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It is shown that the two-body character of the interaction in a many-body system gives rise to specific
correlations between the components of compound states, even if this interaction is completely random.
Surprisingly, these correlations increase with the increase of the number of active~valence! particles. Statistical
theory of transition amplitudes between compound states, which takes into account these correlations is de-
veloped and tested within the framework of the two-body random interaction model. It is demonstrated that a
feature, which can be called ‘‘correlation resonance,’’ appears in the distribution of the transition matrix
amplitudes, since the correlations strongly reduce the transition amplitudes at the tails and increase them near
the maximum of the distribution.

PACS number~s!: 05.45.1b, 05.30.Fk, 24.60.Lz

I. INTRODUCTION

Measurements of parity nonconservation in neutron cap-
ture by Th nucleus@1# gave a surprising result: in spite of a
natural assumption of a random character of matrix elements
of the weak interaction between compound states, the effect
was found to be of the same sign for all observed resonances.
Possibly, this means that the strongly fluctuating matrix ele-
ments of a weak perturbation between ‘‘chaotic’’ states of a
compound nucleus~which was, in fact, the first example of a
quantum chaotic system! are essentially correlated. Thus the
problem of correlations between components of compound
states is of great importance both for theory and applications.

An attempt to study these correlations has been under-
taken in@2–4#. It is natural to expect that some correlations
may appear if the number of independent parameters in a
Hamiltonian matrix is substantially smaller than the total
number of the Hamiltonian matrix elements. The simplest
example is given by the model of a random separable inter-
action @5# ~see also@4#!,

H i j5e id i j1gv iv j , i, j51,2, . . . ,N ~1!

where e i are the unperturbed energies andv i are random
variables distributed, e.g., according to a Gaussian law. As
one can see, the number of independent parametersv i is
equal to N, while the number of the Hamiltonian matrix
elementsH ik is N2. It was shown that this model displays
very strong (;100%) correlations between eigenvectors
with close energies, despite the random character of the in-
teraction:^v iv j&5d i j^v i

2&.
Such correlations cannot appear in models described by

full random matrices, like those of the Gaussian orthogonal
ensemble~GOE!. It was always obvious that such models
possess some unphysical features, e.g., the semicircle level

density, however, they seem to give a very accurate descrip-
tion of the correlations and fluctuations of energy levels~see,
e.g. @6#!. The important point is that in real many-body sys-
tems the basic interaction is a two-body one. This means that
the number of independent parameters determining the
n-particle Hamiltonian~two-body matrix elements! is much
smaller than the number of the Hamiltonian matrix elements.
Taking the two-body matrix elements as Gaussian random
variables, a model called the two-body random ensemble
~TBRE! was introduced in@7,8# ~see also references in@6#!.
This model looks in principle much more realistic than the
GOE. In particular, it has a Gaussian form of the level den-
sity, which is in good agreement with various nuclear shell-
model calculations for ‘‘realistic’’ interactions in the finite
basis~see, e.g.,@9#!. The TBRE does not allow a deep ana-
lytical treatment, however, numerical modeling showed that
its level fluctuation properties are very close to those of the
GOE, although some differences were noticed@8#. Therefore,
in some respect, the two-body nature of the particle interac-
tion does not reveal itself in the level statistics. In other
words, level fluctuations are insensitive to the details of the
interaction between particles, provided the latter is large
enough to cause strong mixing of the basis states.

Another model which seems to be more physical than the
GOE was proposed a while ago by Wigner@10# to describe
compound nuclei. It was suggested that the Hamiltonian ma-
trix H i j has a banded structure, i.e., all matrix elements with
ui2 j u.b are zeros (b is the bandwidth!. The matrix ele-
ments inside the band are random numbers with zero mean
and fixed variance,H i j50, H i j

2
5V2, except those on the

main diagonal, which monotonically increase,H ii5iD. In
this model all eigenstates are localized in the unperturbed
basis (V50). In the nonperturbative regime, 1,V/D,Ab,
the strength function which describes the localization in the
energy space~also called the local spectral density of states!,
has a characteristic Breit-Wigner form with a width
G52pV2/D within the band. This shape is in agreement
with nuclear data@11#, and with the calculated localization
properties of chaotic eigenstates in the rare-earth atom of Ce
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@12#. It has also been shown in@12,13# that the Hamiltonian
matrix which produces the dense spectrum of atomic excited
states in Ce is sparse and has a bandlike structure, although
the edges of the band are diffuse. We should also mention
that a number of analytical results on the localization prop-
erties of such band random matrices~BRM! have recently
been obtained in@14,15# ~see also@16#, and references
therein!. However, the off-diagonal Hamiltonian matrix ele-
ments in this BRM model are independent random variables,
thus this model is void of any possible correlations related to
the two-body interaction between particles.

In this paper we show that there are quantities~transition
amplitudes or transition strengths! for which the underlying
two-body interaction is of crucial importance. We show that
such an interaction gives rise to specific correlations between
the components of eigenstates, which are very essential for
the distribution of transition strengths. Our results are ob-
tained in the framework of the two-body random interaction
model ~TBRIM! recently proposed in@17# for the study of
various physical problems related to such complex many-
body systems as heavy atoms, nuclei, metallic clusters, etc.,
which display quantum chaotic behavior. Being in some as-
pects similar to the TBRE, the TBRIM is simpler in the
sense that it abandons all restrictions imposed by the conser-
vation of the angular momentum, which makes it closer to
the embedded GOE@18#. On the other hand, the nondegen-
erate spectrum of the single-particle orbitals the TBRIM is
based upon generates a realistic level density and leads to a
bandlike structure of the Hamiltonian matrix.

We should mention that there were quite a number of
earlier works where strength distributions were studied using
statistical spectroscopy methods and nuclear shell-model cal-
culations ~@19#, see also review@6# !. These methods are
based on the calculation of distribution moments, which are
given by traces of products of the operators in question and
powers of the Hamiltonian over the model finite-dimensional
space of the problem. Since the calculation of traces does not
require knowledge of eigenstates, the question of correla-
tions within eigenstates which is of prime importance for the
present work has not been addressed in those studies. We
must add that statistical spectroscopy methods emphasize
and employ a particular importance of Gaussian spreading of
many-particle configurations, and features like Breit-Wigner
localization either do not appear, or are neglected~together
with the interaction between configurations! in that formal-
ism. All in all, it is unfortunately very difficult for the present
approach to make contact with those results. Comparing the
two approaches we should say that at first sight ours does not
look as rigorous and mathematically advanced as the other
one, as it appeals to some heuristic arguments and uses rather
simple mathematics, e.g., perturbation theory. However, we
believe that, supported by numerical experiments, our
method can give a deeper insight and a more physical picture
of transitions between and correlations within the chaotic
eigenstates in complex many-body systems.

