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Narrow resonances and black-hole-like absorption in a non-black-hole metric
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A massive body with the Schwarzschild interior metric (perfect fluid of constant density) develops a
pressure singularity at the origin when the radius of the body R approaches 9r,/8, where r; is the
Schwarzschild radius. We show that a quantum scalar particle scattered in this gravitational field possesses
a dense spectrum of narrow resonances. Their density and lifetimes tend to infinity in the limit R — 9r,/8,
and we determine the cross section of the particle capture into these quasibound states. Therefore, a body
that is not a black hole demonstrates black-hole-like absorption.
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I. INTRODUCTION

We found in our previous work [1] that the scattering
of a massless scalar particle in a near-black-hole metric
of a massive body whose radius R slightly exceeds the
Schwarzschild radius r, is characterized by a dense spec-
trum of resonances. For R — r both the resonance energy
spacing D and their width vy tend to zero, while their ratio
remains finite (y/D =~ 2¢&?r2/7) and tends to zero for
small energies €. (We use units where 7 = ¢ = 1.) This
allowed us to define the cross section for particle capture
into these long-lived states in the spirit of the optical model
[2], by averaging over a small energy interval containing
many resonances. Note that this capture emerges in a
purely potential scattering problem, without any absorp-
tion introduced a priori. Somewhat unexpectedly, the cap-
ture cross section turned out to be equal to the cross section
obtained by assuming total absorption at the event horizon.
In particular, in the zero-energy limit our result coincides
with Unruh’s absorption cross section o, = 477> for a
black hole [3-9]. This shows that a nonsingular static
metric can acquire black-hole properties prior to the actual
formation of the black hole.

It is interesting to see whether this resonance absorption
phenomenon is specific to near-black-hole metrics, or
whether there are other instances of similar behavior. For
example, consider a massive star modeled as an incom-
pressible fluid sphere. The interior of such a body is
described by the Schwarzschild interior metric [10]. This
metric develops a pressure singularity at the origin for
R — 9r,/8, far from the black-hole limit. In Ref. [11] we
examined the spectrum of discrete bound states for a
massive scalar particle in the gravitational field described
by this metric. It was found that near the singularity this
spectrum acquires some black-hole-like features. In par-
ticular, all the levels with finite principal quantum number
n collapse toward zero energy (binding energy is —mc?);
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i.e., the spectral density becomes infinite, similar to that of
a near-black-hole metric (cf. Ref. [12]).

This gives us a motivation to search for narrow reso-
nances in the Schwarzschild interior metric. Indeed, in
the present work we find such resonances in the limit
R — 9r,/8. However, in contrast to the black-hole-like
case considered in Ref. [1], the effective potential pro-
duced by the Schwarzschild interior metric possesses a
barrier near the boundary, and the long resonance lifetimes
are due to the particle having to tunnel through this barrier
to the surface of the body.

Similar to the black-hole-like behavior for R — rg, the
resonance width y and energy spacing D tend to zero for
the Schwarzschild interior metric in the limit R — 9r,/8,
while their ratio y/D remains finite and tends to zero at
small energies €. One can thus define the “optical” capture
cross section by averaging over a small energy interval
containing many resonances. In contrast to the near-black-
hole case, where the cross section remains finite, the ab-
sorption cross section for the Schwarzschild interior metric
tends to zero at zero energy. However, this metric still
possesses black-hole-like absorption for nonzero energies.
This means that such an object may gravitationally absorb
particles in a black-hole-like manner despite the fact that
its metric never approaches that of a black hole.

In what follows we analyze the massless scalar particle
scattering problem for the Schwarzschild interior metric
both numerically and analytically. Although the latter
treatment of the problem is only approximate, it confirms
all the important features of the emerging resonant scat-
tering picture.

II. RADIAL KLEIN-GORDON EQUATION

The Klein-Gordon equation for a scalar particle of mass
m in a curved space-time with the metric g, is

9,(J—88""9,¥) + J=gm*¥ = 0. (1)
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For a particle of energy & in a spherically symmetric
field we seek the solution of Eq. (1) in the form W(x) =
e ®4(r)Y,,(6, ¢). Considering for simplicity the case of
a massless particle with zero angular momentum (/ = 0)
and the metric of the form

ds? = a(r)dt* — b(r)dr* — r*dQ?, )

where dQ)? = d#? + sin?6d ¢?, the radial wave equation is
given by

h'(r) g2
h(r) h*(r)
where h(r) = 4/a(r)/b(r). By transforming the radial func-
tion as ¢(r) = r~'é(r)/+/h(r), Eq. (3) can be cast in the
following Schrodinger-like form:

hl] hl/

w0+ 245 5w + @)

o+ [+ ]
r —_— —_— —_—

h* 4Lh 2h
This equation is convenient for deriving its semiclassical
(Wentzel-Kramers-Brillouin) solution. For small A(r) (near

r = 0; see below) the first term in braces dominates and
this solution is

b(r) = \/@ sin(s fo %) (5)

In fact, it is easy to verify that this solution is exact if the
—h'/rh term in braces in Eq. (4) is neglected.

