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Unusual statistics of interference effects in neutron scattering from compound nuclei

J. C. Berengut, V. V. Flambaum, and G. F. Gribakin*
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 3 December 1999; published 21 July 2000!

We consider interference effects betweenp-wave resonance scattering amplitude and backgrounds-wave
amplitude in low-energy neutron scattering from a heavy nucleus which goes through the compound nucleus
stage. The first effect is in the difference between the forward and backward scattering cross sections~the
pi•pf correlation!. Because of the chaotic nature of the compound states, this effect is a random variable with
zero mean. However, a statistical consideration shows that the probability distribution of this effect does not
obey the standard central limit theorem. That is, the probability density for the effect averaged overn reso-
nances does not become a Gaussian distribution with the variance decreasing asn21/2 ~‘‘violation’’ of the
theorem!. We derive the probability distribution of the effect and the limit distribution of the average. It is
found that the width of this distribution does not decrease with the increase ofn, i.e., fluctuations are not
suppressed by averaging. Furthermore, we consider thes•(pi3pf) correlation and find that this effect, al-
though much smaller, shows fluctuations which actually increase upon averaging over many measurements.
This behavior holds fore.Gp wheree is the distance to the resonance, andGp is the resonance width. Limits
of the effects due to finite resonance widths are also considered. In the Appendix we present a simple
derivation of the limit theorem for the average of random variables with infinite variances.

PACS number~s!: 24.60.2k, 25.40.Dn, 05.40.2a, 02.50.2r
f
eu
Th
y o
he

th

y
e
he

a

-
h

es

ity

that

n
th
e

r

aver-
mi-

,
ri-
rce
ce-

atis-
.
ons

ics.

le,
tial
e to
he
his

es,
and
nu-

o-

he
T7
I. INTRODUCTION

Due to chaotic nature of compound nuclei, positions os
andp resonances in neutron scattering from a heavy nucl
and amplitudes involving these states, are uncorrelated.
gives rise to an unusual statistical effect in the asymmetr
the transmission of neutrons with positive and negative
licities @1#. This asymmetry corresponds to thes•p correla-
tion. It violates parity conservation, and is produced by
weak interaction in the nucleus, which mixes thes and p
neutron partial waves. The magnitude of the asymmetr
strongly enhanced if the neutron energy is tuned into thp
resonance@2#. In this case its magnitude is determined by t
perturbative mixing

h5
^suWup&
Es2Ep

~1!

of the s and p resonances by the weak interactionW. The
matrix element between the compound states behaves
Gaussian random variable, andh is also a random variable
with zero mean. The characteristic mixing~and asymmetry!
can be estimated simply ashc;w/D, wherew is the root-
mean-square matrix element, andD is the mean spacing be
tween the compound nucleus resonances. However, w
one takes a closer look at the probability distribution ofh, it
turns out that its variance is infinite. This effect originat
from a high probability to find small spacingsEs2Ep ,
which results in the slow decrease of the probability dens
f (h)}1/h2.

*Present address: Department of Applied Mathematics and T
retical Physics, The Queen’s University of Belfast, Belfast B
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The standard central limit theorem~CLT! is not appli-
cable to such random variables. Instead, it can be shown
if we consider the statistics of the average ofn such vari-
ables, the probability density of the sum (h11•••1hn)/n
becomes independent ofn at largen, i.e., fluctuations ofh
are not averaged out@3#. This contrasts the usual situatio
where CLT would give a Gaussian distribution whose wid
decreases as 1/An. This unusual behavior is explained by th
fact that amongn uncorrelatedh i there is a large probability
to find one, whose magnitude isn times greater than thei
typical value,h i;nhc . Suchh i will always dominate the
sum and ensure that fluctuations are not suppressed by
aging. Another physical instance in which rare events do
nate the distribution is seen in ‘‘Levy flights’’ in the random
force diffusion model@4#. In a usual homogeneous system
diffusion is modeled by Brownian motion, where the dist
bution of displacements is Gaussian. But in the random fo
diffusion model, disorder induces rare but large displa
ments which dominate the distribution~the Levy distribu-
tion!. Under certain values of parameters, these have st
tics similar to those found in nuclear scattering problems