In Sec. II of this paper we show how the basic two-body
interaction results in the correlations between the Hamil-
tonian matrix elements, eigenstate components, and transi-
tion amplitudes. In Sec. III we check whether the effects
found in Sec. II could lead to some correlations between
transition amplitudes coupling different pairs of states. Sec-

tion IV presents a brief outline of a statistical approach to the
calculation of transition strengths; the analytical results are
checked there against numerical ones obtained in the
TBRIM. Finally, in Sec. V we study the spreading widths of
the many-particle basis states.

II. CORRELATIONS BETWEEN EIGENVECTOR
COMPONENTS INDUCED BY TWO-BODY INTERACTION

Let us consider the basic ideas of the TBRIM. In this
model,n Fermi particles are distributed amongm nondegen-
erate orbitals. In doing numerical experiments, we assume,
as in @17#, that the energies of the orbitals are given by the
simple expression

ea5d0S a1

1

a D , a51,2, . . . ,m. ~2!

However, the analytical treatment presented below does not
depend on a particular form ofea . Many-particle basis states
ui& are constructed by specifying then occupied orbitals. The
energyE i of the basis state equals the sum of the single-
particle energies over the occupied orbitals. The total number
of the many-particle states in the model is
N5m!/ n!( m2n)!;exp@nln(m/n)1(m2n)ln(m/m2n)#. The
latter estimate relates to largem andn and shows thatN is
exponentially large forn,m2n@1 .

The number of independent parameters of the many-body
Hamiltonian is given by the number of different two-body
interaction matrix elements Vabgd and equals
N25m2(m21)2/2 . Due to the two-body character of the
interaction, the Hamiltonian matrix elementH i j5^iuHu j& is
nonzero only whenui& and u j& differ by no more than two
occupied single-particle orbitals. As a result, the numberK
of the nonzero matrix elementsH i j is given by

K5N~K01K11K2!,

K051, K15n~m2n !,

K25

1

4
n~n21!~m2n !~m2n21!, ~3!

whereK0 , K1 , andK2 are the numbers of the Hamiltonian
matrix elements coupling a particular basis statei to another
one, j , which differs fromi by the positions of none, one,
and two particles, respectively. Therefore forn,m2n@1 we
haveN2!K!N2, i.e., the Hamiltonian matrix is essentially
sparse and, in a sense, strongly correlated.

To see the correlation between nonzero matrix elements,
let us consider a pair of basis statesui& and u j& which differ
by the states of two particles, for example, the stateu j& can
be obtained from the stateui& by transferring the particles
from the orbitalsa,b into the orbitalsg,d. For all such
pairs, the Hamiltonian matrix elements are the same,
H i j5Vabgd ~or, strictly speaking,H i j56Vabgd , due to
Fermi statistics!. It is easy to calculate the total number
Neq of the matrix elementsH i j equal toVabgd , using the
fact that the remainingn22 particles can be arbitrarily dis-
tributed overm24 orbitals,
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Neq5

~m24!!

~n22!! ~m2n22!!
. ~4!

For basis statesui& and u j& which differ by the state of one
particle (a→b) the matrix elementH i j equals the sum of
the n21 two-body interaction matrix elements,
H i j5(gVagbg ~the indexg runs over the restn21 occupied
orbitals!. In this caseH i j for different ui& andu j& ~with fixed
a and b) do not coincide, but may contain identical terms
Vagbg , i.e., they are also correlated.

The eigenstatesun1& of the model are determined by their
componentsC i

(n1) with respect to the many-particle basis
statesui&,

un1&5(
i

C i
~n1!

ui&, ~5!

and can be found by solving the Schro¨dinger equation,

(
j

H i jC j
~n1!

5E ~n1!C i
~n1! . ~6!

If the perturbationV is strong enough, the exact eigenstates
un1& are superpositions of a large number of basis states. As
is known, strong mixing of basis states in the exact eigen-
states~compound states! occurs locally within some energy
range,uE i2E (n1)u<G, whereG is known as the ‘‘spreading
width.’’ It can be estimated asG'NwD, where D is the
local mean level spacing for many-particle states andNw is
the effective number of basis states represented in a com-
pound state. This number is also known as the number of
‘‘principal components.’’ These components give the main
contribution to the normalization condition( iuC i

(n1)
u251 for

the eigenstateun1&. Formally, we can estimateNw as the
reciprocal of the inverse participation ratio,
Nw

21.( iuC i
(n1)

u4.
It is rather straightforward to show that the correlations

betweenH i j result in correlations between the components
C i

(n1) . Indeed, let us multiply the Schro¨dinger equation by

the coefficientC i
(n1) and sum overn1 . Using the orthogonal-

ity condition (n1
C i

(n1)C j
(n1)

5d i j , one obtains

H i j5(
n1

C i
~n1!E ~n1!C j

~n1! . ~7!

In what follows, we assume that the matrix elements of the
two-body interactionV are random variables with the zero
mean, thereforeH i j50 for iÞ j . In this case one can get

C i
(n1)Ck

(n1)
50, where the line stands for averaging over dif-

ferent realizations ofV. However, if matrix elements of the
Hamiltonian are correlated,H i jHklÞ0, the components of
different eigenvectorsun1& andun2& are also correlated, since

H i jHkl5 (
n1n2

C i
~n1!E ~n1!C j

~n1!Ck
~n2!E ~n2!C l

~n2!
Þ0. ~8!

The latter relation shows thatC i
(n1)C j

(n1)Ck
(n2)C l

(n2)
Þ0.

The above conclusion has important consequences. Let us
consider a single-particle operator

M̂5(
a,b

aa
†abM ab5(

a,b
rabM ab , ~9!

whereaa
† andab are the creation and annihilation operators.

It is convenient to express the matrix elements ofM̂ in terms
of matrix elements of the density matrix operator
rab5aa

†ab which transfers a particle from the orbitalb to
the orbital a. One can see that the matrix element ofM̂
between compound states,

^n1uM̂ un2&5(
a,b

M ab^n1urabun2&

5(
a,b

M ab(
i, j

C i
~n1!

^iurabu j&C j
~n2!

~10!

has the zero mean due to the statistical properties of the
components, i.e.,̂n1urabun2&50. Since the summation over
the orbitalsa,b in Eq. ~10! is independent from the averag-
ing over different realizations ofV, in what follows we con-
sider the simplest case ofM̂5rab . The variance of the ma-
trix element of rab between the two compound states is
equal to

M 2
5^n1urabun2&^n2urbaun1&

5 (
i, j ,k,l

C i
~n1!C j

~n1!Ck
~n2!C l

~n2!
^iurabuk&^lurbau j&

5Sd
~n1n2!

