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We show that a spin-1=2 particle in the gravitational field of a massive body of radius R, which slightly

exceeds the Schwarzschild radius rs, possesses a dense spectrum of narrow resonances. Their lifetimes

and densities tend to infinity in the limit R ! rs. We determine the cross section of the particle capture

into these resonances and show that it is equal to the spin-1=2 absorption cross section for a Schwarzschild

black hole. Thus, black-hole properties may emerge in a nonsingular static metric prior to the formation of

a black hole.
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I. INTRODUCTION

In this work we consider scattering of massless spin-1=2
particles by the gravitational field of finite-sized bodies
whose radius R slightly exceeds the Schwarzschild radius
rs ¼ 2GM=c2. Here M is the mass of the body, G is the
universal gravitation constant, and c is the speed of light.
The spacetime around the body is described using a suit-
able metric to model its interior, which is joined at the
surface of the body to the standard Schwarzschild metric
outside. We find that for R approaching rs, the scattering is
characterized by a dense spectrum of narrow resonances,
i.e., metastable states whose lifetime and energy density
tend to infinity in the black-hole limit. A particle that enters
such states is trapped on the interior of the body for a time
�� ℏ=�n, where �n is the width of a given resonance.

For R ! rs both the energy spacing D between the
resonances and their width �n tend to zero and the lifetime
� ! 1. At the same time, the ratio �n=D for the fixed
energy of the particle remains finite. This allows one to
define the cross section for particle capture into these long-
lived states using the optical model [1], i.e., averaging over
a small energy interval containing many resonances. In
doing so we recover the low-energy limit of the absorption
cross section for a pure black hole (with the boundary
condition of complete absorption at the event horizon)
derived by Unruh: � ¼ 1

4�r
2
s for the s1=2 and p1=2 partial

waves [2]. The total absorption cross section considering
all partial-wave contributions is 1

2�r
2
s , as only the s1=2 and

p1=2 waves have nonvanishing cross sections at zero en-

ergy. Thus, we observe that at low incident particle ener-
gies, the absorption properties of a body with R> rs
resemble those of a black hole.

It is worth noting that possible inelastic processes, such
as radiation by the particles captured in the long-lived
resonances, do not change �a. The presence of inelastic
processes increases the total width of the resonances,
�tot ¼ �n þ �inel, but this quantity drops out of the energy

averaged (optical) total capture cross section �a, leaving
only the dependence on the elastic width �n [1].
As in the previous work on the scalar (spin-0)

case [3], our calculations are performed twice: numerically
(without approximations) and using analytical approxima-
tions, with good agreement between the two. In contrast
to the spin-0 case, we consider scattering for arbitrary
angular momenta.
This work is closely related to the case of massive

spin-1=2 particles trapped by a near-black-hole gravita-
tional field, considered in Ref. [4]. The authors showed
that the bound-state energy spectrum collapses and be-
comes quasicontinuous in the black-hole limit. The col-
lapse of the positive-energy resonance spectrum in the
black-hole limit found in this work shows similar behavior.
The analytical treatment presented is valid for interior

metrics that satisfy certain physically reasonable con-
straints, detailed in later sections. In the present work, we
do not aim to consider real stars; rather, we investigate the
theoretical question of how quantum effects manifest
themselves when a metric approaches the black hole met-
ric. For numerical calculations we use two metrics which
allow rs=R to be arbitrarily close to 1 without any metric
singularities emerging. They are the Florides [5] and Soffel
[6] metrics, which correspond to a system with vanishing
radial stresses [7], and a modified Schwarzschild interior
metric, respectively.

