomic core. This idea is favored by the experie
gained from a number of problems, such as the single-pho
detachment, electron-atom scattering, etc., where elec
correlations are indeed very important. However, as sho
above, the multiphoton problem under consideration pro
to be different. Absorption of several quanta is dominated
large distances satisfying inequality~2!. The complicated be-
havior of the wave function inside the atomic core turns o
to be inessential. This is the main reason for the good ag
ment we observe in Fig. 1.

To check our theory in the nonperturbative regime, wh
one must use Eq.~33!, the EPD spectra of H2 for the three
large field intensitiesI51010, 531010, and 1011 W/cm2, of
the 10.6-mm radiation, v50.0043 a.u., are presented
Table I. For these parameters, the electron quiver energy
the ponderomotive energy shift, in units ofv,
z5F2/4v350.894, 4.472, and 8.945, and the Keldysh p
rameterg51.895, 0.847, and 0.599, respectively. For giv
v, absorption of a minimum of 7 photons is required. T
ponderomotive threshold shift changes this number
nmin58, 11, and 16. The calculation of the detachment ra
from Eqs.~33!–~36! has been done usingMathematica@31#.
For the smallest intensity, the lowest EPD peakn58 domi-
nates the total detachment rate, whereas for the higher in
sities many peaks in the EPD spectrum can be observed

The detachment rates in Table I are compared with th
obtained in the nonperturbative calculations of Telnov a
Chu @17#. They describe their method as a complex-scal
generalized pseudospectral technique applied to the solu
of the time-independent non-Hermitian Floquet Hamiltoni
for the complex quasienergies and use the accurate m
potential from@12# to describe the interaction of the electro
with the atomic residue.

There is good overall agreement between the two ca
lations. The discrepancy usually does not exceed a
per cent, and is slightly larger for higher EPD peaks a
smaller field intensities. The latter is somewhat puzzlin
since there is good agreement in the perturbation-theory l
for the seven-photon cross section atv50.0043 a.u.:

s753.5373102200 cm14s6 @Eq. ~40! integrated over angles#,

s753.6393102200 cm14s6 ~result of@17#!.

In Fig. 2 we show the angular dependence of the pho
electron peaks forn516, 17, 18, and 19, atI51011

W/cm2. We have checked that their shapes, as well as th
for other n and intensities, are practically identical to th
angular distributions presented in Figs. 5–7 of@17#. Also
shown in Fig. 2 are the differential detachment rates obtai
from Eq. ~42!. It works quite well for the two lowestn, but
the agreement becomes poor with the increase of the ph
electron energy, e.g., forn519, wherep/k'0.75.

It is worth stressing again that the remarkable oscillat
behavior is caused by the interference of the two sad
point contributions in Eq.~33!, or, in other words, the inter-
ference between the electron waves emitted at the two
stants separated byT/2, when the field reaches its maximum
The geometrical phase difference that determines the o
lations of cos( . . . ) in Eq. ~42! can be calculated classically
Suppose that the electron is considered free at the mom
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TABLE I. The EPD spectra of H2 in the strong laser field ofv50.0043 a.u. The detachment rate
calculated by our saddle-point method~SP!, Eq. ~33!, A50.75 andk50.235, are compared with the non
perturbative results by Telnov and Chu@17#.