1Sc
~n1n2! , ~11!

where we separated the diagonal and nondiagonal contribu-
tions to the sum~11!,

Sd
~n1n2!

5(
i,k

uC i
~n1!

u2uCk
~n2!

u2z^iurabuk& z2, ~12!

Sc
~n1n2!

5 (
iÞ j ,kÞl

C i
~n1!C j

~n1!Ck
~n2!C l

~n2!
^iurabuk&^lurbau j&.

~13!

Note that the diagonal termSd
(n1n2) is essentially positive and

can be easily estimated~see@3,12,20# and Sec. IV below!,
while the nondiagonal termSc

(n1n2) is our main interest. If the
eigenstates are completely ‘‘random’’~different components
both inside each eigenstate and of different eigenstates are
uncorrelated!, the correlation sumSc is equal to zero and the
variance is determined by the ‘‘diagonal’’ sumSd ~this as-
sumption has been used in the previous calculations of ma-
trix elements between compound states in@3,12,20,21#!.
However, we show below that in a many-body system these
two terms are of the same order,Sc;Sd , even for the ran-
dom two-body interactionV.

The TBRIM allows one to investigate various properties
of chaotic many-body systems taking into account the two-
body nature of the interaction between particles. In the pre-
vious papers@12,17# there were indications that the diagonal
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approximation is not completely accurate for the computa-
tion of the variance of matrix elements of perturbation. In
order to study this effect in detail, we have performed nu-
merical experiments with TBRIM for the parameters corre-
sponding to the model calculations of the Ce atom@12,13#.
We take the number of particlesn54, the number of orbitals
m511, the spectrum of the single-particle orbitals is deter-
mined byd051, and the Gaussian random two-body inter-

action is given byAV 2̄
50.12. As a result, the size of the

Hamiltonian matrixH i j is N5330. The calculation of the
matrix elements between compound states in this model gave
a remarkable result. In Fig. 1 we present the ‘‘experimental’’
value of M 2 @see Eq.~11!# together with the diagonal con-
tribution ~12! @see Fig. 1~a!#, and the ratioR5Sc /Sd in Fig.
1~b!. Figure 1~a! reveals a systematic difference between the
diagonal approximation and exact expression~11!, and Fig.
1~b! shows that nondiagonal termSc is of the same order as
Sd , which clearly indicates the presence of correlations.

Below, we show how these correlations emerge in the
nondiagonal termSc . First, note that for a giveni the sum
over k in Eqs.~12! for Sd contains only one term, for which

uk&5ab
†aaui&[ui8&, determined by transferring one particle

from the orbitala to the orbitalb in the stateui& ~hereafter
we will use the notationi8 to denote such states!. Accord-
ingly, the indexi runs over those states in whicha is occu-
pied andb is vacant. For suchi and i8 the matrix element
^iurabui8&51, otherwise, it is zero. Therefore, in fact, the
sum in~12! is a single sum, with a number of items less than
N,

Sd
~n1n2!

5(
i

8 uC i
~n1!

u2uC
i8

~n2!
u2, ~14!

where the sum( i8 runs over the specifiedi. Analogously,
Eq. ~13! can be written as the double sum overi and j
specified as above,

Sc
~n1n2!

5(
iÞ j

9 C i
~n1!C j

~n1!C
i8

~n2!
C

j8

~n2!
, ~15!

where j8 is a function of j , u j8&5ab
†aau j&. Note that the

energies of the basis states and their primed partners are
connected asE i82E i5eb2ea5E j82E j .

One can expect that maximal values of the sum~14! and,
possibly,~15! are achieved whenC ’s are principal compo-
nents of the eigenstates. This means that the mean square of
the matrix elementz^n1urabun2& z2 is maximal when the op-
erator rab couples the principal components of the state
un1& with those of un2&, i.e., for E (n1)

2E (n2)'vab

[ea2eb . Far from the maximum (uE (n1)
2E (n2)

2vabu.G) a principal component of one state, say,n1 , is
coupled to a small componentk of the other staten2

(uEk2E (n2)u.G). The latter case is simpler to consider ana-
lytically, since the admixture of a small component in the
eigenstate can be found by means of perturbation theory.
This approach reveals the origin of the correlations in the
sumSc , Eq.~15!. For example, ifC j

(n1) is a small component
of the eigenstaten1 , then it can be expressed as a perturba-
tion theory admixture to the principal components. IfC i

(n1) is
one of the latter, then there is a term in the sum~15!, which
is proportional to the principal component squared,
uC i

(n1)
u2.

Indeed, there are three possibilities~i! C i
(n1) and C

j8

(n2)

are among the principal components, andC j
(n1) and C

i8

(n2)

correspond to the small components. Then, one can write

C j
~n1!

5
^ j uHuñ1&

E ~n1!
2E j

5(
p

˜ H jp

E ~n1!
2E j

Cp
~n1! , ~16!

C
i8

~n2!
5

^i8uHuñ2&

E ~n2!
2E i8

5(
q

H i8q

E ~n2!
2E i8

Cq
~n2! . ~17!

The tilde above the sums indicates that the summations run
over the principal components only. The ‘‘coherent’’ contri-
bution to the sumSc in Eq. ~15! is obtained by separating the
squared contributions of the principal components in the
sums inSc

(n1n2)
~i.e., p5i,q5 j8)

FIG. 1. ~a! Mean-square matrix element~11! calculated in the
TBRIM for n54 particles andm511 orbitals,a54, b55, as a
function of the eigenstaten2 for n1555. Averaging overNr5100
Hamiltonian matricesH i j for different realizations of the random
two-body matrix elements has been made. Dots correspond to the
sumSd1Sc while the solid line represents the diagonal contribution
Sd only @see~12!#. ~b! Ratio R5Sc /Sd of the correlation contribu-
tion to the diagonal contribution.
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(
i, j

˜
9

H i8 j8H j i

~E ~n2!
2E i8!~E ~n1!

2E j!
uC i

~n1!
u2uC

j8

~n2!
u2. ~18!

Taking into account that for the principal components we
haveE i'E (n1) andE j8'E (n2), we can replace the energies,
E i8→E (n1)

1vba , andE j→E (n2)
2vba , and thus obtain the

following contribution toSc
(n1n2) :

2

1

~E ~n2!
2E ~n1!

2vba!2(
i, j

˜
9uC i

~1!u2uC j8

~2!u2H i8 j8H i j.

~19!