II. DIRAC EQUATION IN CURVED SPACETIME

A. Radial equation

Consider a curved spacetime with the static, spherically
symmetric metric:

ds2 ¼ aðrÞdt2 � bðrÞdr2 � r2d�2; (1)

where aðrÞ and bðrÞ are positive functions. The Dirac
equation for a massless spin-1=2 particle in the above
metric may be represented as two coupled equations
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(derived in Ref. [4]) for upper and lower components of the
wave function fðrÞ and gðrÞ, given by

dfðrÞ
dr

þ
ffiffiffiffiffiffiffiffiffi
bðrÞ

p �

r
fðrÞ � "

ffiffiffiffiffiffiffiffiffi
bðrÞ
aðrÞ

s
gðrÞ ¼ 0;

dgðrÞ
dr

�
ffiffiffiffiffiffiffiffiffi
bðrÞ

p �

r
gðrÞ þ "

ffiffiffiffiffiffiffiffiffi
bðrÞ
aðrÞ

s
fðrÞ ¼ 0:

(2)

Here � ¼ �ðjþ 1
2Þ, where j ¼ l� 1

2 is the total angular

momentum and l is the orbital angular momentum. The
equation (2) can be recast as the following second-order
differential equation for fðrÞ in a given partial wave:

f00ðrÞ þ bðrÞ
2aðrÞ

�
aðrÞ
bðrÞ

�0
f0ðrÞ þ

�
"2bðrÞ
aðrÞ þ �

ffiffiffiffiffiffiffiffiffi
bðrÞp

r2

�
�
ra0ðrÞ
2aðrÞ � �

ffiffiffiffiffiffiffiffiffi
bðrÞ

p
� 1

��
fðrÞ ¼ 0: (3)

B. Interior solution

Changing the radial variable to the Regge-Wheeler

‘‘tortoise’’ coordinate r� defined by dr� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðrÞ=aðrÞp

dr,
we can transform Eq. (3) to the following Schrödinger-like
equation for fðr�Þ:

d2f

dr�2
þ

�
"2 þ �r

2
ffiffiffiffiffiffiffiffiffi
bðrÞp

�
aðrÞ
r2

�0 � �2aðrÞ
r2

�
f ¼ 0: (4)

The metric outside of a massive nonrotating spherical
body is given by the Schwarzschild solution:

aðrÞ ¼ 1� rs=r; bðrÞ ¼ ð1� rs=rÞ�1: (5)

On the surface of the body, aðRÞ ¼ 1� rr=R. Since the
metric is continuous, smooth, and monotonic, then in
the near-black-hole limit (rs ! R), the interior metric
aðrÞ ! 0 for all 0 � r � R, as the time slows down inside
the gravitational potential. In this regime the first term in
brackets in Eq. (4) dominates for all except very small
energies and for all distances, except near the origin. This
means that the solution away from the origin describes free
motion in the tortoise coordinate,

f ’ sin ð"r� þ�Þ; (6)

where the phase � is determined by behavior of the wave
function near the origin.

In the vicinity of r ¼ 0, the dominant coefficient of fðr�Þ
in Eq. (4) is given by the r�2 centrifugal terms. For the
specific metrics, we consider (see Sec. IV), for r ! 0,
aðrÞ ’ að0Þ> 0 and bðrÞ ’ 1. This also applies to a wider
class of static solutions where the potential is harmonic
near the origin. In this case, the centrifugal term in Eq. (4)
is �ð�þ 1Þ=r�2 ¼ lðlþ 1Þ=r�2, and the corresponding
phase shift is given by � ¼ �l�=2 [1]. Hence, away

from the origin, the interior solution that is regular at the
origin is given by

fðrÞ ¼ sin

�
"
Z r

0
�ðr0Þdr0 � l�

2

�
; (7)

where �ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðrÞ=aðrÞp

. [Analysis of Eqs. (58) and (59)
in Ref. [4] shows that for the regular solution, f / rlþ1 and

g / rl
0þ1, which explains why the phase in Eq. (7) contains

l rather than �].
In what follows we solve the scattering problem by

matching the logarithmic derivative of the exterior solution
at r ¼ R to the logarithimic derivative of the interior
solution, Eq. (7):

f0ðrÞ
fðrÞ

��������R
¼ "R

R� rs
cot

�
"�ðRÞ � l�

2

�
; (8)

where

�ðRÞ ¼
Z R

0
�ðrÞdr: (9)

In Eq. (8) we also used the fact that

�ðRÞ ¼ R=ðR� rsÞ; (10)

since the interior metric matches Eq. (5) at r ¼ R.
Note that in the black-hole limit (R ! rs), the function

�ðRÞ tends to infinity. This means that for a fixed energy ",
the phase of the interior wave function (7) is large, and the
wave function oscillates rapidly, in close analogy with the
case of massless scalar particles with l ¼ 0 [3].