General statistical properties of nuclear cross secti
were considered by Ericson@5#. In this paper we analyze
effects in neutron scattering that have unusual statist
They are more conventional than those discussed in Ref.@1#,
since they do not involve the weak interaction. For examp
in Sec. II we consider the difference between the differen
cross-section in the forward and backward scattering, du
the interference of thep-wave resonance scattering and t
background scattering amplitude, for a spinless particle. T
effect can be described as thepi•pf correlation, wherepi and
pf are the momentum of the incident and emitted particl
respectively. We derive the statistics of the observable
the way it behaves upon averaging over many different
clei, in a similar fashion to what was done in@1#. We also
discuss the limit of this effect when finite widths of the res
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nances are taken into account. In Sec. III we rederive
pi•pf correlation for particles with spin~e.g., neutrons! inci-
dent upon a spinless nucleus, as well as study the effect
different correlation between the neutron spins and the scat-
tering plane,s•(pi3pf). This is shown to have differen
statistics to the first correlation, and we derive a limit the
rem for the average of the second correlation effect~details
can be found in the Appendix!. As it turns out, fluctuations
of this average increase upon averaging, because when l
sets of data are considered there is a finite probability
finding an effect whose magnitude is;n2 times larger than
its typical value.

II. CROSS SECTION ASYMMETRY FOR
A SPINLESS PARTICLE

Let us first study the simple case of thepi•pf correlation
for scattering of a spinless particle. Here we consider
difference between forward and backward elastic scatte
differential cross sections near threshold, due to interfere
of the p-wave resonance scattering with the backgrou
s-wave amplitude. For a spinless particle the scattering
plitude at low momenta is written using the Breit-Wign
formula as~see, e.g.,@6#!

f ~u!52A2
gp

2k

Gp
(n)

E2Ep1
i

2
Gp

cosu, ~2!

whereA is thes-wave scattering length,k andE are the wave
number and energy of the projectile, andgp , Ep , Gp

(n), and
Gp , are the statistical weight, energy, capture~or elastic!
width, and total width of thep resonance, respectively. W
assume that at energyE the s-wave background is nonreso
nant, and there is ap-wave resonance nearby, a conditio
which would favor larger asymmetries. This leads to expr
sions for the forward (1) and backward (2) scattering am-
plitudes

f 652A7
gp

2k

Gp
(n)

«
, ~3!

where «5E2Ep is the distance to thep-wave resonance
and we assume that it is greater then the resonance w
i.e., «@Gp .

The relevant observable is the asymmetry

x5
~ds/dV!12~ds/dV!2

~ds/dV!11~ds/dV!2
, ~4!

where (ds/dV)6 are the forward and backward scatteri
cross sections. Substituting amplitudes~3! and taking into
account that at low momenta the contribution of thep wave
is much smaller than that of thes wave, we obtain

x5
Gp

(n)

b«
, ~5!
02461
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where b5Ak/gp . A typical value of this asymmetry is
gpGp

(n)/AkD.

A. Statistical analysis

We would now like to obtain the probability density fo
the observablex. The capture width is proportional to th
square of the capture amplitude. The capture amplitudes
complex compound nuclear states have a Gaussian dist
tion @7#, hence, the widthsGp

(n) are distributed according to
the Porter-Thomas law

g~g!5
1

A2pḡg
expS 2

g

2ḡ
D , ~6!

whereg[Gp
(n) for convenience andḡ is the mean widthḡ

5*gg(g)dg.
For a given energyE the distance to the nearestp reso-

nance in a compound nucleus is random. If the relative
sitions of thep resonances were uncorrelated it would
described by a Poissonian distribution

f D~«!5D21 expS 2
2u«u
D D , ~7!

whereD is the mean spacing between thep resonances and
u«u5D/2. Correlations between the positions of compou
states of the same symmetry, often referred to as level re
sion, modify the above distribution. These correlations
described by the random matrix theory@8#, and can be ap-
proximated by the Wigner law. In this case the distance
the nearestp resonance has the following probability dens
@1#:

f D~«!5D21 expS 2
p«2

D2 D . ~8!

To avoid confusion we should stress that here« is the dis-
tance to the nearestp-wave resonance and not the interv
between thep-wave resonances. Therefore, Eq.~8! differs
from the Wigner-Dyson distribution. The difference betwe
Eqs.~7! and ~8! is not very important for our consideration
as long asf D(«) remains finite~and equal toD21) at «
→0 @1#.