~ii ! C j
(n1) and C

i8

(n2)
correspond to the principal compo-

nents,C i
(n1) and C

j8

(n2)
correspond to the small components.

Then, the result is the same as~19!.

~iii ! C i
(n1) and C j

(n1) are principal components,C
i8

(n2)
and

C
j8

(n2)
are small components~or, C

i8

(n2)
andC

j8

(n2)
are principal

components,C i
(n1) andC j

(n1) are small components!. In these
cases there are no coherent terms in the sum forSc in Eq.
~13!. This follows from the fact that for chaotic eigenstates
the mixing among the principal components is practically
complete, which makes them to a good accuracy statistically
independent.

Thus, far from the maximum,uE (n2)
2E (n1)

2vbau.G,
one obtains

Sc
~n1n2!

'2

2

~E ~n2!
2E ~n1!

2vba!2(
i, j

˜
9uC i

~1!u2uC j8

~2!u2H i8 j8H i j.

~20!

A similar calculation of the diagonal sumSd
(n1n2) , Eq. ~12!,

yields

Sd
~n1n2!

'
1

~E ~n2!
2E ~n1!

2vba!2

3F(
i

˜
8(

j8

˜
uC i

~n1!
u2uC

j8

~n2!
u2H i8 j8

2

1(
i

˜
(
j8

˜
8uC i

~n1!
u2uC

j8

~n2!
u2H i j

2 G . ~21!

The two terms in square brackets result from the contribution
of principal i and smalli8 components in Eq.~14!, and vice
versa. From Eq.~20! we see thatSc

(n1n2)
50 if H i8 j8H i j50.

However, there is nearly a 100% correlation between these
matrix elements. Indeed, the basis statei8 differs from i by
the location of only one particle~the transition from the or-
bital a to b), and the same is true forj8 and j .

Let us estimate the relative magnitudes ofSd and Sc .
First, consider the case whenui& and u j& differ by two orbit-
als, u j&5am2

† am1
an2

† an1
ui&. In this case H i j5Vn1m1n2m2

.

Since the basis statesui8& and u j8& must differ by the same
two orbitals, we haveH i8 j85Vn1m1n2m2

5H i j ~note that

n1 ,m1 ,n2 ,m2Þa,b, since both statesui& and u j& containa
and do not containb, whereasui8& andu j8& containb and do

not containa). Therefore the averages over the nonzero ma-
trix elements between such pairs of states areH i jH i8 j8

5H i j
2

5H i8 j8

2
5V2.

Now, let us consider the case whenui& and u j& differ by
one orbitalu j&5an2

† an1
ui&. In this case the Hamiltonian ma-

trix elements are sums of then21 two-body matrix ele-
ments,

H i j5 (
mÞa

n22

Vn1mn2m1Vn1an2a ,

H i8 j85 (
mÞb

n22

Vn1mn2m1Vn1bn2b .

The sums ofn22 terms inH i j andH i8 j8 coincide; the dif-
ference is due to the one term only~orbital a is replaced by
the orbitalb). Thus

H i jH i8 j85~n22!V2,

~H i j!
2
5~H i8 j8!

2
5~n21!V2,

where we took into account that
VklmnVk1l1m1n1

5V2dkk1
dll1

dmm1
dnn1

.
The contributions of one-particle and two-particle transi-

tions in Eqs.~20! and ~21! representingSc and Sd , respec-
tively, will be determined by the numbers of such transitions
allowed by the corresponding sums. For the single-prime
sums in Eq.~21! these numbers are proportional toK1 and
K2 , Eq. ~3!. In the double-prime sum in Eq.~20! these num-
bers are proportional toK̃1 andK̃2 , the numbers of the two-
body and one-body transitionsi→ j , in the situation when
one particle and the two orbitals (a and b) do not partici-
pate in the transitions. These numbers can be obtained
from Eq. ~3! if we replacen by n21, andm by m22, so
that K̃15(n21)(m2n21), K̃25(n21)(n22)(m2n21)
(m2n22)/4. Finally we obtain that atuE (n2)

2E (n1)
2

vbau.G the contribution of the correlation term to the vari-
ance of the matrix elements ofrab can be estimated in the
ratio as

R[
Sc

Sd
52

~n22!K̃11K̃2

~n21!K11K2

52

~n22!~m2n21!~m2n12!

n~m2n !~m2n13!
. ~22!

This equation shows that forn52 we haveSc50, which is
easy to check directly, sinceH i8 j8H i j50 in this case. For
n.2 the correlation contributionSc is negative at the tails of
the strength distribution. This means that it indeed sup-
presses the transition amplitudes off resonance~see Fig. 1!.
For n,m2n@1 the ratioR is approaching its limit value
21. It is easy to obtain from Eq.~22! that for m2n@1

Sd1Sc

Sd
511R.

2m

n~m2n !
. ~23!
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Thus, surprisingly, the role of the correlation contribution
increases with the number of particles.

For the numerical example shown in Fig. 1,n54,
m511, one obtainsR520.39, which means that the corre-
lation contribution reduces the magnitude of the squared ma-
trix elementsM̄ 2 between compound states almost by a fac-
tor of 2 ~for uE (n2)

2E (n1)
2vbau.G). The ratio found

numerically is R'20.45 @Fig. 1~b!, n25150–250; larger
n2 are probably too close to the boundary of the matrix for
R to remain constant#.

We would like to stress that the role of the correlation
term does not decrease with the increase of the numbers of
particles and orbitals. This prediction is supported by Fig. 2,
which shows the behavior of the squared matrix element and
its diagonal and correlation parts forn57 and m514,
N53432. One can see that the suppression of the matrix
elementsM 2 due to the correlation term at the tails is even
stronger than that in Fig. 1@the numerically found ratio is
R'20.7 vsR520.55 obtained from Eq.~22!#. The corre-
lation contribution should be even more important in com-
pound nuclei, whereN;105. This case can be modeled by
the parametersn510, m520; then we haveR520.66, or,
equivalently, (Sd1Sc)/Sd50.34, which means that the cor-
relations suppress the squared elementM 2 between com-
pound states by a factor of 3~far from its maximum!.