C. Exterior solution

Using the exterior Schwarzschild metric, Eq. (5), in the
radial wave equation (3), we obtain for r > R

f00ðrÞ þ
�

1

r� rs
� 1

r

�
f0ðrÞ

þ
�

"2r2

ðr� rsÞ2
þ �ð3rs � 2rÞ

2r3=2ðr� rsÞ3=2
� �2

rðr� rsÞ
�
fðrÞ ¼ 0:

(11)

1. Region I (r�R)

For near-black-hole metrics (R � rs), we can keep only
the most singular terms in the wave equation (11) near the
boundary (r � R), defined as region I. Neglecting less
singular terms and setting r ¼ rs elsewhere, we have

f00 þ 1

r� rs
f0 þ

�
"2r2s

ðr� rsÞ2
þ �

2r1=2s ðr� rsÞ3=2
�
f ¼ 0:

The exact solution of this equation are the Bessel functions

J4i"rsð�Þ and Y4i"rsð�Þ, where � ¼ ffiffiffiffiffiffi
8�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� rsÞ=rs4
p

. At

low energies "rs 	 1, using the lowest-order terms in
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the expansion of the Bessel functions, gives the wave
function in region I as

f1ðrÞ ¼ �1 þ 	1 ln

�
r� rs
rs

�
; (12)

where the constants �1 and	1 are determined by matching
with the interior solution at the boundary.

2. Region II (r 
 R)

In this region the wave equation (11) takes the form of
the nonrelativistic Schrödinger equation for a particle with
momentum ", angular momentum l, and unit mass in the
attractive Coulomb field Z=r with the charge Z ¼ �"2rs.
The exterior solution is thus a linear combination of the
regular and irregular Coulomb functions,

f2ðrÞ ¼ �2Flð"rÞ þ 	2Glð"rÞ; (13)

which behave asymptotically as Fl � sin z and Gl � cos z,
where z ¼ "rþ "rs ln 2"r� l�=2þ 
C

l and 
C
l ¼

arg ½�ðlþ 1� i"rsÞ� is the Coulomb phase shift.
Following Unruh’s matching procedure [2], we find the

relationships between the coefficients in regions I and II,
for � < 0 [8],

�2 ¼ �1

Clð"Þ
�
4

"rs

�j�j
; (14)

	2 ¼ �	1Clð"Þ
4

�
"rs
4

�j�j�1
; (15)

and for � > 0,

�2 ¼ 	1

4Clð"Þð2�þ 1Þ
�
4

"rs

�
�þ1

; (16)

	2 ¼ �1Clð"Þð2�þ 1Þ
�
"rs
4

�
�
: (17)

In these equations Clð"Þ is the Coulomb factor,

Clð"Þ ¼ 2le�"rs=2
j�ðlþ 1� i"rsÞj

ð2lþ 1Þ! : (18)

For "rs 	 1 this factor is a constant, Cl ’ 1=ð2lþ 1Þ!!.

III. S MATRIX AND RESONANCES

The solution to Eq. (11) at large distances can be
written as

fðrÞ � Aeiz þ Be�iz: (19)

The ratio of the coefficients in front of the outgoing and
incoming waves defines the S matrix,

S� ¼ �A

B
exp ð2i
C

l Þ; (20)

and the short-range phase shift 
, via e2i
 � �A=B.
Comparing Eq. (13) with Eq. (19), we obtain

A ¼ 	2 � i�2

2
; B ¼ 	2 þ i�2

2
; (21)

which yields

S� ¼ � 1� i�2=	2

1þ i�2=	2

exp ð2i
C
l Þ: (22)

Using the values of �2 and 	2 determined previously, we
have

�2

	2
¼ � 4

C2
l

�
4

"rs

�
2j�j�1 �1

	1

ð� < 0Þ; (23)

�2

	2
¼ 1

4C2
l ð2�þ 1Þ2

�
4

"rs

�
2�þ1 	1

�1

ð� > 0Þ: (24)

The elastic scattering cross section is proportional to
j1� S�j2. When the S matrix varies rapidly as a function
of energy, the cross section displays resonance maxima for
S� � �1. At low energies, "rs 	 1, the Coulomb phase
shift is small (and it varies slowly with energy), and
the resonances occur for �2=	2 ¼ 0 [see Eq. (22)]. This
corresponds to

�1

	1
¼ 0 ð� < 0Þ; 	1

�1

¼ 0 ð� > 0Þ: (25)

These ratios are determined by matching the solution for
the Schwarzschild exterior metric with the interior
solution.