Using Eqs.~6! and~8! we calculate the distribution of the
observablex as

f ~x!5E
0

`

dgE
2`

`

d« f D~«!g~g!dS x2
g

b« D
5

1

A2px0uxu
E

0

`
At expS 2

uxut
2x0

2pt2Ddt, ~9!

wherex05uḡ/bDu represents some typical value of the e
fect. The integral in Eq.~9! can be given explicitly in terms
of the parabolic cylinder functionsDn(z),
0-2
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f ~x!5

~2p!23/4GS 3

2D
A2px0uxu

expS x2

32px0
DD23/2S uxu

x0A8p
D .

~10!

On the other hand, one can easily find the asymptotic beh
ior of the probability density atuxu@x0 directly from Eq.~9!:

f ~x!.x0 /x2. ~11!

The CLT will not apply to distributions with this asymptoti
form, since they do not have a finite variance:*x2f (x)dx
→`.

B. Limit theorem for the first correlation

Suppose the forward-backward asymmetry is measure
a situation where a number of different nuclei with simila
sized cross sections are involved. The measurement will
yield some average asymmetry, and we want to find
probability distribution of it. Otherwise, one may just an
lyze the asymmetries measured separately for a numbe
nuclei. Let us then consider the average ofn independent
random variablesxi introduced above,

X5
1

n (
x51

n

xi . ~12!

In Ref. @1# a derivation of the limit theorem for distribution
with asymptotic behavior~11! was presented. A general so
lution of the problem of limit distributions of sums of inde
pendent variables with an infinite variance for whichf (x)
}uxu2a21, can be found in Ref.@3# @a.0 to keep the total
probability * f (x)dx finite#. A simple derivation of the limit
theorem for such distributions is given in the Appendix.

The random variablex has a symmetric probability distri
bution, f (2x)5 f (x). In this case fora51 the limit distri-
bution is obtained from Eqs.~A20! and~A22! with a50 and
c5px0. So, for n→` the probability densityFn(X) ap-
proaches its limit form

Fn~X!5
1

p

Xc

X21Xc
2

, ~13!

whereXc5px0 @1#. This is called the Cauchy distribution
and its main property is that it is independent ofn, in par-
ticular, it does not become narrower asn increases. There
fore, fluctuations are not suppressed by averaging. Com
this with the standard central limit theorem, where the wid
decreases assn5s1 /An.

The parameterXc for our physical observable is given b
Xc5pḡ/bD5pgpGp

(n)/AkD. Throughout the derivation we
considered the scattering lengthA as a constant. Indeed,
the energyE does not coincide with ans-wave resonance, th
s-wave amplitude2A represents the potential scattering a
plitude. It does not vary strongly between isotopes, or nu
of similar masses, because the nuclear potential does
vary much. The energy scale of its variation is MeV, simi
02461
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to single-particle energy level spacing. Contrast this with
scale of the compound resonance spacings which are o
order of 10 eV. This difference in energy scales means
the compound resonance states can be treated statistic
while the scattering length is treated as a constant.

C. Influence of the resonance widths on the statistics
of the average asymmetry

The above calculations have been based on the assu
tion that«@Gp , so that the possible effects of the resonan
widths have been neglected. This is justified, as long as
probability of finding a very small interval«;Gp is indeed
small. However, it is easy to see the role of the width as
increasen. As we explained in the Introduction, the nonv
nishing fluctuations of the average depends on having
value of the effect large,xi;nxc , where xc is a typical
value. Indeed, we can expect that if we maken measure-
ments then at least one will have an energy spacing of
order «;D/n, thus giving a large asymmetry~5!. The en-
ergy denominator, however, can not be made arbitra
small, and as smallerE2Ep are considered, it will reach a
limit u«1 iGp/2u;Gp . ThusD/n;Gp determines the larges
values ofn, beyond which the Cauchy distribution of th
average effect begins to turn into a Gaussian one. Hence
statistical analysis is valid untiln;D/Gp ~in heavy nonfis-
sionable nucleiD/Gp;500).

