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Unusual statistics of interference effects in neutron scattering from compound nuclei
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We consider interference effects betwgemwave resonance scattering amplitude and backgreumdve
amplitude in low-energy neutron scattering from a heavy nucleus which goes through the compound nucleus
stage. The first effect is in the difference between the forward and backward scattering cross $ieions
pi- ps correlation. Because of the chaotic nature of the compound states, this effect is a random variable with
zero mean. However, a statistical consideration shows that the probability distribution of this effect does not
obey the standard central limit theorem. That is, the probability density for the effect averageu reger
nances does not become a Gaussian distribution with the variance decreasint?aviolation” of the
theorem. We derive the probability distribution of the effect and the limit distribution of the average. It is
found that the width of this distribution does not decrease with the increaseid., fluctuations are not
suppressed by averaging. Furthermore, we considewrti{@; X p;) correlation and find that this effect, al-
though much smaller, shows fluctuations which actually increase upon averaging over many measurements.
This behavior holds foe>T", wheree is the distance to the resonance, dhds the resonance width. Limits
of the effects due to finite resonance widths are also considered. In the Appendix we present a simple
derivation of the limit theorem for the average of random variables with infinite variances.

PACS numbdis): 24.60—k, 25.40.Dn, 05.40-a, 02.50--r

I. INTRODUCTION The standard central limit theorefCLT) is not appli-
cable to such random variables. Instead, it can be shown that
Due to chaotic nature of compound nuclei, positions of if we consider the statistics of the averagem$uch vari-
andp resonances in neutron scattering from a heavy nucleugbles, the probability density of the sumy(+ - - -+ 7,)/n
and amplitudes involving these states, are uncorrelated. Thisecomes independent aofat largen, i.e., fluctuations ofy
gives rise to an unusual statistical effect in the asymmetry ofire not averaged odiB]. This contrasts the usual situation
the transmission of neutrons with positive and negative hewhere CLT would give a Gaussian distribution whose width
licities [1]. This asymmetry corresponds to thep correla-  decreases as . This unusual behavior is explained by the
tion. It violates parity conservation, and is produced by thefact that amongy uncorrelatedy; there is a large probability
weak interaction in the nucleus, which mixes th@ndp  to find one, whose magnitude istimes greater than their
neutron partial waves. The magnitude of the asymmetry isypical value, 7,~n».. Such#; will always dominate the
strongly enhanced if the neutron energy is tuned intoghe sum and ensure that fluctuations are not suppressed by aver-
resonancé2]. In this case its magnitude is determined by theaging. Another physical instance in which rare events domi-

perturbative mixing nate the distribution is seen in “Levy flights” in the random
force diffusion mode[4]. In a usual homogeneous system,
(s|W|p) diffusion is modeled by Brownian motion, where the distri-

"7=E_E. (1) bution of displacements is Gaussian. But in the random force

s P diffusion model, disorder induces rare but large displace-

ments which dominate the distributigithe Levy distribu-

of the s and p resonances by the weak interactidn The  tion). Under certain values of parameters, these have statis-
matrix element between the compound states behaves astieés similar to those found in nuclear scattering problems.
Gaussian random variable, andis also a random variable =~ General statistical properties of nuclear cross sections
with zero mean. The characteristic mixit@nd asymmetry  were considered by Ericsdb]. In this paper we analyze
can be estimated simply ag~w/D, wherew is the root-  effects in neutron scattering that have unusual statistics.
mean-square matrix element, abds the mean spacing be- They are more conventional than those discussed in[REf.
tween the compound nucleus resonances. However, whaince they do not involve the weak interaction. For example,
one takes a closer look at the probability distributiorygfit in Sec. Il we consider the difference between the differential
turns out that its variance is infinite. This effect originatescross-section in the forward and backward scattering, due to

from a high probability to find small spacinggs—E,, the interference of th@-wave resonance scattering and the
which results in the slow decrease of the probability densitybackground scattering amplitude, for a spinless particle. This
()17 effect can be described as the p; correlation, wherg; and