A. Resonance energies

Matching the logarithmic derivative of the exterior so-
lution (12) at r ¼ R to that from Eq. (8) yields

�1

	1
¼ tan ½"�ðRÞ � l�=2�

"R
� ln

�
R� rs

R

�
: (26)

The resonance conditions, Eq. (25), translate into the
tangent function tending to either zero or infinity depend-
ing on the sign of �. [There is a small offset due to the
logarithmic term, but this is negligible in the rs ! R limit,
since �ðRÞ increases much faster.] Hence, we find the
expression for the resonance energies,

"n ¼ �½nþ ðj�j � 1Þ=2�
�ðRÞ ; (27)

which is valid for both � < 0 and � > 0.
Since �ðRÞ ! 1 for R ! rs, the energies of all reso-

nances tend to zero in the black-hole limit, and the reso-
nance spectrum ‘‘collapses,’’ as its density tends to infinity.
A similar collapse of spectrum is also seen in the bound
state case detailed in Ref. [4].

B. Resonance widths

The full resonance condition states that resonances cor-
respond to poles of the S matrix at energies " ¼
"n � i�n=2, which lie below the real axis in the
complex-energy plane [1]. According to Eq. (22), this
occurs when
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1þ i�2

	2

¼ 0: (28)

To determine the resonance widths �n, we use Eqs. (23)
and (24) and expand the ratio �1=	1 (for � < 0) or 	1=�1

(for � > 0) to first order about the resonance energy "n. For
example, for negative � we use

�1

	1
’
�
�1

	1

�0ð"� "nÞ ¼
�
�1

	1

�0ð�i�n=2Þ; (29)

thus, Eq. (28) may be written (for negative �) as

1þ fð"Þ�n

2

�
�1

	1

�0 ¼ 0; (30)

where the prime denotes differentiation with respect to ",
the derivative is evaluated using Eq. (26) at the point where
tan ½"�ðRÞ � l�=2� ¼ 0, and fð"Þ is defined by Eq. (23).
Hence, we obtain for � < 0

�n ¼ 2C2
l R

�ðRÞrs
�
"rs
4

�
2j�j

; (31)

and following a similar procedure expanding 	1=�1 for
� > 0,

�n ¼ 2C2
l ð2�þ 1Þ2rs
�ðRÞR

�
"rs
4

�
2�
: (32)

The widths must be evaluated at " ¼ "n from Eq. (27).

C. Cross sections

Comparing the above expressions for the widths with the
resonance energy spacing D ¼ "nþ1 � "n ¼ �=�ðRÞ [see
Eq. (27)], we see that �n 	 D at low energies, i.e.,
"rs 	 1. In this case one can consider the cross section
of capture into the resonances. This cross section corre-
sponds to the optical-model energy-averaged absorption
cross section [1], which is given by

�ðaÞ
� ¼ j�j 2�

2�n

"2D
(33)

for a particular partial wave �.
Using Eqs. (31) and (32), we obtain the resonant ab-

sorption cross sections for the near-black-hole metric:

�ðaÞ
� ¼

8><
>:

1
4�r

2
s j�jC2

l

	
"rs
4



2j�j�2 ð� < 0Þ;

1
4�r

2
s j�jC2

l ð2�þ 1Þ2
	
"rs
4



2��2 ð� > 0Þ:

(34)

Note that, unlike the resonance energies and widths, the
resonance capture cross sections do not contain �ðRÞ and,
hence, are independent of the interior metric used, as long
as the metric satisfies the assumptions made in Sec. II B.

In the zero-energy limit, only two partial waves give
nonzero contributions, namely, s1=2 and p1=2 (j�j ¼ 1).