If we continue to take measurements after this and furt
increase the number of measurementsn, the maximum value
of the asymmetries will stabilize, being of the orderxi

;x0D/Gp5pḡ/bGp . Hence we will no longer have in
creasingly large values of the effect to continue the ‘‘nonv
nishing’’ averaging. Thus, whenn@D/Gp the Gaussian sta
tistics take over, the standard central limit theorem appl
and the usual 1/An suppression of fluctuations takes plac
Note thatx0D/Gp@x0 in fact determines the true finite, bu
large, variance ofx. Beyond this valuef (x) decreases faste
thanx22, and it effectively determines the lower and upp
limits in the variance integral*x2f (x)dx.

III. SPIN ONE-HALF PARTICLE CORRELATIONS

Let us now consider scattering of low-energy spin-1
2 par-

ticles, looking at both thepi•pf ands•(pi3pf) correlations.
Again we assume that there is no nearby compound nuc
s-wave resonance and that the asymmetry is dominated
one nearbyp-wave resonance. This is justified because
statistics of the average effectX for largen, Fn(X), is deter-
mined by large values of the individual effects, i.e., by t
asymptotic large-x behavior of the probability densityf (x),
cf. Eq. ~11! @9#.

Consider scattering of the neutron,s5 1
2 from a nucleus

with spin I. The total angular momentum of thep-wave neu-
tron is j5 l1s and the total angular momentum of the com
pound resonance isJ5I1 j . The amplitude ofp-wave reso-
nant scattering at arbitrary angleu between the incoming and
outgoing particle can be written as~see Ref.@10#!
0-3
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f p52
1

2k (
j , j z ,m

j 8, j z8 ,m8

C
II zj 8 j

z8

JJz C
1m8(1/2)s

z8

j 8 j z8 A4pY1m8
* ~nk8!

3AGpj 8

(n)~E!
1

E2Ep1
i

2
Gp

CII zj j z

JJz C
1m

1
2 sz

j j z

3A4pY1m~nk!AGpj

(n)~E!, ~14!

whereI z , nk , sz , andI z8 , nk8 , sz8 , describe the projection o
the target spin, the direction of the neutron momentum,
the projection of the neutron spin in the initial and fin
states, respectively,Gpj

(n) is the capture width for the neutro

with angular momentumj, the Ylm are the angular wave
functions, andCII zj j z

JJz are the Clebsch-Gordan coefficients.

Consider scattering of a neutron incident along thex di-
rection off a spinless (I 50) nucleus. We quantize the neu
tron spin in thez direction and consider neutrons scattered
the xy plane. Thes-wave scattering amplitude is simply
2Adszsz8

. Having in mind that we need to calculate interfe

ence terms between thes and p waves, we can write the
p-wave scattering amplitude~14! in the following form:

f p~u!52
1

2k (
m

uC1m(1/2)sz

j j z u2Y1m* ~nk8!

3
1

E2Ep1
i

2
Gp

Y1m~nk!4pGpj

(n)~E!. ~15!

A. First correlation

The resonancep-wave amplitude for forward and back
ward scattering~see Sec. II! with j 5 1

2 is

f p1/2

6 57
1

2k

Gp1/2

(n)

E2Ep1
i

2
Gp

, ~16!

which is similar to the spinless particle scattering@Eq. ~2!#,
with the parametergp51. Similarly for j 5 3

2 states the am-
plitude is

f p3/2

6 57
2

2k

Gp3/2

(n)

E2Ep1
i

2
Gp

, ~17!

which is similar to spinless particle scattering withgp52.
This means that the statistics derived for the spinless par
pi•pf correlation in Sec. II are valid for the case where sp
is included. In fact, since we do not know whether t
nearest resonance isp1/2 or p3/2 we must combine the two
distributions.
02461
d
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B. Second correlation

The second correlations•(pi3pf) between the direction
of the spin relative to the scattering plane is, of course, s
cific to particles with a nonzero spin. To calculate the asy
metry of the cross section with respect to flipping the sp
we take the initial neutron momentum along thex-direction
as before, and look at the difference between the scatte
amplitude in the1y direction, f 1, and that in the2y direc-
tion, f 2. Equation~15! yields thep-resonance scattering am
plitudes in the1y and2y directions forj 5 1

2

f p1/2

6 56
i

2k

Gp1/2

(n)

E2Ep1
i

2
Gp

, ~18!

and similarly for j 5 3
2 we obtain

f p3/2

6 57
i

2k

Gp3/2

(n)

E2Ep1
i

2
Gp

, ~19!

which differs from thej 5 1
2 case only by sign.