ps; are the momentum of the incident and emitted particles,
respectively. We derive the statistics of the observable and
*Present address: Department of Applied Mathematics and Thedhe way it behaves upon averaging over many different nu-
retical Physics, The Queen’s University of Belfast, Belfast BT7clei, in a similar fashion to what was done [ih]. We also
INN, UK. discuss the limit of this effect when finite widths of the reso-
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nances are taken into account. In Sec. Ill we rederive thevhere S=Ak/g,. A typical value of this asymmetry is
pi- s correlation for particles with spite.g., neutronsinci-  g,I'{"/AkD.
dent upon a spinless nucleus, as well as study the effect of a

different correlation between the neutron spimnd the scat-

tering plane,o- (p;Xps). This is shown to have different

statistics to the first correlation, and we derive a limit theo- We would now like to obtain the probability density for
rem for the average of the second correlation effdetails the observablex. The capture width is proportional to the
can be found in the AppendixAs it turns out, fluctuations square of the capture amplitude. The capture amplitudes for
of this average increase upon averaging, because when largg@mplex compound nuclear states have a Gaussian distribu-
sets of data are considered there is a finite probability ofion [7], hence, the width& (" are distributed according to
finding an effect whose magnitude isn? times larger than the Porter-Thomas law

its typical value.

A. Statistical analysis

(y)= — p( ! ) ®)
g(y)= —exXp — —/,
II. CROSS SECTION ASYMMETRY FOR ‘/277,),,), 2)/

A SPINLESS PARTICLE

Let us first study the simple case of the p; correlation ~ Where y=I'{" for convenience ang is the mean widthy
for scattering of a spinless particle. Here we consider the=f7’g(7’)d_7- i
difference between forward and backward elastic scattering FOr @ given energ§ the distance to the neargstreso-
differential cross sections near threshold, due to interferenc@@nce in a compound nucleus is random. If the relative po-
of the p-wave resonance scattering with the backgrouncfitions of thep resonances were uncorrelated it would be
swave amplitude. For a spinless particle the scattering amdescribed by a Poissonian distribution
plitude at low momenta is written using the Breit-Wigner

2|e
formula as(see, e.g.[6]) fo(e)=D 1 ex;{ _ #) , )
9p ry
f(0)=—A- oKk ——C0sb, vy whereD is the mean spacing between theesonances and
E—-Ep+ Erp |e|=D/2. Correlations between the positions of compound

states of the same symmetry, often referred to as level repul-
sion, modify the above distribution. These correlations are
o described by the random matrix thedi8], and can be ap-
(n) '
number and energy of the projectile, aggl, E,, I';", and proximated by the Wigner law. In this case the distance to

I',, are the statistical weight, energy, captyoce elastig ; o :
p the nearesp resonance has the following probability densit
width, and total width of the resonance, respectively. We [1]; P gp y y

assume that at enerdy the swave background is nonreso-

whereA is thes-wave scattering lengtt, andE are the wave

nant, and there is @-wave resonance nearby, a condition

2
which would favor larger asymmetries. This leads to expres- fo(e)=D lexp — e ®)
sions for the forward ) and backward {) scattering am- P D2
plitudes

To avoid confusion we should stress that heres the dis-
tance to the nearegtwave resonance and not the interval
between thep-wave resonances. Therefore, E§) differs
from the Wigner-Dyson distribution. The difference between

wheree=E—E, is the distance to thg-wave resonance, Egs.(7) and(8) is not very important for our corlslideration,
and we assume that it is greater then the resonance widtﬁ,sologg asfp(g) remains finite(and equal toD ™) at &
ie.,e>I",. -
The re’ievant observable is the asymmetry Using Eqgs.(6) and(8) we calculate the distribution of the
observablex as

o AFRP (3)