n-photon detachment rate~a.u.!
I51010 W/cm2 I5531010 W/cm2 I51011 W/cm2

n SP @17# SP @17# SP @17#

8 6.69310210 7.12310210

9 1.92310210 2.03310210

10 4.08310211 4.32310211

11 4.99310212 5.26310212 5.4431027 4.0731027

12 7.24310213 7.86310213 4.6831027 4.8831027

13 2.03310213 2.27310213 3.5731027 3.6931027

14 1.2431027 1.3031027

15 9.5431028 9.7231028

16 8.2831028 8.5231028 4.3131026 4.3231026

17 4.7231028 4.8831028 3.0931026 3.1431026

18 1.9931028 2.0631028 2.5531026 2.4831026

19 7.5931029 7.8731029 1.2431026 1.2431026

20 3.7331029 3.9431029 1.2831026 1.2231026

21 2.7131029 2.9231029 1.0131026 1.0131026

22 2.1831029 2.3731029 4.9931027 5.0531027

23 1.6231029 1.7731029 3.7431027 3.6431027

24 1.0931029 1.1831029 4.3731027 4.2531027

25 6.62310210 7.17310210 4.3231027 4.2831027

26 3.72310210 4.02310210 3.3431027 3.3431027

27 1.95310210 2.10310210 2.1131027 2.1231027

28 9.69310211 1.04310210 1.1631027 1.1731027

29 6.2331028 6.2631028

30 3.8831028 3.9431028

31 3.1731028 3.2631028

32 3.0231028 3.1431028

33 2.9031028 3.0331028

34 2.6231028 2.7531028

Sum 9.07310210 9.66310210 1.7631026 1.6731026 1.6131025 1.6131025
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when it escapes the atomic particle. Its classical coordina
then given byr (t)5* tkt8dt85(F/v2)cosvt. At the two in-
stantstm when the adiabatic transition takes place, we ha

r ~ tm!56
F

v2A11g256
F

F

kA11g2

gv
,

where Eq.~31! is used for small momentap!k. Note that
though tm are complex, the corresponding electron coor
nates are real. These points located at the opposite sid
the atomic particle are sources of the two electron wa
emitted at the angleu with respect toF. The geometrical
phase is obtained by multiplying the baseur (t1)2r (t2)u by
the projection of the electron momentum on the direction
the fieldpcosu.

Our results for halogen negative ions are presented in
3 and Table II. They have been obtained from Eqs.~40! and
~36! for comparison with the perturbation-theory calculatio
@11# at the Nd:YAG laser frequencyv50.0428 a.u. In that
work, the nonrelativistic Hartree-Fock wave functions of t
valencenp electrons were used, together with experimen
threshold energies. The photoelectron was described in
plane-wave approximation. This approximation is equival
is

e

-
of
s

f

g.

l
he
t

to our use of the Volkov wave function in the perturbatio
theory limit. As shown in the earlier works by Crance@35#,
the multiphoton detachment results obtained in the pla
wave approximation are close to those obtained using
frozen core Hartree-Fock wave functions of the photoel
tron.

The shapes of angular distributions presented in Fig. 3
quite close to those in Fig. 2 of Ref.@11#, although quanti-
tative comparison is not feasible due to the use of an a
trary vertical scale in@11#.

The absolute values of then-photon detachment cros
sections from our calculations and@11# compare reasonably
on a logarithmic scale for all cases shown in Table II. Ho
ever, there is a systematic discrepancy. To find its origin
us recall that the multiphoton detachment rate is very se
tive to the asymptotic behavior of the bound-state wave fu
tion ~see end of Sec. II B!. In @11# the Hartree-Fock wave
functions have been used. Their asymptotic behav
exp(2kHFr ) is different from the correct exp(2kr), based on
the experimental value ofk. Thus, to account for the discrep
ancy in Table II, the Hartree-Fock-based results should
multiplied by the factor

;exp@2~kHF2k!R#, ~44!
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where, according to~2!, R'1/Av. Formula~44! shows that
whenkHF.k the Hartree-Fock-based calculations undere
mate the detachment rate, while forkHF,k they overesti-
mate it.