}¢(r) —0.
=

III. PHASE SHIFT FOR THE SCHWARZSCHILD
INTERIOR METRIC

Outside a spherically symmetric, nonrotating body
of mass M and radius R the metric is given by the
Schwarzschild solution

-1
ds? = (1 ~ ﬂ)dﬂ ~ (1 - ﬁ) dr? — 2dQ0%  (6)
r

r

where r, = 2GM is the Schwarzschild radius of the body
and G is the gravitational constant. Hence, for r > R
Eq. (3) takes the form

re

00+ (e D P =0 @)

(r—

The Schwarzschild inferior solution describes a static
spherical mass of incompressible perfect fluid with con-
stant density and is given by Eq. (2) with

a(r) = ( 1—% 11’ ng
b = (1-25)"

N

so that
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This metric is valid for r, < 8R/9 but develops a singu-
larity as a(0) vanishes for r; = 8R/9 [13].

Using h(r) from Eq. (8) in Eq. (3) gives the radial wave
equation for r < R. For r; < 8R/9 this metric is smooth at
the origin. Hence, the regular solution for / =0 must
satisfy the boundary conditions #'(0) =0, (0) # 0.
The value of (0) only affects the normalization of the
wave function, and we set ¥ (0) = 1. We solve the interior
equation numerically using MATHEMATICA [14]. This solu-
tion supplies the boundary condition for the exterior wave
function at the surface of the body r = R. (R = 1 isused in
the numerical calculations.) Equation (7) is then integrated
outward to large distances r >> r,. In this asymptotic
region Eq. (7) takes the form of the nonrelativistic
Schrodinger equation for a particle with momentum &
and unit mass in the attractive Coulomb potential with
charge Z = —r,&%. Here the wave function can be matched
with the asymptotic Coulomb solution [2],

y(r) o sin[er — (Z/e)In2er + 8-+ 8], (9)

where 8- = argl’'(1 + iZ/¢) is the Coulomb phase shift, to
find the short-range phase shift 6. The latter is determined
almost exclusively by the interior metric and carries
important information about the behavior of the wave
function at » < R.

Unlike 6., which is small and has a weak dependence
on the energy, the phase shift 6 becomes large when r;
approaches 8R/9, i.e.,

£=8/9-r,/RK 1. (10)

This phase shift also has a strong dependence on the energy
of the particle, as shown by the solid line in Fig. 1. Similar
to the case of a near-black-hole metric considered in
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FIG. 1. The short-range phase shift § obtained numerically as
a function of € = &R (solid line) and the semiclassical phase
[Eq. (13)] at the classical turning point (thick dashed line) for
£=28/9—r,/R=0.00014. The vertical dashed line corre-
sponds to the sixth resonance at € = 0.1080.

044042-2



NARROW RESONANCES AND BLACK-HOLE-LIKE ...
1.5

o5 I

rxi(r)

FIG. 2. The radial wave function at the energy € = 0.1080 of
the sixth resonance for & = 0.000 14 (solid curve). The dashed
curve is the analytical approximation for the wave function given
by Eq. (16) for the energy €, (n = 6) from Eq. (19). The vertical
lines indicate the two classical turning points defined by
p(r) = 0. Regions I and III are classically allowed, while II is
classically forbidden.

Ref. [1], this phase shift goes through many steps of the
size 7. Each of these steps corresponds to a resonance, i.e.,
long-lived quasibound states of the projectile and the tar-
get. For energies corresponding to the midpoints of the
steps (where the derivative d8/de is largest) the magnitude
of the wave function ¢ (r) inside the body (r < R) is much
greater than outside. This is a signature of a quasibound
state. The wave function at one of the resonances is shown
in Fig. 2.

The resonances observed in the phase shift 6 are char-
acterized by their energies €,, and widths 7y,,, which can be
determined numerically by fitting the “steps” in &6 by
arctan[2(e — g,)/v,] + const [2], or analytically (see
Sec. IV). We show below (see Figs. 3 and 4) that as the
Schwarzschild radius r, tends to 8R/9, i.e., for £ — 0, both
the energies and the widths of the resonances tend to zero
(i.e., their lifetimes tend to infinity). This means that in this
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FIG. 3. Energies of the n = 4 resonance given by Eq. (19)
(solid line) and obtained numerically by fitting the resonance
jumps of the phase shift & (solid circles) as a function of r,/R.
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FIG. 4. Width of the n = 4 resonance found numerically by
fitting the phase shift 6 (solid circles) and estimated from
Egs. (19) and (28) (solid line), as a function of r,/R. The inset
shows the same data as a function of & on a double logarithmic
scale.

limit the massive body with the Schwarzschild interior

metric develops absorption properties usually typical of
black holes.