(do/dQ) . —(da/dQ) _ @
X= , oo e}
(do/dQ), +(da/dQ) _ f(x)= fo dyf, dst(s)g(y)5<X— ,8_};)

where do/dQ). are the forward and backward scattering

cross sections. Substituting amplitudés and taking into _ 1 fx\/fex;{ _ &—Wt2>dt (9)
account that at low momenta the contribution of thevave ‘/277X0|X| 0 2Xg ’

is much smaller than that of trewave, we obtain

wherex,=|v/BD| represents some typical value of the ef-
(5) fect. The integral in Eq(9) can be given explicitly in terms
of the parabolic cylinder function®,(z),

Q)
_
Be '

X
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3 to single-particle energy level spacing. Contrast this with the
(277)_3/4F(§) 2 || scale of the compound resonance spacings which are of the
xp( ) —3/2< —) . order of 10 eV. This difference in energy scales means that
V2mXo|X| XO\/S_W the compound resonance states can be treated statistically,
10 while the scattering length is treated as a constant.

f(x)=

327TXO

On the other hand, one can easily find the asymptotic behav-

lor of the probability density dbd >Xo directly from Eq.(9): C. Influence of the resonance widths on the statistics

f(X)=Xo /%2 (12 of the average asymmetry

The above calculations have been based on the assump-
The CLT will not apply to distributions with this asymptotic {jop, thate>T'j, so that the possible effects of the resonance
form, since they do not have a finite variandec*f(x)dX  \yidths have been neglected. This is justified, as long as the
—%. probability of finding a very small intervad~1I", is indeed
small. However, it is easy to see the role of the width as we
B. Limit theorem for the first correlation increasen. As we explained in the Introduction, the nonva-
Suppose the forward-backward asymmetry is measured ifishing fluctuations of the average depends on having one
a situation where a number of different nuclei with similar- value of the effect largex;~nx;, wherex. is a typical
sized cross sections are involved. The measurement will thevalue. Indeed, we can expect that if we makeneasure-
yield some average asymmetry, and we want to find thenents then at least one will have an energy spacing of the
probability distribution of it. Otherwise, one may just ana- order e~D/n, thus giving a large asymmetis). The en-
lyze the asymmetries measured separately for a number efgy denominator, however, can not be made arbitrarily
nuclei. Let us then consider the averagenoindependent small, and as small€E —E, are considered, it will reach a

random variable; introduced above, limit |e+il/2|~T,. ThusD/n~T, determines the largest
n values ofn, beyond which the Cauchy distribution of the
X= E 2 X . (12) average effect begins to turn into a Gaussian one. Hence our
nx=1 statistical analysis is valid untii~D/I";, (in heavy nonfis-

sionable nucleD/T",~500).
In Ref. [1] a derivation of the limit theorem for distributions If we continue to take measurements after this and further

with asymptotic behaviof11) was presented. A general so- increase the number of measurementte maximum value
lution of the problem of limit distributions of sums of inde- ¢ e asymmetries will stabilize, being of the order

pendent variables with an infinite variance for whitfx)
«|x|~*1, can be found in Ref.3] [@>0 to keep the total
probability [ f(x)dx finite]. A simple derivation of the limit

~XoD/IT' = w?/,erp. Hence we will no longer have in-
creasingly large values of the effect to continue the “nonva-
theorem for such distributions is given in the Appendix. ~ Nishing” averaging. Thus, when>D/I", the Gaussian sta-
The random variable has a symmetric probability distri- tistics take over, the standard central limit theorem applies,
bution, f(—x)=f(x). In this case forz=1 the limit distri- and the usual 1/n suppression of fluctuations takes place.

bution is obtained from Eq$A20) and(A22) with a=0 and  Note thatxoD/I",>X, in fact determines the true finite, but
c=mX,. So, forn—o the probability densityF,(X) ap- large, variance ok. Beyond this valué(x) decreases faster

proaches its limit form thanx 2, and it effectively determines the lower and upper
limits in the variance integraf x> (x)dx.
1 X
FaX)= T e (13 lll. SPIN ONE-HALF PARTICLE CORRELATIONS
C