It is worth emphasizing that the existence of correlations
due to the perturbation theory admixtures of small compo-
nents to the chaotic eigenstates, which leads to a nonzero
value of Sc ~15!, is indeed nontrivial. For example, if one
examines the summand of Eq.~15! as a function ofi and
j , it would be hard to guess that the sum itself is essentially
nonzero, since positive and negative values of

C i
(n1)C j

(n1)C
i8

(n2)
C

j8

(n2)
seem to be equally frequent, and have

roughly the same magnitude, see Fig. 3.
Since (n1

Sc
(n1n2)

5(n2
Sc

(n1n2)
50 ~see below!, the sup-

pression ofM 2 at the tails should be accompanied by corre-
lational enhancement of the matrix elements near the maxi-
mum ~at uE (2)

2E (1)
2vbau,G). Thus we come to the

important conclusion: even for a random two-body interac-
tion, the correlations produce some sort of a ‘‘correlation
resonance’’ in the distribution of the squared matrix ele-
mentsM 2. One should note that this increase of the correla-
tion effects in the matrix elements of a perturbation can be
explained by the increased correlations between the Hamil-
tonian matrix elements when the number of particles and
orbitals increases (N/n}en).

Now we can estimate the size of the correlation contribu-
tion Sc near the maximum of the theM 2 distribution ~at
uE (n2)

2E (n1)
2vbau,G). First, we show that after summa-

tion over one of the compound states, the correlation contri-
bution vanishes. Indeed,

(
n2

Sc
~n1n2!

5(
n2

(
iÞ j ,kÞl

C i
~n1!C j

~n1!Ck
~n2!C l

~n2!
^iurabuk&

3^lurbau j&

5 (
iÞ j ,kÞl

C i
~n1!C j

~n1!
^iurabuk&

3^lurbau j&(
n2

Ck
~n2!C l

~n2!

50, ~24!

where we take into account that the sum overn2 in the ex-
pression above is zero forkÞl. Therefore the negative value
of Sc

(n1n2) at uE (n2)
2E (n1)

2vbau.G must be compensated
by its positive value near the maximum. The sum rule~24!
allows one to make a rough estimate ofSc near the maxi-
mum of Sd ~andM 2).

Let us assume that Sc5RmSd at uE (n2)
2

E (n1)
2vbau,G/2, whereas Sc5R tSd at uE (n2)

2E (n1)

2vbau.G/2 @R t is given by Eq.~22!#. The distribution of
Sd

(n1n2) can be reasonably approximated by the Breit-Wigner
shape~see Secs. I and IV!,

Sd
~n1n2!

5

A

E2
1G2/4

, ~25!

where E5E (n2)
2E (n1)

2vba , and G5Gn1
1Gn2

. The sum
rule ~24! implies that

RmE
0

G/2 dE

E2
1G2/4

1R tE
G/2

` dE

E2
1G2/4

50. ~26!

FIG. 2. Same as in Fig. 1, forn57, m514, a57, b58. The
data obtained for a single Hamiltonian matrix of the size
N53432;n15575. Note the increased role of the correlation con-
tribution Sc .
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Since the two integrals in the above equation are equal, we
have Rm52R t . Thus near the maximum the correlation
contributionSc is positive and enhances the squared matrix
element with respect to the diagonal contribution,

Sd1Sc

Sd
511Rm522~11R t!.2F12

m

n~m2n !
G . ~27!

Comparing the values of the ratioSc /Sd at the maximum and
at the tail in Fig. 1~b! (n54,m511), one can see that indeed,
Rm'2R t . For largern andm the correlation enhancement
factor asymptotically reaches its maximal value of 2. The
numerical example in Fig. 2 (n57,m514) shows the en-
hancement ofM̄ 2 with respect toSd at the maximum even
greater in size than that predicted by Eq.~27!. This is not too
surprising since in Eqs.~25!–~27! we estimated the average
value of Rm over an intervalDE.G around the maximum
rather than the peak value at the maximum.

A similar estimate ofSc near maximum can be obtained
by the direct calculation of the small component contribution
to Sc ~15!. On an assumption that there are no correlations
between principal components of compound states we can
separate the contribution of small components. For example,
in the resonance situation,E (n2)

2E (n1).vba , if the compo-

nentsS j
(n1) and S

j8

(n2)
are small (uE j2E (n1)u.G, and conse-

quently, uE j82E (n2)u.G), then they contain contributions

proportional to the principal componentsC i
(n1) andC

i8

(n2)
@see

Eqs.~16!, ~17!#. Analogously,S j
(n1) andS

j8

(n2)
may be among

the principal components, and then the small components

C i
(n1) and C

i8

(n2)
will contain correlated contributions. Thus

we have the following estimate:

Sc
~n1n2!

.2(
i

˜
8 (

small j
8uC i

~n1!
u2uC

i8

~n2!
u2

H i jH i8 j8

~E ~n1!
2E j!~E ~n2!

2E j8!
.

~28!

Since E j82E j5E i82E i.E (n2)
2E (n1) for the principal

componentsi and i8, (E (n1)
2E j) and (E (n2)

2E j8) in the
denominator always have the same sign, andSc is positive
~recall thatH i jH i8 j8.0). Expression~28! can be estimated
using the well known formula for the spreading width,
G52pH i j

2 /D, where D is the mean level spacing for the
many-body states. This yieldsSc;Sd , in agreement with the
previous estimate~27!.

III. CORRELATIONS BETWEEN TRANSITION
AMPLITUDES

We have shown that correlations between eigenvector
components in a system with a two-body interaction between
particles must be taken into account when calculating the
variance of a matrix element between compound statesM 2.
Another question is whether the above correlations between
eigenstate components lead to correlations between different
matrix elements,

M n1n2
M n2n3

5^n1urabun2&^n2urbaun3&

5( C i
~n1!C j

~n2!Ck
~n2!C l

~n3!
^iurabu j&^kurbaul&.

~29!

Our analysis shows that the correlations of the type~29! are
absent, i.e.,M n1n2

M n2n3
5M n1n2

M n2n3
50. The result could

FIG. 3. The distribution of the items of the sum~15!,

j i j5C i
(n1)C j

(n1)C
i8

(n2)
C

j8

(n2)
, for n1555, n2566, obtained in the

TBRIM for the same set of parameters as in Fig. 1, averaged over
Nr5100 realizations ofV. Indices i and j in the figure run over
those 84 components in whicha is occupied andb is vacant.~a!

Positive values.~b! Negative values~absolute values!.
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be different if the principal components of different eigen-
vectors (un1& and un3&) were correlated. This effect takes
place in the separable interaction model@5,4#, but we have
not found such correlations in the TBRIM.