IV. ENERGIES AND WIDTHS
OF THE RESONANCES

A. Schwarzschild interior

When the wave equation is written in the Schrodinger-
like form (4), the coefficient in braces plays the role of an
effective potential for the motion of a particle with the
classical momentum

e ITHT2 W' W12
S LI G b 11
P {h2 4[}1] 2h rh} (b

In the case of the Schwarzschild interior metric, A(r) is
given by Eq. (8). For ¢ < 1 and r < R (in practice r <
0.5R is sufficient) h(r) can be approximated as follows:

9¢  2r? 45
2

4  9R?> SIR*
This shows that for small r, where the first term in braces in
Eq. (11) dominates, the particle has a large classical
momentum [e.g., p(0) = 4e/9¢&]. This corresponds to the
motion in a deep classically allowed region near the origin.
Analysis of Eqgs. (8) and (11)shows that for £ < 1 there is
a second classically allowed region near the boundary with
a broad, nonsemiclassical potential barrier in between;
cf. Fig. 2. These regions are separated by two classical
turning points r; and r, given by the roots of p(r) = 0.

The above picture explains the origins of the dense
spectrum of narrow resonances observed in the limit
¢ — 0. To estimate the resonance widths analytically we
require an expression for the scattering matrix, which is
constructed using the procedure outlined in the following
subsections.

h(r) (12)
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1. Region I: Origin to barrier

In this region (0 =< r < r|) the £2/h* term in Eq. (11)
dominates near the origin for ¢ << 1. Dropping the last
term in Eq. (12), we obtain the semiclassical phase of the
wave function ¢(r) [Eq. (5)],

forﬁdr =g /;)r(%f + ;—;>1dr = %? arctan(%?),
(13)

where € = eR and p = r/R are the scaled energy and
radial coordinate, respectively. The wave function in this
region is then

2
bi(p) = CJ% + 2%Sin[%E arctan(%?)], (14)

where C depends on normalization.

2. Region II: Suppression by barrier
In the intermediate range, \/€ < p < 0.5, the square of
the classical momentum (11) simplifies to

81R*e2 2
2(,) ~ _“
() 454 r2

In this case Eq. (4) has an exact analytical solution,

9 2
¢ulp) = Ap\/m sin[@ + i + arctan(g—i)],
(16)

where @ and A are constants determined by matching the
solution (14) to the left of the first classical turning point
p1 = 9¢/+/8 [from Eq. (15)].

For \/€ < p < p, both Eq. (14) and (16) are valid (the
former is valid at the origin while the latter is not).
Matching is done by first expanding the arctan term in
Eq. (14) for p/+/€ > 1 and neglecting the arctan term in
Eq. (16), which is justified for 2p/9€ < 1. This yields the
phase

15)

d=-"c 1
V2E )
When the energy is on resonance, the wave function
decreases under the barrier (region II in Fig. 2).
Considering Eq. (16) for p > p; (but keeping p < 0.5,
which is possible for low energies € <« 1), and expanding
the arctan function for large arguments, we have

dnlp) = _2AP2 Sin[% - g - %(2_;)3] (18)

This function represents a decreasing solution ¢p(p) o
p~! only if we require we/2&— w/2=nm

(n=1,2,...), which gives the resonance energies

€, = V2£(n + 1/2). (19)
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Hence the resonances form an equispaced spectrum similar
to that of a harmonic oscillator (starting from n = 1
though). This is in agreement with the behavior of the
phase shift in Fig. 1.

According to Eq. (19), for & — 0 the energies of all
resonances tend to zero. This behavior is shown in Fig. 3,
which compares the analytical expression for €, with the
values obtained numerically from the phase shift §.

3. Region III: Barrier to boundary

To calculate the S matrix and determine the resonance
widths analytically, we need to match the interior and
exterior solutions at the boundary r = R. Formally, the
effective potential in Eq. (4) contains a second classical
turning point r,, which defines the outer classically
allowed region, r, < r <R. In this region the classical
momentum remains small, and the wave function changes
little between r, and R (see Fig. 2). Indeed, it is easy to
check that the classical momentum takes its largest values

at the boundary r = R, and for £ — 0 one has p(R) =

V81g&? + 58R~2. This momentum is much smaller than
the momenta at the origin (see Sec. IVA 1) or at small r
[see Eq. (15)].

Therefore in generating an approximate analytical solu-
tion over the entire interior region, we assume that the
major contributions arise from regions I and II. Changes
in the wave function attributable to the potential in region
III give rise to higher-order effects, which we calculate as
corrections at the end of this section. Thus we formally
extend the solution in Eq. (16) to the boundary p =1,
where it is matched to an appropriate solution of the
exterior equation as discussed below.