Let us now consider scattering of low-energy spipar-

where X=X, [1]. This is called the Cauchy distribution, ticles, looking at both the, - p; and o (p; X pr) correlations.
and its main property is that it is independentrpfin par-  Again we assume that there is no nearby compound nucleus
ticular, it doe_zs not become narrower asncreases. There- swave resonance and that the asymmetry is dominated by
fore, fluctuations are not suppressed by averaging. Compage nearbyp-wave resonance. This is justified because the
this with the standard central limit theorem, where the widthstatistics of the average effextfor largen, F,(X), is deter-
decreases as,= o1 /\n. mined by large values of the individual effects, i.e., by the

The parameteX; for our physical observable is given by asymptotic large< behavior of the probability densitf(x),
Xc=mylBD = wgrf,@/AkD. Throughout the derivation we cf. Eq.(12) [9].
considered the scattering lengthas a constant. Indeed, if Consider scattering of the neutross=3 from a nucleus
the energyE does not coincide with agwave resonance, the with spinl. The total angular momentum of tipewave neu-
s-wave amplitude- A represents the potential scattering am-tron isj=1+s and the total angular momentum of the com-
plitude. It does not vary strongly between isotopes, or nuclepound resonance i3=1+j. The amplitude op-wave reso-
of similar masses, because the nuclear potential does naoant scattering at arbitrary anghebetween the incoming and
vary much. The energy scale of its variation is MeV, similar outgoing particle can be written @#see Ref[10])
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1 33 i . B. Second correlation
= — — z z / ’
fo 2k j,%m Cuzj’jgclm/(l/z)s; ATY 1 (M) The second correlationr- (p; X p;) between the direction
i of the spin relative to the scattering plane is, of course, spe-
cific to particles with a nonzero spin. To calculate the asym-
1 ij metry of the cross section with respect to flipping the spin
n 33, ANz y p pping pin,
X \/ij/(E) i CllzijZ 1m%SZ we take the initial neutron momentum along thdirection
E-E,+ Erp as before, and look at the difference between the scattering
amplitude in the+y direction,f*, and that in the-y direc-
XNATY 1m(Ny) \/Fpmj(E), (14  tion, f~. Equation(15) yields thep-resonance scattering am-
! plitudes in the+y and —y directions forj =3
wherel,, n., s,, andl,, n;, s, , describe the projection of i FE;BZ
the target spin, the direction of the neutron momentum, and ; =t (18
. o s . 12 2k i
the projection of the neutron spin in the initial and final E—E.+-T
states, respectivel)‘t*,f)?) is the capture width for the neutron pr2°®
with angular momentun), the Y|, are the angular wave 5.4 similarly forj=2 we obtain
functions, and::f;"zjj are the Clebsch-Gordan coefficients. -
zz . n
Consider scattering of a neutron incident along xhdi- o I P3s2 19
rection off a spinlessl&0) nucleus. We quantize the neu- Py 2k i (19
tron spin in thez direction and consider neutrons scattered in E—-Ep+ Erp

the xy plane. Thes-wave scattering amplitude is simply
—A5szs£. Having in mind that we need to calculate interfer- which differs from thej =% case only by sign.

ence terms between treand p waves, we can write the ~ Thus the total scattering amplitude for the (p; X py)

p-wave scattering amplitud@ 4) in the following form: correlation is given by
i (n)
iy r
1 i f*=—AT 5> ——— (20)
fo(0)=—=-2 |Clz 2v¥.(ny 2k i
p(0) 2k % | 1m(1/2)sz| 1m(Me) E-Ep,+5T,
2
1
X—inm(nk)‘]‘WFg;)(E)- (15  wheren,=—1 forj=3 andy,=+1 for j=3. Then, taking
E-Ep+ 50, into account that the second term in E80), which repre-
2 sents theg-wave contribution, is much smaller than the first
one, we obtain for the observable difference of the corre-
A. First correlation sponding cross sectiofisee Eq.(4)]
The resonancg@-wave amplitude for forward and back- " r.rm
ward scatteringsee Sec. )lwith j=1 is X= 2kF,)A PP T (21)
o (E—Ep)2+zr§
+ 1 P12
51/2: +ﬂ i ! (16) . . .
E—-E.+-T As we discussed above, the scattering length varies weakly.
pr2°F The same is true for the total width of the compound reso-

