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Correlations within eigenvectors and transition amplitudes
in the two-body random interaction model
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It is shown that the two-body character of the interaction in a many-body system gives rise to specific
correlations between the components of compound states, even if this interaction is completely random.
Surprisingly, these correlations increase with the increase of the number of @etieece particles. Statistical
theory of transition amplitudes between compound states, which takes into account these correlations is de-
veloped and tested within the framework of the two-body random interaction model. It is demonstrated that a
feature, which can be called “correlation resonance,” appears in the distribution of the transition matrix
amplitudes, since the correlations strongly reduce the transition amplitudes at the tails and increase them near
the maximum of the distribution.

PACS numbegs): 05.45+b, 05.30.Fk, 24.60.Lz

I. INTRODUCTION density, however, they seem to give a very accurate descrip-
tion of the correlations and fluctuations of energy leyskse,
Measurements of parity nonconservation in neutron cape.g.[6]). The important point is that in real many-body sys-
ture by Th nucleugl] gave a surprising result: in spite of a tems the basic interaction is a two-body one. This means that
natural assumption of a random character of matrix elemente number of independent parameters determining the
of the weak interaction between compound states, the effe‘ﬁ-particle Hamiltonian(two-body matrix elemenisis much
was found to be of the same sign for all observed resonancegmaller than the number of the Hamiltonian matrix elements.
Possibly, this means that the strongly fluctuating matrix eleTaking the two-body matrix elements as Gaussian random
ments of a weak perturbation between “chaotic” states of &,51japles, a model called the two-body random ensemble
compound nucleuévhich was, in fact, the first example of a (TBRE) was introduced iri7,8] (see also references [8]).
guantum chaotic systeénare essentially correlated. Thus the his model looks in princip,le much more realistic than the

problem of correlations between components of compoun OE. In particular, it has a Gaussian form of the level den-

states is of great importance both for th_eory and appl|cat|onss.ity’ which is in good agreement with various nuclear shell-
An attempt to study these correlations has been underr'nodel calculations for “realistic” interactions in the finite
taken in[2—4]. It is natural to expect that some correlations

may appear if the number of independent parameters in (hESE B8 L TREE RS LN S FE
Hamiltonian matrix is substantially smaller than the total Y ’ ’ 9

number of the Hamiltonian matrix elements. The simples ts level fluctuation properties are very close to those of the

example is given by the model of a random separable inter: O, although some differences were notitgH Thgrefqre,
action[5] (see alsd4]), in some respect, the two-body nature of the particle interac-

tion does not reveal itself in the level statistics. In other
Hij=edj+gviv;, i,j=12,...N (1)  Wwords, level fluctuations are insensitive to the details of the
interaction between particles, provided the latter is large
where ¢; are the unperturbed energies amdare random €nough to cause strong mixing of the basis states.
variables distributed, e.g., according to a Gaussian law. As Another model which seems to be more physical than the
one can see, the number of independent parameteis ~GOE was proposed a while ago by Wigri&0] to describe
equal toN, while the number of the Hamiltonian matrix compound nuclei. It was suggested that the Hamiltonian ma-
e|ementsHik is N2_ It was shown that this model disp|ays trix H” has a banded structure, i.e., all matrix elements with
very strong (-100%) correlations between eigenvectors|i—i|>b are zeros If is the bandwidth The matrix ele-
with close energies, despite the random character of the ifhents inside the band are random numbers with zero mean
teraction:(viv;) = &;(v?). and fixed varianceH;;=0, Hi2j=V2, except those on the
Such correlations cannot appear in models described byain diagonal, which monotonically increade;,j=iD. In
full random matrices, like those of the Gaussian orthogonathis model all eigenstates are localized in the unperturbed
ensemble(GOB). It was always obvious that such models basis =0). In the nonperturbative regime<V/D< /b,
possess some unphysical features, e.g., the semicircle levile strength function which describes the localization in the
energy spacéalso called the local spectral density of states
has a characteristic Breit-Wigner form with a width

*Electronic address: flambaum@newt.phys.unsw.edu.au I'=27V?/D within the band. This shape is in agreement
Electronic address: gribakin@newt.phys.unsw.edu.au with nuclear datg11], and with the calculated localization
*Electronic address: izrailev@physics.spa.umn.edu properties of chaotic eigenstates in the rare-earth atom of Ce
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[12]. It has also been shown [12,13 that the Hamiltonian tion IV presents a brief outline of a statistical approach to the
matrix which produces the dense spectrum of atomic excitedalculation of transition strengths; the analytical results are
states in Ce is sparse and has a bandlike structure, althoughecked there against numerical ones obtained in the
the edges of the band are diffuse. We should also mentiohBRIM. Finally, in Sec. V we study the spreading widths of
that a number of analytical results on the localization propthe many-particle basis states.