Thus the total scattering amplitude for thes•(pi3pf)
correlation is given by

f 652A7
ihp

2k

Gp
(n)

E2Ep1
i

2
Gp

, ~20!

wherehp521 for j 5 1
2 andhp511 for j 5 3

2 . Then, taking
into account that the second term in Eq.~20!, which repre-
sents thep-wave contribution, is much smaller than the fir
one, we obtain for the observable difference of the cor
sponding cross sections@see Eq.~4!#

x5
hp

2kA

GpGp
(n)

~E2Ep!21
1

4
Gp

2

. ~21!

As we discussed above, the scattering length varies wea
The same is true for the total width of the compound re
nancesGp . Its fluctuations are small because it is dominat
by the radiative width, given by the a sum of a large numb
of partial widths due to transitions into all lower-lyin
nuclear states. Introducingb52kA/hpGp , and taking into
account that«5E2Ep is usually much larger than the reso
nance width,u«u@Gp , we obtain for the asymmetry

x5
Gp

(n)

b«2
. ~22!

The typical size of this effect hpGp
(n)Gp /AkD2

5(hpGp
(n)/AkD)(Gp /D), is much smaller than the first cor

relation, by a factor ofGp /D. However, this observable ha
a «22 dependence on the distance to the nearestp resonance,
while the first correlation was proportional to«21. The«22

singularity emphasizes even stronger the possibility of sm
0-4
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UNUSUAL STATISTICS OF INTERFERENCE EFFECTS . . . PHYSICAL REVIEW C 62 024610
denominators. Note also, that for a given scattering lengtA
the sign of this interference effect is always the same.
will see that this leads to a very different statistics of t
s•(pi3pf) correlation.

1. Statistical analysis

Let us derive a probability distribution for the observab
x given by Eq.~22!. Similarly to Sec. II A we have

f ~x!5
1

A2pḡ
E

0

`E
2`

`

expS 2
p«2

D2
2

g

2ḡ
D d«dg

Ag

3dS x2
g

b«2D , ~23!

where we again useg for the capture widthGp
(n) , and the

probability densitiesg(g) and f D(«) are taken from Eqs.~6!
and ~8!, respectively. Assuming that the scattering length
positive, hence,b.0, we calculate the above integral an
obtain

f ~x!5
Ax0

Apx~x1px0!
, x.0, ~24!

and f (x)50 for x,0, where

x05
2ḡ

bD2
~25!

characterizes typical values of the asymmetry~22!. The
asymptotic behavior of this probability density atx@x0 is

f ~x!.
Ax0

Apuxu3/2
. ~26!

The probability densityf (x) is normalized as*0
` f (x)dx51.

However, the corresponding mean value* f (x)xdx is infi-
nite, and the integral for the variance* f (x)x2dx diverges
even faster than that for the first correlation@cf. Eq. ~11!#.
This signifies even larger fluctuations of the second corr
tion effect.

2. Limit theorem for the second correlation

The probability distribution of the second correlation~26!
corresponds toa5 1

2 ~see Appendix!. Using the asymptotic
parametersc150 and c25Ax0 /p @compare Eqs.~26! and
~A1!# we obtain c5A2x0 and b51 from Eqs. ~A9! and
~A10!. In fact, it is possible to calculate the Fourier transfo
of f (x) of Eq. ~24! explicitly,

f̃ ~v!5eipx0vp21/2G~1/2,ipx0v!

5eipx0v@12A2x0~16 i !uvu1/21O~v3/2!#, ~27!

where G( . . . ) is the incompleteG-function, and6 corre-
sponds tov:0.
02461
e

s

-

It follows now from Eqs.~A20! and ~A24! that the limit
distributionFn(X) of the average effectX is given by

Fn~X!5Anx0

p

e2nx0 /X

X3/2
~X.0!. ~28!

This equation shows explicitly that as the number of effe
included in the average increases, the distribution wid
proportionally ton. Accordingly, the typical values of the
average also grow asX;nx0.