nanced’ . Its fluctuations are small because it is dominated
which is similar to the spinless particle scatteriigg. (2)], by the radiative width, given by the a sum of a large number
with the parameteg,=1. Similarly for | =3 states the am- Of partial widths due to transitions into all lower-lying

plitude is nuclear states. Introducing=2kA/n,I',, and taking into
account that = E—E, is usually much larger than the reso-
5 (n) nance width|e|>T",, we obtain for the asymmetry
 __ < P32
P32 2k i r ! 17 Fén)
E-E, + = X=——:. (22)

which is similar to spinless particle scattering wighg=2. ~ The typical size of this effect ,I'{"T ;/AkD?
This means that the statistics derived for the spinless particle(npl“f)“)/AkD)(Fp/D), is much smaller than the first cor-
p;i - pr correlation in Sec. Il are valid for the case where spinrelation, by a factor of",/D. However, this observable has
is included. In fact, since we do not know whether theae 2 dependence on the distance to the nearessonance,
nearest resonance [/, or Ps, we must combine the two while the first correlation was proportional 0 1. Thee 2
distributions. singularity emphasizes even stronger the possibility of small
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denominators. Note also, that for a given scattering ledgth It follows now from Eqs.(A20) and (A24) that the limit
the sign of this interference effect is always the same. WalistributionF,(X) of the average effecX is given by
will see that this leads to a very different statistics of the

o-(p;Xp;) correlation. nxg e Mo/X
- , Fa)= N —an (X>0). (29
1. Statistical analysis

Let us derive a probability distribution for the observablerpig gquation shows explicitly that as the number of effects
x given by Eq.(22). Similarly to Sec. Il A we have included in the average increases, the distribution widens
proportionally ton. Accordingly, the typical values of the

) = 1 fo"" oxd — me?  y |dedy average also grow a$~nx.
~Jo J-= D2 2y \y To understand this recall that the second asymmetry is
2Ty Y Y . . > .
inversely proportional tee“. Thus, when we consider the
% average o such variables, one of them is likely to hawe
X 8| x— Pk (23)  ~D/n, which makes itn? times greater than the typical

value xo. This variable will dominate the average and give
X~nx,. More realistically, one must combine the distribu-

. . (n)
Whek)reb}iyte Zgalr?t.use/ for t:lef capture \tmliltﬂ“]? ' agd ;g)e tions with differents, remembering that the probability to
probability densitieg(y) andfp(z) are taken from Eq . find a closeps, resonance is twice that of @, resonance.

and.(.8), respectively. Assuming that the scattering length is The role of resonance widths can be understood in the
positive, henceB>0, we calculate the above integral and same way as it was done in Sec. Il C. The limit statist2®)

obtain is valid untiln~D/T';, i.e., when the characteristic value of
o the maximal effect that dominates the averageequires
f(x)= 0 x>0, (24)  denominators as small as~D/n~I". Whenn>D/T', the
VaX(X+ 7Xq) usual statistics of the central limit theorem become valid, and
we eventually have typical values of the average decreasing
andf(x)=0 for x<0, where as 1A/n.
2y
XO:BDZ (25) IV. CONCLUSION

We have considered interference effects betwe@rave
resonance neutron scattering amplitude and background
swave amplitude in compound nuclei and found that these
effects do not obey the standard central limit theorem. That

characterizes typical values of the asymmet®®). The
asymptotic behavior of this probability density>at X, is

Jxe is, the probability density of the average effect omemea-
f(x):—ow_ (26)  surementsX=(1/n)={,x;, does not tend to a Gaussian
Vx| distribution with variances?=3/n for large n. We have