erties of such band random matricé8RM) have recently

been obtained in14,15 (see also[16], and references Il. CORRELATIONS BETWEEN EIGENVECTOR

therein. However, the off-diagonal Hamiltonian matrix ele- COMPONENTS INDUCED BY TWO-BODY INTERACTION
ments in this BRM model are independent random variables,

thus this model is void of any possible correlations related to Iaetl uchon'S|dert. tlhe basg. '?(.atflst %f the TBRH\S' In this
the two-body interaction between particles. model,n ~ermi particies are distributed amorngnondegen-

In this paper we show that there are quantitigeansition :;a;[ﬁ[i%) 't?ri't Itr;]edgpgr r}g?g;'?ﬁé i):gﬁglr:z?és' ;I\\,lgnassﬂrr?:,
amplitudes or transition strengjhfor which the underlying ' 9 9 y

two-body interaction is of crucial importance. We show thatSlmple expression

such an interaction gives rise to specific correlations between

the components of eigenstates, which are very essential for €,=do

the distribution of transition strengths. Our results are ob-

tained in the framework of the two-body random interaction

model (TBRIM) recently proposed ifi17] for the study of However, the analytical treatment presented below does not

various physical problems related to such complex manydepend on a particular form ef, . Many-particle basis states

body systems as heavy atoms, nuclei, metallic clusters, etdi,) are constructed by specifying theoccupied orbitals. The

which display quantum chaotic behavior. Being in some asenergyE; of the basis state equals the sum of the single-

pects similar to the TBRE, the TBRIM is simpler in the particle energies over the occupied orbitals. The total number

sense that it abandons all restrictions imposed by the conse®f the many-particle states in the model is

vation of the angular momentum, which makes it closer toN=m!/n!(m—n)!~exdnin(m/n)+(m—n)In(m/m—n)]. The

the embedded GOEL8]. On the other hand, the nondegen- latter estimate relates to large andn and shows thal is

erate spectrum of the single-particle orbitals the TBRIM isexponentially large fon,m—n>1 .

based upon generates a realistic level density and leads to a The number of independent parameters of the many-body

bandlike structure of the Hamiltonian matrix. Hamiltonian is given by the number of different two-body
We should mention that there were quite a number ofnteraction  matrix elements V,z,s, and equals

earlier works where strength distributions were studied usindN,=m?(m—1)2/2 . Due to the two-body character of the

statistical spectroscopy methods and nuclear shell-model calhteraction, the Hamiltonian matrix elemeit;=(i|H|j) is

culations ([19], see also review6]). These methods are nonzero only wheri) and|j) differ by no more than two

based on the calculation of distribution moments, which areccupied single-particle orbitals. As a result, the nuniber

given by traces of products of the operators in question andf the nonzero matrix elements;; is given by

powers of the Hamiltonian over the model finite-dimensional

1

at+—|, a=12,...m. (2)
a

space of the problem. Since the calculation of traces does not K=N(Ky+K;+K,),
require knowledge of eigenstates, the question of correla-
tions within eigenstates which is of prime importance for the Ko=1, K;=n(m-n),

present work has not been addressed in those studies. We

must add that statistical spectroscopy methods emphasize 1

and emplqy a paru_cular importance of Gaus§|an sp_read_lng of KZ:Zn(n_ 1)(m—n)(m—n-—1), 3

many-particle configurations, and features like Breit-Wigner

localization either do not appear, or are neglectedether

with the interaction between configuratigria that formal- ~ WhereKg, Ky, andK, are the numbers of the Hamiltonian

ism. All in all, it is unfortunately very difficult for the present matrix elements coupling a particular basis state another

approach to make contact with those results. Comparing thene, j, which differs fromi by the positions of none, one,

two approaches we should say that at first sight ours does naénd two particles, respectively. Therefore fom—n>1 we

look as rigorous and mathematically advanced as the othdtaveN,<K<N?, i.e., the Hamiltonian matrix is essentially

one, as it appeals to some heuristic arguments and uses ratt#@rse and, in a sense, strongly correlated.

simple mathematics, e.g., perturbation theory. However, we To see the correlation between nonzero matrix elements,

believe that, supported by numerical experiments, outet us consider a pair of basis statesand|j) which differ

method can give a deeper insight and a more physical picturey the states of two particles, for example, the sfaecan

of transitions between and correlations within the chaotide obtained from the stafé) by transferring the particles

eigenstates in complex many-body systems. from the orbitalsa,B into the orbitalsy,s. For all such
In Sec. Il of this paper we show how the basic two-bodypairs, the Hamiltonian matrix elements are the same,

interaction results in the correlations between the HamilH;;=V,g,s (or, strictly speaking,H;;==*V,z,s, due to

tonian matrix elements, eigenstate components, and trandrermi statistics It is easy to calculate the total number

tion amplitudes. In Sec. Ill we check whether the effectsNgq Of the matrix elementsd;; equal toV 4,5, using the

found in Sec. Il could lead to some correlations betweerfact that the remaining—2 particles can be arbitrarily dis-

transition amplitudes coupling different pairs of states. Sectributed overm—4 orbitals,
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(m—14)! The above conclusion has important consequences. Let us