To understand this recall that the second asymmetr
inversely proportional to«2. Thus, when we consider th
average ofn such variables, one of them is likely to havee
;D/n, which makes itn2 times greater than the typica
value x0. This variable will dominate the average and gi
X;nx0. More realistically, one must combine the distrib
tions with differenthp remembering that the probability t
find a closep3/2 resonance is twice that of ap1/2 resonance.

The role of resonance widths can be understood in
same way as it was done in Sec. II C. The limit statistics~28!
is valid until n;D/Gp , i.e., when the characteristic value o
the maximal effect that dominates the averageX requires
denominators as small as«;D/n;G. When n@D/Gp the
usual statistics of the central limit theorem become valid, a
we eventually have typical values of the average decrea
as 1/An.

IV. CONCLUSION

We have considered interference effects betweenp-wave
resonance neutron scattering amplitude and backgro
s-wave amplitude in compound nuclei and found that the
effects do not obey the standard central limit theorem. T
is, the probability density of the average effect overn mea-
surements,X5(1/n)( i 51

n xi , does not tend to a Gaussia
distribution with variancesn

25s1
2/n for large n. We have

examined two effects,~i! the pi•pf correlation, which corre-
sponds to the forward-backward asymmetry of the differ
tial cross section, and~ii ! the s•(pi3pf) correlation, which
describes the asymmetry of the scattering cross section
respect to flipping the spin relative to the scattering plan

The first of these was found to have a distribution w
asymptotic behaviorf (x)}1/x2 for large x. In this case the
limit theorem for the distribution of the averageX tends to a
Cauchy distributionFn(X)5Xc /@p(X21Xc

2)#. This is inde-
pendent ofn, so the typical value of the average (Xc) does
not decrease with increasing number of measureme
Physically this is understood by the following argumen
The asymmetry in question is inversely proportional to t
spacing between the incident neutron energy and the en
of the closestp-wave resonance (x}«21). If we haven mea-
surements, we have a high probability that one of these s
ings will be of the order«;D/n whereD is the meanp level
spacing. This will produce an asymmetry of the sizex
;nx0 where x0 is a typical value of the effect. Thu
the typical average value isX;x0, nonvanishing with
increasingn.

The second correlation we considered produces a m
0-5
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smaller effect than the first correlation. However, it has be
found to have a«22 dependence, giving a distribution wit
asymptotic behaviorf (x)}x23/2 for largex. This means that
there is a higher probability to obtain relatively large valu
of x, compared to the first correlation. As a result, typic
values for the average ofn asymmetries actually increas
with increasing number of measurementsn asX;nx0.

Above we assumede.Gp wheree is the distance to the
resonance andGp is the resonance width. When we consid
the the influence of the resonance widths, it is found t
they affect the distribution by limiting the size of the effec
x. Indeed, the minimum value for the denominatoru«
1 iGp/2u is given by;Gp , hence, the maximal possible e
fects are limited. We have found that our analysis of
statistics of the averagesX is valid for n,D/Gp ~for heavy
nonfissionable nucleiD/Gp;500). Forn@D/Gp we expect
the average to once again obey the standard CLT and va
with increasingn.

APPENDIX: LIMIT THEOREM FOR PROBABILITY
DISTRIBUTIONS WITH INFINITE VARIANCES

Consider a random variable whose probability density
the following asymptotic behavior:

f ~x!5H c1 /uxua11, x→2`,

c2 /xa11, x→1`,
~A1!

with 0,a,2, and is normalized in the usual wa
* f (x)dx51. The existence of the mean,*x f(x)dx, depends
on whethera is greater or less than unity, but the varian
integral*x2f (x)dx is infinite in both cases, and the standa
central limit theorem is inapplicable.

To derive the limit statistics of the averageX
5(1/n)(x51

n xi of n independent random variablesxi , we
use characteristic functions~or Fourier transforms!

f̃ ~v!5E
2`

`

e2 ivxf ~x!dx. ~A2!

The Fourier transform of the probability densityFn(X) of
the averageX is given by

F̃n~v!5E
2`

`

e2 ivXdXE dS X2
1

n (
i 51

n

xi D)
i 51

n

f ~xi !dxi

5)
i 51

n

f̃ ~v/n!5@ f̃ ~v/n!#n. ~A3!