- _ ) ) " examined two effectgj) the p;- ps correlation, which corre-
The probability densityf (x) is normalized ag o f(x)dx=1.  gponds to the forward-backward asymmetry of the differen-
However, the corresponding mean valfi(x)xdx is infi-  tja| cross section, antii) the o~ (p; X p;) correlation, which
nite, and the integral for the variandd (x)x’dx diverges  describes the asymmetry of the scattering cross section with
even faster than that for the first correlatipsf. Eq. (11)].  respect to flipping the spin relative to the scattering plane.
This signifies even larger fluctuations of the second correla- The first of these was found to have a distribution with

tion effect. asymptotic behaviof (x)1/x? for large x. In this case the
o _ limit theorem for the distribution of the averagetends to a
2. Limit theorem for the second correlation CaUChy dlStrlbUthan(X) :XC/[W(X2+ Xg)] This is inde-

The probability distribution of the second correlati@®) pendent ofn, so the typical value of the averag¥ does
corresponds tar=1 (see Appendix Using the asymptotic not decrease with increasing number of measurements.
parameterss; =0 andc,=\Xo/7 [compare Eqs(26) and  Physically this is understood by the following arguments.
(A1)] we obtainc= \/Z_Xo and B=1 from Egs.(A9) and  The asymmetry in question is inversely proportional to the
(A10). In fact, it is possible to calculate the Fourier transformspacing between the incident neutron energy and the energy

of f(x) of Eq. (24) explicitly, of the closesp-wave resonancex<e ~1). If we haven mea-
surements, we have a high probability that one of these spac-
Flw)=€e ™07 V2 (12 mxow) ings will be of the ordee~D/n whereD is the mearp level
spacing. This will produce an asymmetry of the size
=€ ™09[1—\2Xo(1%i)|w| Y+ 0(w®?], (27) ~nx, where X, is a typical value of the effect. Thus

the typical average value iX~Xg, honvanishing with
whereI'(...) is theincompletel'-function, and+ corre-  increasingn.
sponds tow=0. The second correlation we considered produces a much
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smaller effect than the first correlation. However, it has beeret us consider the contribution of the interval from O+tee
found to have & ~2 dependence, giving a distribution with to the last term above. Using the asymptotic foii) we
asymptotic behaviof (x)=x ™32 for largex. This means that present it as

there is a higher probability to obtain relatively large values

of x, compared to the first correlation. As a result, typical o iwex i
values for the average of asymmetries actually increase fo (e —1t+iwx)
with increasing number of measurementas X~ nxg.

Above we assumed>1I",, wheree is the distance to the o
resonance anli, is the resonance width. When we consider X f (e”'"—1+iwx)
the the influence of the resonance widths, it is found that 0
they affect the distribution by limiting the size of the effect

X. Indeed, the minimum value for the denominator sufficiently rapidly, e.g.|f(x) — c,/x** H<O(1x**?), then

ALy 5 guen By Ly, nence, e maxina) possibie et the frt iegral above behaves @) at -0, To cal
statistics of the averageéis valid for n<DIT', (for heavy culate the second integral we turn the integration path into

nonfissionable nucleéd/T",~500). Forn>D/T', we expect thigotrﬁg)tleig ggpsogi\fgavr\:ﬁ;gﬁ ;tiwvee;/arlabLeF ~it (for
the average to once again obey the standard CLT and vanish '

dx+c,

C2
f(X)—W

dx
T (AB)