Neg= n—2)l(m=n—2)1" (4)  consider a single-particle operator

For basis statef) and|j) which differ by the state of one M=2 alagM =2 posMag, 9)
particle (@— B3) the matrix elemenH;; equals the sum of a.p a.p

the n—1 two-body interaction matrix elements, + . G
Hij=3V.z, (the indexy runs over the resi—1 occupied wherea, anday, are the creation and annihilation operators.
1] Y ayby

orbitalg. In this caseH; for different|i) and|j) (with fixed It is convenient to express the matrix elementdfoin terms

« and 8) do not coincide, but may contain identical terms ©f ma}rix elements of the density matrix operator

The eigenstate|$11> of the model are determined by their the orbital «. One can see that the matrix element \f
componentsCi(nl) with respect to the many-particle basis P&fween compound states,
states|i), )
(ny/Mng)=2> M o5(N1|papln2)
a,B
In)=2 ¢™li), (5)
=3 M2 C"Xilpagli)C™ (10
and can be found by solving the Sctioger equation, «“p H
has the zero mean due to the statistical properties of the
> HHCJUH): E(nl)Ci(nl)_ (6) ~ components, i.g(,n1|paﬁ|n2>fo. Since the summation over
i the orbitalsa, 8 in Eq. (10) is independent from the averag-
ing over different realizations df, in what follows we con-

If the perturbatiorV is strong enough, the exact eigenstatesgjger the simplest case &:paﬁ- The variance of the ma-

In1) are superpositions of a large number of basis states. Agjx element of p,s between the two compound states is
is known, strong mixing of basis states in the exact eigengqyg| to

states(compound statgsoccurs locally within some energy

range,|E;— E("|<T", wherel is known as the “spreading W=<n1|Paﬁ|nz>(nz|Pﬁa|n1)

width.” It can be estimated a¥~N,,D, whereD is the

local mean level spacing for many-particle states Bigdis _ () ~(N) ~(N9) ~(N) _

the effective number of basis states represented in a com- _i%J Ci VGG TG (ilpaplk){!ppali)
pound state. This number is also known as the number of

“principal components.” These components give the main =g 1"+ g (11)

contribution to the normalization conditi(Eg|Ci(”1)|2= 1 for

the eigenstatén,). Formally, we can estimatdl,, as the Where we separated the diagonal and nondiagonal contribu-

reciprocal of the inverse participation ratio, fions to the sun{1l),

Ny =3 c(")4,
It is rather straightforward to show that the correlations s=3 |C"™|2C"? (i p ol K, (12)

betweenH;; result in correlations between the components Lk

Ci(nl). Indeed, let us multiply the Schdinger equation by

the coefficiemCi(”l) and sum oven; . Using the orthogonal- 8(0”1”2)=i¢2k;&I Ci(“l)CJ(”l)C(knz)Cl(”Z)(i |1PaplK){1|pgali)-
ity condition Enlci(”l)cfnl)= 8, one obtains 3 (13)

Note that the diagonal ter@é”an) is essentially positive and
can be easily estimate@ee[3,12,20 and Sec. IV below

_ while the nondiagonal ter""? is our main interest. If the

In what follows, we assume that the matrix elements of thgjgenstates are completely “randongdifferent components
two-body interactionV are random variables with the zero poth inside each eigenstate and of different eigenstates are
mean, therefored;;=0 for i#j. In this case one can get uncorrelateyl the correlation surs; is equal to zero and the
Ci(”l)Cﬁnl):O, where the line stands for averaging over dif- variance is determined by the “diagonal” suBy (this as-
ferent realizations o¥/. However, if matrix elements of the Sumption has been used in the previous calculations of ma-

Hamiltonian are correlated;;H,#0, the components of trix elements between compound states [#12,20,21).
However, we show below that in a many-body system these

different eigenvectorfn,) and|n,) are also correlated, since tWo terms are of the same orde, —S,, even for the ran-

dom two-body interactiov.