B. Schwarzschild exterior solution

For low-energy scattering, eR < 1, the last term in the
exterior equation (7) can be neglected near the boundary.
Hence, for r ~ R, the solution of Eq. (7) is

w(r) = a1n<’;rrf) + B, (20)

where « and B are constants determined by joining this
solution with the interior solution at »r = R (see below).
Following the matching procedure outlined in Ref. [15],
the low-energy s-wave scattering matrix is found as
Sy = Sye?i%c, where

_ (B/a) —ier,C?
(B/a) + ier,C?

is the short-range part of the scattering matrix, and
C? = 2mer,/[1 — exp(—2mer,)] is a function that char-
acterizes the long-range Coulomb tail of the potential [15].

In general, resonances can be found as poles of the S
matrix in the complex energy plane at e = g, — iy,/2[2].
On the real energy axis they correspond to the points where

S, = e*? 21
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the short-range phase shift § passes through 7(n — 1/2).
At these energies S, = — 1, which requires 8/a = 0. This
means that near the resonances one can use

B/a=(B/a)(e — &,) (22)
where the prime denotes the derivative with respect to &

taken at the resonance. Using this expression and looking
for the poles of Sy [Eq. (21)] gives the resonance width

r.&,C?

YV = .

" (B/e)

To find the ratios 8/« and (8/a)’, we match the loga-

rithmic derivatives of the interior and exterior wave func-

tions at the boundary. Using the relation between the

solutions ¥ (r) and ¢(r) (Sec. II) for the interior metric

[Eq. (8)] the logarithmic derivative (evaluated at the
boundary) is

P'(r)
(r)

(23)

1,40
r- R ¢(i’)
3 1/9€\3 me 1/9€\3
=———(— —_— = 24
R R(z)tan[\/ﬁ 3<2)]’ 9
where we used Eq. (16) to obtain the last line.

The exterior logarithmic derivative at the boundary for
r, — 8/9R is found from Eq. (20) as

P, _ 8a
Wlm = e 1o (25)

R(B — aln9)’
Setting the logarithmic derivatives from Eq. (24) and (25)
equal gives

R—

B 8
= = + In9. (26)
a RPN/ P(r)]g-

When finding (8/«a)’ to estimate vy, from Eq. (23), we can

use the fact that at (or very near) the resonance, 8/a = 0.

This allows one to simplify the answer and obtain

Yn = BJEELR?, Q27)

with the constant B given approximately by B = 2.74.

Thus we see that similar to the resonance energies ¢,
[Eq. (19)] the resonance widths also decrease with ¢, i.e.,
as the metric singularity is approached. Taking Eq. (19)
into account, we see from Eq. (27) that for a fixed reso-
nance number 7, vy, % &/2. This dependence is shown in
the inset of Fig. 4.

The above derivation of the width underestimates the
width (through the value of B) by a factor r3/R* ~ 0.1,
since the correct wave function does not decrease through
region III as quickly as that given by Eq. (18) (see Fig. 2).
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Restoring this factor and evaluating B numerically gives

Y = 28/ EARS, (28)

in good agreement with the numerical calculation, as
shown by Fig. 4.

V. ABSORPTION CROSS SECTION

In the limit r; — 8R/9 the short-range phase shift and
the energy density of the resonances tend to infinity.
Hence, neither 6 nor the resonance energies and widths,
g, and 7y, (which tends to zero), retain much physical
meaning. However, as in the near-black-hole metric case
[1], the cross section for capture into these resonances, i.e.,
the effective absorption cross section, is well defined.

Equation (19) shows the level spacing between the
resonances is given by

— &, = 2¢/R. (29)

Assuming a finite energy resolution Ae >> D and given
that y, < D, one can introduce the cross section for
capture of the particle into these long-lived states.
According to the optical-model considerations [2], this
absorption cross section is given by

DESnJrl

2
— (opt) __ 2 Yn
O q = ? 3 (30)
Substituting the expression for y,, [Eq. (28)] into the above
expression yields

7 9P ~ 390g2R4, (31)

Unlike the low-energy absorption cross section for the
black holes, o, = 47Trf, the cross section (31) vanishes
at zero energy. However, for nonzero incident energies the
capture cross section for massless particles is finite.

VI. CONCLUSIONS

We have considered the problem of the scattering of
massless scalar particles from a spherically symmetric con-
stant density fluid sphere described by the Schwarzschild
interior metric. We find that despite the black-hole limit
being unattainable for such a metric, a dense spectrum of
narrow resonances emerges in the limit r; — 8R /9 in which
a singularity develops in the metric at the origin. This
phenomenon gives rise to a nonzero capture cross section
of massless particles for nonzero energies. This implies that
an object that is not a black hole may gravitationally absorb
particles, making it appear black-hole-like, albeit with a
different capture cross section.
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