The corresponding cross sections �ðaÞ
�1 ¼ 1

4�r
2
s are in

agreement with Unruh’s result �ðaÞ
tot ¼

P
��

ðaÞ
� ¼ 1

2�r
2
s [2].

IV. NUMERICAL RESULTS FOR SPECIFIC
INTERIOR METRICS

In this section we present calculations involving two
specific interior metrics that allow the rs ! R limit to be
taken: the Florides [5] and Soffel [6] metrics. Specifically,
we verify the analytics provided previously with numeri-
cally calculated resonance widths and energies via the
short-range phase shift. To calculate this short-range
phase 
I, we solve the second-order differential
equation (3) numerically, for given aðrÞ and bðrÞ, with
the boundary condition fð0Þ ¼ rlþ1, f0ð0Þ ¼ ðlþ 1Þrl us-
ing Mathematica [9]. This solution provides a real bound-
ary condition for the exterior wave function at r ¼ R. (We
set R ¼ 1 in the numerical calculations). Equation (11) is
then integrated outward to large distances r 
 rs. In this
region Eq. (11) takes the form of a nonrelativistic
Shrödinger equation for a particle with momentum " and
unit mass in the Coulomb potential with charge
Z ¼ �rs"

2. Hence, we match the solution with the asymp-
totic form [1],

0.9980 0.9985 0.9990 0.9995 1.0000
0.

0.02

0.04

0.06

rs R

n

FIG. 1. Energies of then ¼ 2; � ¼ �1 resonance in theFlorides
metric. Closed circles indicate numeric data, and the solid line
indicates analytic "n given by Eq. (27) with � given by Eq. (38).

0.9980 0.9985 0.9990 0.9995 1.0000
0

1

2

3

rs R

n
10

6

FIG. 2. Width of the n ¼ 2; � ¼ �1 resonance in the Florides
metric. Closed circles indicate numeric data, and the solid line
indicates analytic �n given by Eq. (31) with � given by Eq. (38).
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fðrÞ / sin ½"r� ðZ="Þ ln 2"rþ 
C þ 
� l�=2�; (35)

where 
C ¼ arg �ð1þ lþ iZ="Þ is the Coulomb phase
shift, and determine the short-range phase shift 
.

The numeric widths and positions of the resonances
are then extracted from this phase shift by fitting it to the
Breit-Wigner profile,


ð"Þ ¼ Aþ arctan

�
"� "n
�n=2

�
; (36)

in the region of an isolated resonance (" � "n), where A is
a constant offset.

A. Florides interior

The Florides metric is characterized by

aðrÞ ¼ ð1� rs=RÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rsr

2=R3
p ; bðrÞ ¼

�
1� rsr

2

R3

��1
: (37)

This in turn leads to

�ðRÞF ¼rs!R �3=2Rffiffiffi
2

p
�ð1=4Þ�ð5=4Þð1� rs=RÞ3=4

� 1:198ðR� rsÞ�3=4: (38)

The resulting resonance energies and widths are compared
with their numeric counterparts in Figs. 1 and 2,
respectively.

B. Soffel interior

The Soffel metric is characterized by [6]

aðrÞ ¼
�
1� rs

R

�
exp

�
� rsð1� r2=R2Þ

2Rð1� rs=RÞ
�
; (39)

with bðrÞ equal to that of the Florides case. This in turn
leads to

�ðRÞSo ¼rs!R
R

ffiffiffiffi
�

p
exp

�
rs=R

4ð1� rs=RÞ
�
: (40)

Analytic and numeric "n and �n for the Soffel metric are
compared in Figs. 3 and 4, respectively.

V. CONCLUSIONS

The problem of scattering of low-energy spin-1=2 par-
ticles from a massive static spherical body has been con-
sidered. We have shown that as in the spin-0 case,
approaching the black hole case gives rise to a dense
spectrum of long lived resonances. Similar to the scalar
case, we show that the existence and structure of these
resonances give rise to effective absorption in the purely
potential scattering problem. This allows us to construct an
absorption cross section for bodies near the black hole
threshold which matches known results for the pure
black-hole case in the low-energy limit.
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