HijHu= > ci(“l)E(n1>C§“1)c<k“2)E(“z)C|(“2)7&O. (8) The TBRIM allows one to investigate various properties
niny of chaotic many-body systems taking into account the two-

body nature of the interaction between patrticles. In the pre-

The latter relation shows théli(”l)cfnl)cinz)cl(”ﬁ#0. vious paper$12,17] there were indications that the diagonal

Hij:nE Ci(nl)E("l)C}nl). (7)
1
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|k>=a}§aa|i)5|i "), determined by transferring one particle

A2 0ot from the orbitala to the orbital3 in the stateli) (hereafter
M we will use the notation’ to denote such statesAccord-
0.008 1 ,. ingly, the indexi runs over those states in whiehis occu-
;'-_ pied andg is vacant. For such andi’ the matrix element
0.006 1 I r (ilpapli’y=1, otherwise, it is zero. Therefore, in fact, the
I\ sum in(12) is a single sum, with a number of items less than
0.004 N,
0.002 A nin ' n n
SE, 1 2):2i |C|( l)|2|ci(/2)|2’ (14)
0.0 : :
0 100 200 300 where the sun/ runs over the specified Analogously,
(@) ) Eq. (13) can be written as the double sum ovemand |
o . . . specified as above,
R
g2 = 37 ¢ cin), (15)
0.5 + c 3 ! J i i
00 ,//\\ wherej’ is a function ofj, |j’)=agaa|j). Note that the
' energies of the basis states and their primed partners are
\‘V/f connected a&; —E;=€z—€,=E; —E;.

05 1 [ One can expect that maximal values of the sid) and,
possibly, (15) are achieved whe@’s are principal compo-
nents of the eigenstates. This means that the mean square of

1.0 . : . the matrix elemenk(ny|p,z|n,)|* is maximal when the op-

0 100 200 300 erator p,; couples the principal components of the state
(b) n, In,) with those of |n,), i.e., for EM—EM=~gy,
=e¢,—€3. Far from the maximum |gM™—-EM
FIG. 1. (a) Mean-square matrix elemefitl) calculated in the — @qg/>T") @ principal component of one state, say, is

TBRIM for n=4 particles andn=11 orbitals,a=4, B=5, as a coupled to a small componerk of the other staten,
function of the eigenstate, for n,=55. Averaging oveN,=100  (|E,—E(|>T"). The latter case is simpler to consider ana-
Hamiltonian matricedH;; for different realizations of the random lytically, since the admixture of a small component in the
two-body matrix elements has been made. Dots correspond to theigenstate can be found by means of perturbation theory.
sumSy+ S; while the solid line represents the diagonal contribution This approach reveals the origin of the correlations in the
Sy only [see(12)]. (b) Ratio R=S,/S; of the correlation contribu- sumS,, Eq.(15). For example, iC}nl) is a small component

tion to the diagonal contribution. of the eigenstate, , then it can be expressed as a perturba-

approximation is not completely accurate for the computalion theory admixture to the principal componentsC{f? is
tion of the variance of matrix elements of perturbation. Inone of the latter, then there is a term in the s{ir§), which
order to study this effect in detail, we have performed nu-is proportional to the principal component squared,
merical experiments with TBRIM for the parameters corre-|Ci(”1)|2_

sponding to the model calqulations of the Ce am’l.?i- Indeed, there are three possibilities(i) c™ and CF?Z)
We take the number of particles=4, the number of orbitals o o) )
m=11, the spectrum of the single-particle orbitals is deterare among the principal components, @ﬁl and C,,
mined bydy=1, and the Gaussian random two-body inter-correspond to the small components. Then, one can write

action is given by\V?=0.12. As a result, the size of the

Hamiltonian matrixH;; is N=330. The calculation of the cn— (i[H[ny) :i Hip cm (16)
matrix elements between compound states in this model gave j EM-g, SEM™M-E TP’
a remarkable result. In Fig. 1 we present the “experimental”
M2 i ; ) R
value of M* [see Eq.(11)] together with th_e diagonal con ny_ (I'[H[f) Hirg ny
tribution (12) [see Fig. 1a)], and the ratidR=S;/S; in Fig. A = —E = Cq . 17
i’ - i’

1(b). Figure 1a) reveals a systematic difference between the q

diagonal approximation and exact expressibf), and Fig. ) o _

1(b) shows that nondiagonal ter is of the same order as The tilde above the sums indicates that the summations run

Sy, which clearly indicates the presence of correlations. ~ OVer the principal components only. The “coherent” contri-
Below, we show how these correlations emerge in thedution to the sung in Eq. (15) is obtained by separating the

nondiagonal tern®,. First, note that for a given the sum  squared contributions of the principal components in the

overk in Egs.(12) for Sy contains only one term, for which sums inS{""? (i.e., p=i,q=j")
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—~ HiHi; v () not containa). Therefore the averages over the nonzero ma-
! |c"™i2ic?2. (18
Iz] (E(“Z)—Ei,)(E(”l)—Ej)' el i | (18) tr|>|<_|2eIeHmenthbzetween such pairs of states BigH;/;