Xa+

' If we assume thaf(x) approaches its asymptotic behavior

with increasingn. _ @
C2e'(’m/2)w"‘f t~* e t=1+t)dt, (AB)
0
APPENDIX: LIMIT THEOREM FOR PROBABILITY
DISTRIBUTIONS WITH INFINITE VARIANCES where the integral is a representation of fhdéunction on a
Consider a random variable whose probability density ha%e%ryertlg]f the negative argument ali{—a)=—-T(-a
the following asymptotic behavior: Applying the same procedure to the integral over
cy/X|*L, X —oo, (—<0,0) in expressiortA4), and turning the integration path
f(x)= (A1) into the complex plane by usingx=it (for >0 and real

a+l -
Co/X*T5, X— e, positivet), we obtain the expansion ¢fw) at smallw:
with 0<a<2, and is normalized in the usual way, TR —i(mal2) i(ral2)
[f(x)dx=1. The existence of the meafxf(x)dx, depends flw)=1-lwa—(cse tCe )
on whethera is greater or less than unity, but the variance T(a—1)
integral f x2f(x)dx is infinite in both cases, and the standard Xof————+-, (AT)
central limit theorem is inapplicable.

To dsrive the limit statistics of the averag&X \yherea=[xf(x)dx is the mean value. The expansion for
=(1/n)Z,_1x; of n independent random variables, we  negativew can be obtained from the above by simply replac-

use ChaI’aCteriStiC functior(sr Fouriel’ tranSfOI’rT)S |ng ) W|th |(1)| and Complex_conjugaﬁng the exponentia|
. phase factors in the second term. Finally, at the same level of
*f(w):f e 1 (x)dx. (A2) accuracy, we can rewrite expansioih7) in the form valid
—o for positive and negative smatl:
The Fourier transform of the probability densify,(X) of ~ i . T
the average is given by P Y B fw)=e"""%1-c 1+1B sgnw)tan—- ]|, (A8)
_ w 1n n where
Fn(w)=f e"“’xdxj 5(x——2 xi)H f(x;)dx;
— ni=1 '/i=1 'l—a) 7w«
N CE(c1+c2)Tcos7, c>0, (A9)
=1 F(w/n)=[F(w/n)]". (A3)
o 270 g A10
= —1l=sp6=
B c,+cl’ p=1 (AL0)

Thus, the form of () for largen is related to that of (w)
at smallw. This is in turn decided by the largeasymptotic  and sgnf)=*1 for w>0 andw<0, respectively. The pa-

behavior off(x) given by Eq.(AL). ~ rametersc and 3 [11] are determined by the asymptotic be-
For 1<a<2 the integralfxf(x)dx converges and(w) havior (A1) of the probability density. The value @ de-
can be written as pends on the asymmetry of the probability densigy).

The final form (A8) is very convenient. If we consider
TR X q L a random variablex; shifted with respect tox, x;=x—a
f(w)=1 "”f xf(x)dx+f (e LHiwx)f(x)dx. (a is an arbitrary number hexeits characteristic function
(A4) would differ from that of x by a simple phase factor,
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f,(w)=€"“f(w). On the other hand, the asymptotic behav-
ior of the probability density, EqQAL) is not affected by this
transformation. Therefore, the phase factor in EB) can
always be eliminated by this simple shift.

For 0<a<1 in Eq.(Al) we rewrite the Fourier transform
as

?(w)=1+f (e7 "= 1)f(x)dx. (A11)

The contribution of positivex to the above integral can be
transformed into

* —iwx_l f _ C2 dx+ * —iwx_l dx
O(e )| f(x) a1 |dX T e O(e )xa“'
(A12)

Provided the difference betweé(x) andc,/x*** decreases
asx~ "2 or faster, ax— + o, the first integral can be ex-
panded in powers aob, with the leading term given by

+
iwf X
0

The second integral in EGA12) is transformed by variable
substitutionwx= —it (for ®>0) into [cf. Eq. (A6)]

C
f(x)— Xail dx. (A13)

Czei('rra/Z)waf t*afl(eft—l)dt, (A14)
0

which again gives thd'-function [13]. After we apply the
same procedure to the negatixgrart of the integral in Eq.

(A12), the expansion of (w) at smallw is established in
exactly the same form as that of H&\7) (for »>0). How-
ever, for 0<a<1 the parametea is no longer the mean
value. Instead, it is given by

o0

dx+f
0

Also, the next term omitted in EA7) may now be greater
thanO(w?). Nevertheless, the small-behavior of the Fou-
rier transform is still represented by EG8).