The absence of correlations between different amplitudes
is confirmed by direct numerical experiments. First, we have
studied the probability density of the matrix elements
M n1n2

for different n1 ,n2 obtained for a number of realiza-

tions of the two-body matrix elementsVabgd . Since the vari-
ance ofM n1n2

depends onn1 andn2 , the probability density

of M n1n2
has been obtained by normalizing each matrix ele-

mentM n1n2
to its root-mean-squared value which was calcu-

lated by averaging over the realizations ofVabgd . The re-

sulting probability densityP „M n1n2
/AM n1n2

2 …, averaged

overNr55 realizations ofVabgd , turns out to be quite close
to Gaussian~Fig. 4!. This result follows from the fact that
each matrix element between compound states is the sum of
a large number of random~or almost random! terms, see Eq.
~10!, so that the central limit theorem applies. Therefore the
correlations found in the preceding section do not show up,
unless more complicated correlations involvingdifferent
components of thesame eigenstate, like those in Eqs.~8! or
~11!, are probed.

To check whether some correlations between different
matrix elements~29! exist, we have plotted the matrix ele-
ment ^n1urabun2& versus another one,̂n1urabun221&,
where un221& is the eigenstate immediately preceding
un2&, for some fixedn1 , n2 , a, and b, obtained from
Nr5387 different Hamiltonian matrices@Fig. 5~a!#. The lat-
ter were generated by using different random realizations of
Vabgd . Detailed analysis of the distribution of the points in
this figure does not reveal any sort of correlations.

The next question is the existence of correlations between
matrix elementsM n1n2

and Wn1n2
of different operators for

the same compound statesun1& andun2&. If the expansions of
these matrix elements@see Eq.~10!# contain identical matrix
elements of the density matrix operatorrab , such correla-
tions, in principle, do exist:

M n1n2
Wn2n1

5(
a,b

M abWba^n1urabun2&
2Þ0. ~30!

A more complicated question is whether the matrix elements
of different ‘‘elementary’’ transition operatorsrab and rgd
are indeed uncorrelated@as we assumed writing Eq.~30!#.
The product of such two matrix elements can be presented in
the form

^n1urabun2&^n2urdgun1&5 (
i, j ,k,l

C i
~n1!C j

~n1!Ck
~n2!C l

~n2!

3^iurabuk&^lurdgu j& ~31!

.2(
i, j8

˜
8

uC i
~n1!

u2uC
j9

~n2!
u2H i jH i8 j9

~E ~n1!
2E j!~E ~n2!

2E i8!
,

~32!

FIG. 4. Probability density of the normalized matrix elements
x[^n1urabun2&/( z^n1urabun2& z2)1/2 in the TBRIM for the param-
eters of Fig. 1. The histogram is obtained forNr55 Hamiltonian
matrices. Solid curve is the normalized Gaussian distribution.

FIG. 5. ~a! The matrix elementyab5^n1urabun2& for n1555,
n2567, plotted vs the matrix elementxab5^n1urabun3& for
n3566; a54, b55, and other TBRIM parameters as in Fig. 1. The
number of points in the figure isNr5387. No evidence of correla-
tions betweenx and y is present. ~b! The matrix element
yab5^n1urabun2& for a54, b56 vs xag5^n1uragun2& with
g55 for n1555 andn2566. Again, there is no indication of cor-
relations betweenx and y . Note the difference in the vertical and
horizontal scale due to the fact that for givenn1 andn2 the energy
differenceE (n1)

2E (n2) is approximately in resonance for the tran-
sition betweena54 and b55 and off resonance fora54 and
g56.
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where the last expression is written forn1 and n2 far from
the maximum (uE (n2)

2E (n1)
2vbau.G,uE (n2)

2E (n1)
2vdgu.G), and ui8&5ab

†aaui&, u j9&5ad
†agu j&. It

can be shown that in our modelH i jH i8 j9}dagdbd . There-
fore there are no terms in the expression~32! which would
give nonzero contributions, and the average of~31! is zero.
The absence of correlations in this case is illustrated by Fig.
5~b!, where numerical data obtained in the TBRIM are pre-
sented. As in the case of the matrix elements between differ-
ent pairs of compound states, no correlations can be seen
between the matrix elements of different transition operators.

IV. STATISTICAL DESCRIPTION
OF THE TRANSITION AMPLITUDES

In this section we use the TBRIM to test the validity of
the statistical approach to the calculation of transition ampli-
tudes between compound states of complex systems devel-
oped in@3,12,20#. In what follows we first outline the main
ideas of the statistical approach. The variance of the matrix
elements of an operatorM̂ ~9! between the compound states
un1& and un2& can be presented in the following form@com-
pare with Eq.~30!#:

uM n1n2
u2

5(
a,b

uM abu2z^n1urabun2& z2, ~33!

where we have taken into account the result of the pre-
ceding section that the average of the correlator~31! is
zero unless g5a,d5b. Therefore the calculation of
uM n1n2

u2 ~or M n1n2
Wn2n1

) is reduced to the calculation of

z^n1urabun2& z2.
It was suggested in Sec. II thatz^n1urabun2& z2 can be pre-

sented as the sum of the diagonal and correlational sums
Sd andSc , Eqs.~11!–~13!. Since we have already estimated
the ratio (Sd1Sc)/Sd , it is enough to calculate onlySd , Eq.
~12!. Following @12# let us replace the squared components
uC i

(n1)
u2 and uCk

(n2)
u2 by their average values,

uC i
~n1!

u2[w~E i ,E ~n1!!, uCk
~n2!

u2[w~Ek ,E ~n2!!, ~34!

where the averaging goes as usual either over a number of
realizations of the two-body interaction matrix elements~en-
semble average!, or over a number of neighboring eigen-
states~physical energy average!; in the spirit of ergodicity
the results are presumably the same. The functionw is pro-
portional to the strength function introduced by Wigner@10#,
which is also called the local spectral density of states. Note
that definition~34! also implies that the mean-square contri-
bution of the componenti in the eigenstaten1 is determined
by their energies,E i and E (n1) ~in fact, by their difference
uE i2E (n1)u). For states localized in the given basis,w is a
bell-shaped function with a typical width determined by the
spreading widthG. There is some theoretical and experimen-
tal evidence that it can be approximated by the Breit-Wigner
formula, although its tails decrease faster than
uE i2E (n1)u22 ~see references in Sec. I!.

The diagonal sum now takes the form

Sd
~n1n2!

5(
i,k

w~E i ,E ~n1!!w~Ek ,E ~n2!!^iurabuk&^kurbaui&.

~35!

The summation overk for a fixed i includes only one state,
uk&5rbaui&, with Ek5E i1vba . On the other hand, we can
write

(
k

^iurabuk&^kurbaui&5^iurabrbaui&5^iun̂a~12 n̂b!ui&,

~36!

where n̂a5aa
†aa and n̂b5ab

†ab are the occupation number
operators. Thus we obtain

Sd
~n1n2!

5(
i

w~E i ,E ~n1!!w~E i1vba ,E ~n2!!

3^iun̂a~12 n̂b!ui&. ~37!