Taking into account that for the principal components we Now Iet us con5|der the case whih and|j) differ by
haveE;~EM andE; ~E), we can replace the energies, one orbital|j)=a’ ,2,,[i). In this case the Hamiltonian ma-

Ei /—>E(n1)+ Opy s andE _)E(nz)_wﬂau and thus obtain the  trix elements are sums of the—1 two-body matrix ele-

following contribution toS”'l”Z) ments,
1 " 2 ~@20 <~
— (E(nz)—E(”l )22 |C | |C | H| ]rH” Hij: ; VVlMV2M+VVla/V20(’
(19 g

n—-2

i (ny) (n2) — i
(i) CJ. and C,,* correspond to the principal compo Hyj= Z VootV g s
PrY: 1772 1PY2

nents,Ci(“l) and CE?Z) correspond to the small components.
Then, the result is the same @9).

The sums ofh—2 terms inH;; andH,,;, coincide; the dif-
(iii) C(”l) and C(”l) are prlnC|paI components:(nZ) nd " o

() s ey ference is due to the one term orilyrbital « is replaced by
C 2 are small componen(sr C, andC ) are principal  the orbital 8). Thus

componentsc( v andC(“l) are small componerﬁtsln these

cases there are no coherent terms in the sunfan Eq. HijHi/ ,,—(n 2)V?,

(13). This follows from the fact that for chaotic eigenstates

the mixing among the principal components is practically (Hij)2=(Hi,j,)2=(n—1)V2,

complete, which makes them to a good accuracy statistically

independent. _ o e where we took into account that

2) — 1) —
on;-r(])li)steizasr from the maximumie : @pel =T VKWVVKle’vl,Vl=,V25"’<15“\15W1‘_5”V1' , .
The contributions of one-particle and two-particle transi-
2 — tions in Egs.(20) and (21) representingS, and Sy, respec-

S~ — 52/ |CV12ICIP|?H Hyj. tively, will be determined by the numbers of such transitions

(B2 =BT = wg,) 7] allowed by the corresponding sums. For the single-prime

(20 sums in Eq.(21) these numbers are proportional Kg and

K2, EQ.(3). In the double-prime sum in E¢20) these num-
bers are proportional t&l andK,, the numbers of the two-
body and one-body transitions-j, in the situation when
1 one particle and the two orbitalgr(and 8) do not partici-
E_Em g, )2 pate in the transitions. These numbers can be obtained
Ba from Eq. (3) if we replacen by n—1, andm by m—2, so
thatK;=(n—1)(m—n—-1), K,=(n—-1)(n—2)(m—n—-1)
y E'E|C.(”1)|2|C§"2)|2HT (m—n=2)/4. Finally we obtain that ale(M) —g(n) — _
~ ST ' i’ wﬁa|>l" the contribution of the correlation term to the vari-
ance of the matrix elements of,; can be estimated in the
ratio as

A similar calculation of the diagonal suSﬁ”an) , Eq.(12),
yields

(Nny)
Sy ~

+ 23 PHE | @ _
T oS (N=2)Ki+K,

The two terms in square brackets result from the contribution Sa (=DK1 +K;

of principali and smalli’ components in Eq14), and vice (n=2)(m—n—-1)(m—n+2)

versa. From Eq(20) we see thaS(cn1”2)=O if Hi/j/H;;=0. - n(m—n)(m—n+3)

However, there is nearly a 100% correlation between these

matrix elements. Indeed, the basis stdtaliffers fromi by  This equation shows that far=2 we haveS.=0, which is

the location of only one particléhe transition from the or-  easy to check directly, since;/;-H;;=0 in this case. For

(22

bital « to ), and the same is true fgf andj. n>2 the correlation contributio, is negative at the tails of
Let us estimate the relative magnitudes ®f andS..  the strength distribution. This means that it indeed sup-

First, consider the case whein and|j) differ by two orbit-  presses the transition amplitudes off resonagsee Fig. 1

als, |j)=aj_a,al a,li). In this caseH;=V, ... Fornm-n>1 the ratioR is approaching its limit value

Since the basis stat¢s’) and|j’) must differ by the same —1. Itis easy to obtain from Eq¢22) that form—n>1

two orbitals, we haveH;.;,=V, , , ,,=Hi (note that

V1,01, V2, i % a, B, Since both state§) and|j) containa Syt S, _1+Re 2m 23

and do not contaiB, whereagi’) and|j’) containg and do Sy n(m—n)
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It is worth emphasizing that the existence of correlations