If =1 in Eq.(Al), the expansion of (w) also contains
o In  terms. In this case it can be presented as

Cy
|a+l

Cz
Xa+1

f(x) x| f(x)—

— ]dx.
|x
(A15)

f(w)=1-iwa—c|o||1-i %,8 Sgr(w)|n|w|},
(A16)

where c=(7/2)(c,+c,), which can be obtained from Eq.
(A9) at a—2, B is given by Eq.(A10), and
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0 Cy
a=(c,—¢cqy)(1-C)+ x| f(x)— 5 dx
—o 1+X
+ | x| f(x)— 5 dx, (A17)
o 1+X

whereC~0.577 is the Euler constant. Note that if the prob-
ability distribution is symmetric asymptotically, i.ee;=c,,
thenB=0, anda in Egs.(A15) and(Al7) is the mean value
calculated in the principal value sense. If the probability den-
sity is fully symmetric,f(—x)=1f(x), thenf(w) is real,a
=B=0, and the behavior of the characteristic function at
small w is especially simple:
f(w)=1-clw|® (A18)
After establishing the form of (») at smallw, Eq. (A8)

for a# 1, we can proceed to derive the limit theorem, start-
ing from Eq.(A3):

n
C

) TA
1+iBsgn w)tanT) nt~ % w|®

Fo(w)=e '3 1

:e""aex;{ —c

for largen (this formula appears in the theorem by Khintch-
ine and Ley as a canonical representation of stable probabil-
ity distributions, see Ref.3]). Using the last expression in
Fn(X)=(1/27) [e'“*F ,(w)dw we obtain the limit distribu-
tion in the following form:

n

) Ta
1+ipB sgr(w)tan7> nl~ 2 wl®

(A19)

Fn(X) — n(af1)/acf1/afaﬁ[n(afl)/acfl/a(x_ a)],

(A20)
where
f (x)=Jm gl ox~lol® gy —iﬂsgr{w)tanﬂ|w|“ do
“p - 2 27

(A21)

is a universal function of the two parametesisand 38, nor-
malized to unity:[f,z(x)dx=1. The results forx=1 are
obtained in a similar way, witha replaced by a
+c¢(2/m)BInnin Eq. (A20), andf,4(x) given by Eq.(A21),
in which tan@ra/2) is replaced with—(2/7)In|w|.
Equation(A20) shows that for 8Za<1 the limit distri-
bution of the average widens with the increasenofi.e.,
fluctuations of the average increase with the number of vari-
ables averaged. Sing€* Y/*a—0 for n—o, the shift of
the distribution(A20) by a is actually unimportant in this
case and one can pat=0. For a=1 the shape of the dis-
tribution F,(X) does not depend on, i.e., fluctuations are
neither enhanced nor suppressed by averagingAD the
whole distribution is gradually shifted proportionally torin
into the direction determined by the sign @Bf For 1<a
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<2 the distribution of the average does become narrower 1 ]
with n, however the rate of suppression of fluctuatiods, fi;y(X)=— —=—=Im .
xn~ (@~ is slower than the standard CLT 2 Again, ' 2\m|x|*?

for symmetrically distributed; , the limit distributionF ,(X)
is even simpler, aa= =0 in Egs.(A20) and(A21).

{ e () g=iltx| 1 _ P

g

There are a few cases whefrg; and, henceF,(X) are (A23)
known explicitly. For «=1, =0 (ci=c¢,) Eq. (A21)
gives the Cauchy law, For the samer=1/2 in the maximally asymmetric case,
=0, c,>0,i.e.,,8=1, which takes place if the random vari-
f _ i 1 ablesx; are positive, one easily obtains the following simple
1,0X)= ; (A22) .
’ T 1+x2 answer 3]:
and c=mc,. For a=1/2, B=0 the limit function can be
expressed in terms of the error functionb(s) (1 x) 2 0, x<0, "y
=27 2[5e Yt [12]; 2107 (2m) Ve 12x32 x>0, A2
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