The Hartree-Fock values ofkHF are 0.602, 0.545, 0.528
and 0.508, for the outernp subshell of F2, Cl2, Br2, and
I 2, respectively. Examination of the lowestn cross sections
throughout Table II shows that the qualitative explanation
the discrepancy based on~44! is correct. For example, fo
F2 where kHF50.6 andk50.5, formula ~44! gives 2.6,
whereas the ratio of the three-photon detachment cross
tions for F2, j53/2, in Table II is 4.3. Also, the best agre

FIG. 2. Differential n-photon detachment rates of H2 in the
strong laser field,v50.0043 a.u., I51011 W/cm2, z58.945,
g50.599. Solid curve: ‘‘exact’’ saddle-point calculation, Eq.~33!;
dashed curve: low photoelectron energy limit, Eq.~42!. Channels
with n,16 are closed.
i-

f

ec-

ment in Table II is achieved for Br2, j51/2, wherekHF is
very close to the correct value. Therefore, we conclude t
the incorrect asymptotic behavior of the Hartree-Fock wa
functions can produce significant errors in the multiphot
detachment rates. This must be kept in mind when comp
sons are made between differentn-photon detachment calcu
lations @19#.

IV. SUMMARY

The main result of our work is that the adiabatic-theo
approach to the multiphoton problems originally suggest
by Keldysh is more powerful and accurate than is genera
believed. It yields accurate multiphoton detachment rates
negative ions and reveals a number of interesting det
about the physics of the problem: the role of large distanc
and asymptotic behavior of the bound-state wave funct
and the origin of oscillations in the angular distribution o
photoelectrons. The formulas obtained in the paper allow o
to make simple and reliable estimates of then-photon de-
tachment rates forn>2 in both perturbative and nonpertur
bative regimes.
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APPENDIX A: CALCULATION OF TRANSITION RATES
IN A STRONG PERIODIC FIELD

Suppose the system is in the initial state

c0~ t !5e2 iE0tf0 , H0f05E0f0

of the time-independent HamiltonianH0, and a periodic field
V(t)5V(t1T) is turned on adiabatically. We assume th

FIG. 3. Differentialn-photon cross sections for the electron d
tachment from the halogen negative ions, which leaves the atom
the 2P3/2 or

2P1/2 states Eqs.~40! and ~36!.
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TABLE II. Comparison of then-photon detachment cross sections from the halogen negative ion
tained by the saddle-point method~SP!, Eqs. ~40! and ~36!, with the perturbation-theory calculations b
Crance@11# at v50.0428 a.u. For eachn, logsn

(j) is shown,sn
( j ) being in units of cm2n sn21; j53/2 and

1/2 for the 2P3/2 and
2P1/2 final states of the atom.

Ion and its logsn
(3/2) logsn

(1/2)

parameters n SP @11# n SP @11#

Fluorine 3 281.62 282.25 3 282.01 283.21
A50.7 4 2113.45 2114.06 4 2113.81 2114.39
k3/250.4998 5 2145.36 2145.87 5 2145.71 2146.21
k1/250.5035 6 2177.40 2177.75 6 2177.74 2178.08

Chlorine 4 2113.14 2113.42 4 2113.53 2113.74
A51.3 5 2145.05 2145.26 5 2145.47 2145.46
k3/250.5156 6 2177.05 2177.12 6 2177.45 2177.49
k1/250.5233 7 2209.14 2209.08 7 2209.53 2209.44

Bromine 3 280.99 281.23 4 2113.52 2113.52
A51.4 4 2112.81 2113.06 5 2145.51 2145.46
k3/250.4973 5 2144.73 2144.85 6 2177.48 2177.31
k1/250.5300 6 2176.77 2176.75 7 2209.55 2209.25

Iodine 3 280.59 280.85 4 2113.35 2113.10
A51.8 4 2112.27 2112.46 5 2145.48 2145.13
k3/250.4742 5 2144.25 2144.31 6 2177.45 2176.98
k1/250.5423 6 2176.33 2176.29 7 2209.50 2208.93
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this field can be strong, so that the lowest-order perturba
theory is inapplicable. The time-dependent wave function
the system

i
]C

]t
5@H01V~ t !#C ~A1!

can be presented as the sum

C~ t !5c0~ t !1(
l

al~ t !cl~ t ! ~A2!

over the set of eigenstatescl(t) of the total Hamiltonian

i
]cl

]t
5@H01V~ t !#cl ,

which represent the possible final states of the syst
al(t) being the amplitude of finding the system in one
these states. In Eq.~A2! we assume thatal(t)→0 at
t→2` and the rate of the transitionc0→cl is given by
dual(t)u2/dt.