—_0.001 : : : ) .
2 due to the perturbation theory admixtures of small compo-
M nents to the chaotic eigenstates, which leads to a nonzero
0.0008 1 i 3 value of S (15), is indeed nontrivial. For example, if one
f? . .
A examines the summand of E(L5) as a function ofi and
0.0006 " r j, it would be hard to guess that the sum itself is essentially
! i: nonzero, since positive and negative values of
0.0004 ] 1\ Ci(“l)Cfnl)Ci(TZ)C;r,'Z) seem to be equally frequent, and have
\ roughly the same magnitude, see Fig. 3.
0.0002 | /] . Since En1$£”1”2)=2n23(6”1”2)=0 (see below, the sup-
/ \-\g pression ofM? at the tails should be accompanied by corre-
0.0 ' ' ; lational enhancement of the matrix elements near the maxi-
0 1000 2000 3000 mum (at [E@—E®—wg,|<T). Thus we come to the
@ 0 important conclusion: even for a random two-body interac-
tion, the correlations produce some sort of a “correlation
1.5 ' ' ' resonance” in the distribution of the squared matrix ele-
R mentsM?2. One should note that this increase of the correla-
1.0 1 r tion effects in the matrix elements of a perturbation can be
explained by the increased correlations between the Hamil-
0.5 1 L tonian matrix elements when the number of particles and
orbitals increasesN/n«e").
0.0 Now we can estimate the size of the correlation contribu-
' tion S, near the maximum of the th#? distribution (at
|EM2 —E(M) — @, |<T). First, we show that after summa-
0.5 1 i tion over one of the compound states, the correlation contri-
bution vanishes. Indeed,
-1.0 . : ;
0 1000 2000 3000 (nqny) _ (N ~(ND) ~ () ~(N2) /3
() M nzz Sclz_nzz i#%#l C lci TG gl
FIG. 2. Same as in Fig. 1, farx=7, m=14, «a=7, B=8. The X<||pﬁa|l>
data obtained for a single Hamiltonian matrix of the size
N=3432;n,=575. Note the increased role of the correlation con- = > Ci(“l)c(”l)@ |paplk)
tribution S, . i#] k=l .
Thus, surprisingly, the role of the correlation contribution X<||pﬁa|j>2 C(k"2>C|(”2)
increases with the number of particles. nz
For the numerical example shown in Fig. h=4, -0, (24)

m=11, one obtain®k= —0.39, which means that the corre-

lation contribution reduces the magnitude of the squared mayhere we take into account that the sum owmerin the ex-

trix elementsM? between compound states almost by a facpression above is zero fér . Therefore the negative value

tor of 2 (for [EM)—E(M —w, [>T). The ratio found of SM" gt |[EM)—E(M)— 4, [>T must be compensated
ically isR~—0.45 [Fig. 1(b), n,=150-250; larger p % posii g

numerically - g. » N2 » 1arger — py jts positive value near the maximum. The sum r{2d)

n, are probably too close to the boundary of the matrix forgjjows one to make a rough estimate S near the maxi-

R to remain constait N2
. . mum of Sy (andM*~).
We would like to stress that the role of the correlation Let us assume that S,=R,S; at |EM-—

term does not decrease with the increase of the numbers of ° n n
particles and orbitals. This prediction is supported by Fig. Z%f( 1)_|(;[i“a/|2<[FR/2" vyheress ESC_(ZF‘;)?" Tr?t d|Et( 'ﬁ_t'E( 1)f
which shows the behavior of the squared matrix element and(;‘iﬁg ¢ IS given by Eq. - € distribu |_on (_)

its diagonal and correlation parts for=7 and m=14, S can be reasonably approximated by the Breit-Wigner
N=23432. One can see that the suppression of the matrighape(see Secs. | and IV

elementsM? due to the correlation term at the tails is even A

stronger than that in Fig. fthe numerically found ratio is g(nn2) _ ——— (25)

R~ —0.7 vsR=—0.55 obtained from Eq22)]. The corre- d E°+T/4

lation contribution should be even more important in com- _ (ny)_ e (ny) _
pound nuclei, wher&l~10°. This case can be modeled by WhereE=E"?—E¥—wg,, andI'=I'y +1I',,. The sum
the parametera=10, m=20; then we hav&R=—0.66, or, rule (24) implies that

equivalently, 4+ S;)/Sy=0.34, which means that the cor- re dE . dE

relations suppress the squared elemiit between com- f +Rf =0. (26)
pound states by a factor of @ar from its maximun. Mo E*+T%4 '), E+T%/4
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FIG. 3. The distribution of the items of the surilb),

Comparing the values of the rat& /S, at the maximum and
at the tail in Fig. 1b) (n=4,m=11), one can see that indeed,
Rn~—R;. For largern andm the correlation enhancement
factor asymptotically reaches its maximal value of 2. The
numerical example in Fig. 2nE7m=14) shows the en-
hancement oM? with respect toS, at the maximum even
greater in size than that predicted by E2j7). This is not too
surprising since in Eqg25)—(27) we estimated the average
value of R, over an intervaAE=I" around the maximum
rather than the peak value at the maximum.