Thus, the form ofFn(v) for largen is related to that off̃ (v)
at smallv. This is in turn decided by the large-x asymptotic
behavior off (x) given by Eq.~A1!.

For 1,a,2 the integral*x f(x)dx converges andf̃ (v)
can be written as

f̃ ~v!512 ivE x f~x!dx1E ~e2 ivx211 ivx! f ~x!dx.

~A4!
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Let us consider the contribution of the interval from 0 to1`
to the last term above. Using the asymptotic form~A1! we
present it as

E
0

`

~e2 ivx211 ivx!F f ~x!2
c2

xa11Gdx1c2

3E
0

`

~e2 ivx211 ivx!
dx

xa11
. ~A5!

If we assume thatf (x) approaches its asymptotic behavi
sufficiently rapidly, e.g.,u f (x)2c2 /xa11u}O(1/xa12), then
the first integral above behaves asO(v2) at v→0. To cal-
culate the second integral we turn the integration path i
the complex plane by changing the variablevx52 i t ~for
v.0 the t is real positive!, which gives

c2ei (pa/2)vaE
0

`

t2a21~e2t211t !dt, ~A6!

where the integral is a representation of theG-function on a
segment of the negative argument axis,G(2a)52G(2a
11)/a @13#.

Applying the same procedure to the integral ov
(2`,0) in expression~A4!, and turning the integration pat
into the complex plane by usingvx5 i t ~for v.0 and real
positive t), we obtain the expansion off̃ (v) at smallv:

f̃ ~v!512 iva2~c1e2 i (pa/2)1c2ei (pa/2)!

3va
G~a21!

a
1•••, ~A7!

where a5*x f(x)dx is the mean value. The expansion f
negativev can be obtained from the above by simply repla
ing v with uvu and complex-conjugating the exponenti
phase factors in the second term. Finally, at the same leve
accuracy, we can rewrite expansion~A7! in the form valid
for positive and negative smallv:

f̃ ~v!.e2 ivaF12cS 11 ib sgn~v!tan
pa

2 D uvuaG , ~A8!

where

c[~c11c2!
G~12a!

a
cos

pa

2
, c.0, ~A9!

b[
c22c1

c21c1
, 21<b<1, ~A10!

and sgn(v)561 for v.0 andv,0, respectively. The pa
rametersc andb @11# are determined by the asymptotic b
havior ~A1! of the probability density. The value ofb de-
pends on the asymmetry of the probability densityf (x).

The final form ~A8! is very convenient. If we conside
a random variablex1 shifted with respect tox, x15x2a
(a is an arbitrary number here!, its characteristic function
would differ from that of x by a simple phase factor
0-6
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f̃ 1(v)5eivaf̃ (v). On the other hand, the asymptotic beha
ior of the probability density, Eq.~A1! is not affected by this
transformation. Therefore, the phase factor in Eq.~A8! can
always be eliminated by this simple shift.

For 0,a,1 in Eq.~A1! we rewrite the Fourier transform
as

f̃ ~v!511E ~e2 ivx21! f ~x!dx. ~A11!

The contribution of positivex to the above integral can b
transformed into

E
0

`

~e2 ivx21!F f ~x!2
c2

xa11Gdx1c2E
0

`

~e2 ivx21!
dx

xa11
.

~A12!

Provided the difference betweenf (x) andc2 /xa11 decreases
as x2a22 or faster, asx→1`, the first integral can be ex
panded in powers ofv, with the leading term given by

ivE
0

1`

xF f ~x!2
c2

xa11Gdx. ~A13!

The second integral in Eq.~A12! is transformed by variable
substitutionvx52 i t ~for v.0) into @cf. Eq. ~A6!#

c2ei ~pa/2!vaE
0

`

t2a21~e2t21!dt, ~A14!

which again gives theG-function @13#. After we apply the
same procedure to the negative-x part of the integral in Eq.
~A12!, the expansion off̃ (v) at small v is established in
exactly the same form as that of Eq.~A7! ~for v.0). How-
ever, for 0,a,1 the parametera is no longer the mean
value. Instead, it is given by

a5E
2`

0

xF f ~x!2
c1

uxua11Gdx1E
0

`

xF f ~x!2
c2

xa11Gdx.