According to the Floquet theorem, each sta
cl(t)5e2 iEltfl(t) is characterized by its quasienergyEl

and the corresponding periodic quasienergy wave func
fl(t)5fl(t1T), found from

i
]fl

]t
5@H01V~ t !2El#fl .

At any givent the quasienergy wave functions form a com
plete orthonormal set,̂clucl8&5^flufl8&5dll8.

After insertingC(t) ~A2! into Eq. ~A1! and projecting it
onto the statêcl(t)u, we arrive at
n
f

,
f

n

dal

dt
52 i ^cl~ t !uV~ t !uc0~ t !&

52 ieiElte2 iE0t^fl~ t !uV~ t !uf0&. ~A3!

The last matrix element is a periodic function of time

^fl~ t !uV~ t !uf0&5(
n

e2 ivntAln , ~A4!

wherev52p/T and

Aln5
1

TE0
T

^fl~ t !uV~ t !uf0&e
ivntdt. ~A5!

Using ~A4!, we rewrite~A3! as

dal

dt
52 i(

n
ei ~El2E02nv!tAln

and find

al5E tdal

dt
52(

n

ei ~El2E02nv!teht

El2E02nv2 ih
Aln ,

where the energiesEl have been given an infinitesimal shi
2 ih to make* t•••dt converge at2`. The probability is
given by

ualu25(
n

e2htuAlnu2

~El2E02nv!21h2 1 oscillating terms

and the rate is
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d

dt
ual~ t !u25(

n

2he2ht

~El2E02nv!21h2uAlnu2,

where we dropped the oscillating terms since they do
contribute to the transition rate after we average it ove
period. Finally, we take the limith→0 using the following
representation of thed function:

lim
h→0

2h

x21h2 52pd~x!

and obtain

d

dt
ual~ t !u252p(

n
uAlnu2d~El2E02nv!, ~A6!

where the amplitudeAln given by Eq.~A5! can be written as

Aln5
1

TE0
T

^cl~ t !uV~ t !uc0~ t !&dt, ~A7!

due to the energy conservationEl2E05nv implied by the
d function. This amplitude describes then-quantum process
and the total transition rate~A6! is the sum over all such
processes. If the spectrum ofl is continuous, the differentia
transition ratedwl is proportional to the corresponding de
sity of statesdrl:

dwl52p(
n

uAlnu2d~El2E02nv!drl . ~A8!

APPENDIX B: SADDLE-POINT METHOD
FOR INTEGRALS WITH A SINGULARITY

Consider the integral

J5E
C
g~x!exp@2l f ~x!#dx ~B1!
-

e

,

t
a

for l→`. In this case it is well known@36# that the integra-
tion contourC should be deformed to go through the sadd
point x0, where f 8(x0)50. The vicinity of this point gives
the main contribution to the integral. If the functiong(x) is
not singular atx5x0, the integral~B1! is evaluated as

J.g~x0!S 2p

l f 9~x0!
D 1/2exp@2l f ~x0!#. ~B2!

If g(x) has a singularity at x5x0, e.g., g(x)
5(x2x0)

2n, the saddle-point answer has to be modifie
Consider the following integral:

Jn5E exp@2l f ~x!#

~x2x0!
n dx. ~B3!

By using the transformation@27#

1

~x2x0!
n 5

1

G~n!
E
0

`

djjn21exp@2j~x2x0!#, ~B4!

we turn ~B3! into the double integral

E
0

`

djjn21E exp@2l f ~x!2j~x2x0!#dx. ~B5!

Calculating*•••dx by means of~B2! and then integrating
over j, we obtain forl→`

Jn. i n
G~n/2!

2G~n! S 2p

l f 9~x0!
D 1/2@2l f 9~x0!#

n/2exp@2l f ~x0!#.

~B6!

For n→0 we, of course, recover~B2!.
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