A similar estimate ofS. near maximum can be obtained
by the direct calculation of the small component contribution
to S; (15). On an assumption that there are no correlations
between principal components of compound states we can
separate the contribution of small components. For example,
in the resonance situatiog("? —E™ =, , if the compo-

nentsS}nl) andS"? are small [E;—EM™)|>T, and conse-
quently, |E;, —E(")|>T), then they contain contributions
proportional to the principal componerﬁénl) andCi(?Z) [see
Egs.(16), (17)]. Analogously,S}“l) andS].(r,‘Z) may be among
the principal components, and then the small components
Ci(”l) and Ci(TZ) will contain correlated contributions. Thus
we have the following estimate:

(N1Nny)
Sc

(E(M)— EJ-)(E(nZ)— E;") :
(28)

~r ’ )
—23 S|cc

. i’
small j

Since E;—E;=E;,—E=EM™—EM™ for the principal
components andi’, (E"—E;) and E"?—E;/) in the
denominator always have the same sign, 8pds positive
(recall thatH;;H;,;,>0). Expression(28) can be estimated
using the well known formula for the spreading width,
F=277Hi2j/D, whereD is the mean level spacing for the
many-body states. This yiel&~ Sy, in agreement with the
previous estimaté27).

I11. CORRELATIONS BETWEEN TRANSITION
AMPLITUDES

We have shown that correlations between eigenvector
components in a system with a two-body interaction between
particles must be taken into account when calculating the

gij:ci(”l)cj("ﬂci('jz)c?'jz), for n,=55, n,=66, obtained in the Vvariance of a matrix element between compound stistés
TBRIM for the same set of parameters as in Fig. 1, averaged ovef\nother question is whether the above correlations between

N, =100 realizations o¥/. Indicesi andj in the figure run over

those 84 components in whiah is occupied ang3 is vacant.(a)
Positive values(b) Negative valuegabsolute valugs

eigenstate components lead to correlations between different
matrix elements,

M nlnzl\/I nyng ™ <n1|PaB| n2><n2|PBa|n3>

Since the two integrals in the above equation are equal, we

have R,= —R;. Thus near the maximum the correlation
contributionS; is positive and enhances the squared matrix

element with respect to the diagonal contribution,

St Se

=1+Rm=2—(1+Rt)22[1— . 27)
Sa

n(m-—n)

=3 C™CI™C?CI™ ] p gl 1)Kl ppal1)-
(29

Our analysis shows that the correlations of the t{2® are
absent, i.e.M nn,Mnn,=Mn n, M0, =0. The result could

naNg
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FIG. 4. Probability density of the normalized matrix elements 0a ' '
X=(N1|p o5l N2/ (N1] pupInz)|?)¥2 in the TBRIM for the param- y ‘
eters of Fig. 1. The histogram is obtained féy=5 Hamiltonian aff
matrices. Solid curve is the normalized Gaussian distribution. 0.1F
be different if the principal components of different eigen- 0.0 :.-,.'
vectors (n;) and |n3)) were correlated. This effect takes ‘ o
place in the separable interaction mof&}4], but we have .
not found such correlations in the TBRIM. 01 - .
The absence of correlations between different amplitudes
is confirmed by direct numerical experiments. First, we have 0n ]
studied the probability density of the matrix elements e
Mn,n, for differentn,n, obtained for a number of realiza- 02 o1 0.0 01 0.2

tions of the two-body matrix element4, 4, ;. Since the vari- (b) X
ance ofM nyn, depends om,; andn,, the probability density

of My, n, has been obtained by normalizing each matrix ele-  FiG. 5. (a) The matrix elemeny ,5=(N1|p,z/Nz) for ny=55,
mentMp, ,, to its root-mean-squared value which was calcu-n,=67, plotted vs the matrix element,z;=(ny|p,zlns) for

lated by averaging over the realizations\6f,;. The re-  Ne=66;@=4, =5, and other TBRIM parameters as in Fig. 1. The
number of points in the figure i, =387. No evidence of correla-

sulting probability density(M nan/\/Mﬁlnz)a averaged tions betweenx and y is present.(b) The matrix element
overN, =5 realizations oW ,4,s, turns out to be quite close Yag=(Milpaglnz) for a=4, B=6 vs X,,=(N1|pa,/nz) with
to Gaussian(Fig. 4). This result follows from the fact that =5 for n;=55 andn,=66. Again, there is no indication of cor-
each matrix element between compound states is the sum Bflations betweex andy. Note the difference in the vertical and
a large number of randoior almost randomterms, see Eq. hprizontal scale due tg the fact.that for.givepand n, the energy
(10), so that the central limit theorem applies. Therefore thédifferenceE™)—E(") is approximately in resonance for the tran-
correlations found in the preceding section do not show upSition betweena=4 and 5=5 and off resonance fox=4 and
unless more complicated correlations involvimifferent y=6.
components of theame eigenstate, like those in Eg®8) or
(11), are probed. M0 Won = 2 Mo sWeo{Nilpaglnz)?#0.  (30)