The matrix element̂ iun̂a(12 n̂b)ui& is equal to 1 if the
orbital a is occupied andb is vacant in the basis stateui&,
otherwise, it is zero. We used this fact earlier@Eq. ~14!# to
reduce the summation to these states only. Now we proceed
in a different way. Bothw ’s in ~37! are smooth functions of
energy normalized as( iw(E i ,E (n1))51. This allows one to
replace the matrix element ofn̂a(12 n̂b) by its expectation
value,

^iun̂a~12 n̂b!ui&5(
i

w~E i ,E ~n1!!^iun̂a~12 n̂b!ui&

5(
i

uC i
~n1!

u2^iun̂a~12 n̂b!ui&

.^n̂a~12 n̂b!&n1
. ~38!

The sign. above is a reminder that the left-hand side is the
local average over the statesun1&. Practically, when the num-
ber of components is large, the fluctuations of
^n̂a(12 n̂b)&n1

are expected to be small. Now we can rewrite
Eq. ~37! in a form similar to Eq.~14!, but without any re-
strictions on the summation variablei,

Sd
~n1n2!

5^n̂a~12 n̂b!&n1(i
w~E i ,E ~n1!!w~E i1vba ,E ~n2!!.

~39!

It was shown in@12# that under some reasonable assump-
tions about the functionsw one can introduce a ‘‘spreadd
function’’ d̃(D),

d̃ ~D !5D2
21(

i
w~E i ,E ~n1!!w~E i1vba ,E ~n2!!

5D2
21E dE i

D1
w~E i ,E ~n1!!w~E i1vba ,E ~n2!!, ~40!

where D5E (n2)
2E (n1)

2vba , and D1 and D2 are local
mean level spacings for then1 andn2 eigenstates. The func-
tion d̃(D) is symmetric, its characteristic width is determined
by the spreading widths of the eigenstatesn1 and n2 ,
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G;G11G2 , and it is normalized to unity,* d̃(D)dD51, just
as the standardd function. If w ’s have Breit-Wigner shapes,
d̃ is also a Breit-Wigner function withG5G11G2 . The fact
that Sd

(n1n2) is proportional to the functiond̃(D) is a particu-
lar manifestation of the energy conservation for transitions
between the quasistationary basis states@20# @if G→0, then
d̃ (D)→d(D)#. Using Eqs.~33!, ~39!, and~40! we can finally
present the diagonal contribution to the variance of the ma-
trix elementM n1n2

in the form

uM n1n2
udiag
2

5(
a,b

uM abu2^n̂a~12 n̂b!&n1

3D2d̃~E ~n2!
2E ~n1!

2vba!. ~41!

This expression is apparently asymmetric with respect to the
statesn1 andn2 . By performing the calculation in a different
way we can obtain

Sd
~n1n2!

5^ n̂b~12 n̂a!&n2(k
w~Ek2vba ,E ~n1!!w~Ek ,E ~n2!!,

~42!

instead of Eq.~39!, and thereby arrive at a different formula
for the variance,

uM n1n2
udiag
2

5(
a,b

uM abu2^n̂b~12 n̂a!&n2

3D1d̃~E ~n2!
2E ~n1!

2vba!, ~43!

where the occupancies factor is now calculated for the state
n2 ~it represents the probability to find the orbitalb occu-
pied, anda empty!. If the suppositions made in the above
derivations are correct, the two formulas~41! and ~43!
should give identical results.

In the present work we use the TBRIM to check the ac-
curacy of the statistical approach described above. Figure
6~a! presents a comparison between the values ofSd

(n1n2) as
given by Eqs.~39!, ~42!, and those from the initial expres-
sion ~12!. Clearly, there is a good agreement between the
three formulas.

It is quite important for applications of the statistical ap-
proach~see@4,20#! that further simplifications be made by
replacing the correlated occupancies product^n̂an̂b&n1

in Eq.

~38! by the product of the two mean values,^n̂a&n1
^n̂b&n1

.
This is definitely a valid operation when the numbers of
excited particles and active orbitals are large, so that the
occupation numbers for different orbitals become statisti-
cally independent. Then one would be able to use the relation

^n̂a~12 n̂b!&.n~ea!@12n~eb!#, ~44!

wheren(ea) and n(ea) are the occupation numbers.~They
can be calculated, e.g., using the Fermi-Dirac formula with
an effective temperature, see@17,20#; see also@9# where the
relation between thermalization and chaos is studied in
nuclear shell-model calculations.! The result of such simpli-
fication is shown in Fig. 6~b!, where the diagonal contribu-
tion ~12! is again compared with the values obtained from
Eqs.~39!, ~42!, using approximation~44!. In spite of the fact

that the TBRIM calculation includedn54 particles only, the
agreement remains quite reasonable, the error being about
10%. To examine the quality of the approximation at the tails
of the distribution, Fig. 7 shows the ratio ofSd as given by
Eqs. ~39!, ~42! to the directly calculated diagonal termSd ,
Eq. ~12!. The difference between Figs. 7~a! and 7~b! high-
lights the inaccuracy introduced by an additional approxima-
tion ~44! for the occupation numbers.

In order to make a more direct test of the validity of
substitution ~44!, we plotted in Fig. 8 the correlator
^n̂an̂b&n1

/@^n̂a&n1
^n̂b&n1

# as a function ofn1 . Consistent
with the small number of particles, this correlator displays
large fluctuations; however, its average value of about 0.8 is
still rather close to 1.

V. SPREADING WIDTHS FOR DIFFERENT BASIS
COMPONENTS

In Sec. IV when considering the statistical approach to the
calculation of the variance of matrix elements between com-
pound states, it was assumed that the spreading widthsG are
the same for all basis components. However, this question is
not trivial. As is discussed in the literature, the spreading

FIG. 6. ~a! The diagonal contribution to the mean-square matrix
element as obtained from Eqs.~39!, ~42! ~solid lines! in comparison
with the direct calculation ofSd , Eq. ~12! ~circles!. The TBRIM
parameters are the same as in Fig. 1.~b! Same as~a!, with the
occupancy factors in Eqs.~39!, ~42! calculated by means of Eq.
~44!.
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widths of components corresponding to different numbers of
excited particles could have significantly different values.
For example, in@22# it is argued that two-particle–one-hole
states (2p-1h) can lead to correlations between values of
parity nonconserving effects@1#, if the spreading width of

the 2p-1h states is two orders of magnitude smaller than that
of 1p states. In such a case one might expect that in our
model the spreading width would show a rapid decrease as a
function of the number of excited particles in the basis com-
ponent.