~A15!

Also, the next term omitted in Eq.~A7! may now be greate
thanO(v2). Nevertheless, the small-v behavior of the Fou-
rier transform is still represented by Eq.~A8!.

If a51 in Eq. ~A1!, the expansion off̃ (v) also contains
v ln v terms. In this case it can be presented as

f̃ ~v!.12 iva2cuvuF12 i
2

p
b sgn~v!lnuvuG ,

~A16!

where c5(p/2)(c11c2), which can be obtained from Eq
~A9! at a→2, b is given by Eq.~A10!, and
02461
-
a5~c22c1!~12C!1E

2`

0

xF f ~x!2
c1

11x2Gdx

1E
0

`

xF f ~x!2
c2

11x2Gdx, ~A17!

whereC'0.577 is the Euler constant. Note that if the pro
ability distribution is symmetric asymptotically, i.e.,c15c2,
thenb50, anda in Eqs.~A15! and~A17! is the mean value
calculated in the principal value sense. If the probability de
sity is fully symmetric, f (2x)5 f (x), then f̃ (v) is real, a
5b50, and the behavior of the characteristic function
small v is especially simple:

f̃ ~v!.12cuvua. ~A18!

After establishing the form off̃ (v) at smallv, Eq. ~A8!
for aÞ1, we can proceed to derive the limit theorem, sta
ing from Eq.~A3!:

F̃n~v!5e2 ivaF 12

cS 11 ib sgn~v!tan
pa

2 Dn12auvua

n
G n

.e2 ivaexpF2cS 11 ib sgn~v!tan
pa

2 Dn12auvuaG ,
~A19!

for largen ~this formula appears in the theorem by Khintc
ine and Lévy as a canonical representation of stable proba
ity distributions, see Ref.@3#!. Using the last expression in
Fn(X)5(1/2p)*eivXFn(v)dv we obtain the limit distribu-
tion in the following form:

Fn~X!5n(a21)/ac21/a f ab@n(a21)/ac21/a~X2a!#,
~A20!

where

f ab~x!5E
2`

`

eivx2uvua expF2 ib sgn~v!tan
pa

2
uvuaG dv

2p
~A21!

is a universal function of the two parameters,a andb, nor-
malized to unity:* f ab(x)dx51. The results fora51 are
obtained in a similar way, witha replaced by a
1c(2/p)b ln n in Eq. ~A20!, andf 1b(x) given by Eq.~A21!,
in which tan(pa/2) is replaced with2(2/p)lnuvu.

Equation~A20! shows that for 0,a,1 the limit distri-
bution of the average widens with the increase ofn, i.e.,
fluctuations of the average increase with the number of v
ables averaged. Sincen(a21)/aa→0 for n→`, the shift of
the distribution~A20! by a is actually unimportant in this
case and one can puta50. For a51 the shape of the dis
tribution Fn(X) does not depend onn, i.e., fluctuations are
neither enhanced nor suppressed by averaging. IfbÞ0 the
whole distribution is gradually shifted proportionally to lnn
into the direction determined by the sign ofb. For 1,a
0-7
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,2 the distribution of the average does become narro
with n, however the rate of suppression of fluctuations,X
}n2(a21)/a is slower than the standard CLTn21/2. Again,
for symmetrically distributedxi , the limit distributionFn(X)
is even simpler, asa5b50 in Eqs.~A20! and ~A21!.

There are a few cases wheref ab and, hence,Fn(X) are
known explicitly. For a51, b50 (c15c2) Eq. ~A21!
gives the Cauchy law,

f 1,0~x!5
1

p

1

11x2
, ~A22!

and c5pc1. For a51/2, b50 the limit function can be
expressed in terms of the error functionF(s)
52p21/2*0

se2t2dt @12#:
.

y,

er
n

02461
er
f 1/2,0~x!52

1

2Apuxu3/2
ImH e2 i (p/4)e2 i /4xF12FS 1

2Aix
D G J .

~A23!

For the samea51/2 in the maximally asymmetric case,c1
50, c2.0, i.e.,b51, which takes place if the random var
ablesxi are positive, one easily obtains the following simp
answer@3#:

f 1
2,1~x!5H 0, x,0,

~2p!21/2e21/2xx23/2, x.0.
~A24!
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