To study this question in detail, we have performed addi-
tional tests. In Fig. 9 the root-mean-squared spreading width
G j for all basis statesu j& is presented forn56, m512
(N5924). Here we use the following definition:

G j
2
5Šj z~H2^ j uHu j& !2zj‹, ~45!

which can also be presented in several equivalent forms,

G j
2
5~H2! j j2~H j j!

2 ~46!

5(
iÞ j

H i j
2 ~47!

5M 22~M 1!2, ~48!

the last one relatingG j directly to the momentsM p of the
strength functionrw(E, j)[(nuC j

(n)u2d(E2E (n)),

M p5E rw~E, j !EpdE5(
n

uC j
~n !u2~E ~n !!p. ~49!

Equations ~46!–~48! can be obtained using closure,
( ju j&^ j u5(nun&^nu51, whereu j& andun& are the basis state
and the eigenstate, respectively,^ j un&[C j

(n) . We should
note that the rms spreading width is different from that in-
troduced intuitively in Sec. IV as the characteristic width of
the strength function. For example, if the strength function
has a Breit-Wigner form, its second and higher moments are
infinite. In Wigner’s BRM the rms spreading width is deter-
mined by the bandwidthb as G j5A2bV2, whereas the
‘‘Breit-Wigner spreading width’’ isGBW52pv

2/D ~see In-
troduction!. However, in a more realistic situation the
strength function drops rapidly, its second moment is finite,
and the difference between the rmsG andGBW is not large.

FIG. 7. ~a! The ratioRa of the approximation represented in Fig.
6~a! by the solid lines, to the value ofSd . ~b! Same as in Fig. 7~b!

for the data of Fig. 6~b!.

FIG. 8. The correlatorQab[^n̂an̂b&n1
/@^n̂a&n1

^n̂b&n1
# vs the

eigenstate numbern1 . The TBRIM parameters are the same as in
Fig. 1. The average value of the correlator is about 0.8, which
means that the correlations between the occupancies of different
orbitals are not very strong.

FIG. 9. The spreading widthG j calculated as the rms deviation
from the center of the distribution of the componentsuC j

(n1)
u2 for

each basis statej . The data are obtained for one matrixH i j corre-
sponding ton56 particles andm512 orbitals.
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From Fig. 9 one can see that apart from small natural
fluctuations, the rms spreading width is the same for all com-
ponents. To exclude a weak dependence ofG j on the energy
of the basis statej ~boundary effects seen as rises ofG j at
small and largej), we calculate the mean valueḠ and the
rms deviationdG of the spreading width by averaging over
j550–874. The results areḠ'2.22, dG'0.12. The latter
value shows that the fluctuations of the width are very small.
This result is in agreement with computations made for the
Ce atom@12#; similar results have been recently obtained in
the nuclearsd-shell-model calculations@9,23#. The fluctua-
tions of the width are small due to the large number of ‘‘de-
cay channels’’ for each basis component~each component is
coupled to many others by random interaction! @4#. For-
mally, this can be obtained from Eq.~47!. For example, in
the TBRIM one obtains

G2
5~n21!V2K11V2K25K12V

2, ~50!

which shows that for a large number of ‘‘independent decay
channels,’’K125(n21)K11K2 @see Eq.~3!#, the statistics
of G j is given by thex2 distribution withK12@1 degrees of
freedom, resulting in the;1/AK12 decrease of fluctuations.
More accurately, the relative rms fluctuation of the squared

width ~45! is given by d(G2)/AG2
5A2/K12. For n56,

m512, Eq.~50! yieldsAG2'2.41, and the relative fluctua-
tion is 0.07. These values are close to the numerical ones
quoted above~the discrepancy is mainly due to the differ-
ence between the mean width and its rms value, and the
corresponding difference in the fluctuations ofG j andG j

2).
To check the independence ofG j of the number of excited

particles in the componentj , we have calculated the average
spreading widthG(p) for basis states with a fixed number of
excited particlesp, p51,2, . . . ,n21. In the numerical ex-
periment shown in Fig. 6 allG(p) for p51–5 proved to be
approximately the same,G(p)'2.2.

The above consideration shows that the statistical ap-
proach does not provide any support for the dependence of
the spreading width on the number of excited particles. This
indicates that the argumentation in favor of a strong depen-
dence, based on different decay phase volumes for different
numbers of excited particles, seems to be incorrect. In our
opinion, the difference in the spreading widths could appear
as a result of specific dynamical effects. For example, this
could be an influence of levels in other potential wells which
appear at higher nuclear deformation, or due to an interaction
with collective motions, such as rotations and vibrations.

VI. CONCLUSIONS

The calculation of the mean-square matrix element of an
operator between compound states of a many-body system
has been considered. We have shown that the two-body na-

ture of the interaction between particles manifests itself in
the existence of correlations between the components of the
‘‘chaotic’’ compound eigenstates. These correlations taken
together with the correlations between the many-particle
Hamiltonian matrix elements result in a relatively large cor-
relation contribution to the mean-square matrix element. The
correlations exist even if the two-body matrix elements are
independent random variables, as in the TBRIM. Such cor-
relations can be understood in terms of the perturbative mix-
ing of the distant small components to the principal compo-
nents of the eigenstates. If the Hamiltonian matrix elements
are random variables the correlations of this type vanish.

One of the most interesting features of the correlations
found in our work is that they do not decrease with the in-
crease of the number of excited particles or active orbitals.
Thus they must be taken into account when calculating ma-
trix elements of a weak interaction between compound states
in nuclei.

Another feature concerns the shape of the distribution of
the density matrix operator near its maximum. As one can
see from Figs. 1~a! and 2~a!, the correlations create a sharp
spikelike form of the distribution, instead of a smooth Gauss-
ian or Breit-Wigner form. With such sharp peaks, the
strength function for any particular operatorM̂ can have the
so-called gross structure, due to many single-particle transi-
tion terms in the expression~33!. Without these specific cor-
relations, the strength function would be much smoother and
the gross structure would not be seen. It is also interesting to
note that there are very large mesoscopic-type fluctuations in
the distribution near the maximum, depending on a specific
~random! realization of the two-body interactionV. This fact
is also the consequence of strong correlations.

Our study also demonstrated that the spreading widths of
different basis components are approximately constant and
fluctuate very weakly. In particular, we have not found any
dependence on the number of excited particles in the com-
ponent.

The statistical approach to the calculations of such matrix
elements has been tested in the present work with the help of
the TBRIM. The numerical results obtained in this work sup-
port the validity of the statistical approach. The TBRIM has
also enabled us to check that the matrix elements of different
transition operators between a pair of compound states are
uncorrelated, as are the matrix elements of a given operator
between different pairs of compound states.
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