To check whether some correlations between different @p
matrix elementd29) exist, we have plotted the matrix ele- A more complicated question is whether the matrix elements
ment (Ny|papnz) versus another one(ni|p.slnz—1),  of different “elementary” transition operators,; andp.,
where [n,—1) is the eigenstate immediately precedingare indeed uncorrelatddis we assumed writing EG30)].
Iny), for some fixedn;, n,, a, and B, obtained from  The product of such two matrix elements can be presented in
N, =387 different Hamiltonian matricd$ig. 5@)]. The lat-  the form
ter were generated by using different random realizations of
\%

ay

. Detailed analysis of the distribution of the points in _ (n1) ~(ng) ~(N) ~(Np)
thcif??gure does not r)éveal any sort of correlations.p <n1|p“'8|n2><n2|p57|n1>_i§’| G Cj C G
The next question is the existence of correlations between ] )
matrix elementM, , andW,_,, of different operators for X(ilpaglk)Ilpsyli) 31
the same compound stafes) and|n,). If the expansions of ~ |C(“1)|2|C(“2)|2H--H- _
these matrix elemenf{see Eq(10)] contain identical matrix ~23 i " T
elements of the density matrix operategz, such correla- 5 (EM—E)(E™-E;)’

tions, in principle, do exist: (32
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where the last expression is written foyf andn, far from (N0 () (s )

the maximum (EMD—EM) — g, [>T |EM) Sgt? =% W(E; ,EM)W(E,EM2)(i]pagl k) (Kl pgali)-
—EM—ws|>T), and |i"Y=aja,li), |j"y=aja,lj). It ’ (35
can be shown that in our model;;H;/j»><é6,,55. There- . o

fore there are no terms in the express(eﬁ) which would The summation ovek for a fixedi includes Only one state,
give nonzero contributions, and the averageat is zero.  |K)=pg.li), with Ex=E;+wg,. On the other hand, we can
The absence of correlations in this case is illustrated by Figvrite

5(b), where numerical data obtained in the TBRIM are pre-

sented. As in the case of the matrix elements between differ-> 10apl KK D gal 1Y =(i|pupp pali) = (i[A(1—AQ)i),

ent pairs of compound states, no correlations can be seenk

between the matrix elements of different transition operators. (36)
whereﬁazalaa and ﬁﬁzagaﬁ are the occupation number
IV. STATISTICAL DESCRIPTION operators. Thus we obtain
OF THE TRANSITION AMPLITUDES
In this section we use the TBRIM to test the validity of Sgn1"2>=2 W(E; ,EM)W(E;+ wg, ,EM)
the statistical approach to the calculation of transition ampli- !
tudes between compound states of complex systems devel- X (i[Ag(1—1g)|i). (37)

oped in[3,12,20. In what follows we first outline the main

ideas of the statistical approach. The variance of the matrix The matrix elementi|n,(1—n)li) is equal to 1 if the

elements of an operatdd (9) between the compound states orbital « is occupied ang3 is vacant in the basis statg),

[n;) and|n,) can be presented in the following forioom-  otherwise, it is zero. We used this fact earli&q. (14)] to

pare with Eq.(30)]: reduce the summation to these states only. Now we proceed
in a different way. Bothw’s in (37) are smooth functions of
energy normalized a8;w(E; ,E("))=1. This allows one to

IMnn 2= 2 [Mgl?[(nalpagln), (33)  replace the matrix element @f,(1—fiz) by its expectation
B value,
where we have taken into account the result of the pre- ——x———5—+ (N /i A
ceding section that the average of the correla®1) is <'|na(1_nﬁ)|'>_2 W(E; EM)(i[Ry(1-hg)[i)
zero unless y=a,6=8. Therefore the -calculation of
2 . .
|Mn1n2| (orZM n;n,Wh,n,) is reduced to the calculation of :2 |Ci(n1)|2<i|ﬁa(1_ﬁﬁ)|i>
[Kn1lpaglno)l®. . , :
It was suggested in Sec. Il thehy|p,z|n,)|° can be pre- :<ﬁa(l_ﬁﬁ)>nl' (39)

sented as the sum of the diagonal and correlational sums
Sy andS,, Egs.(11)—(13). Since we have already estimated e sign= above is a reminder that the left-hand side is the

the ratio S+ S)/Sy, itis enough to calculate onl§y, EQ.  |ocq) average over the states). Practically, when the num-
(12). Following [12] let us replace the squared componentsysr  of components is large, the fluctuations of

|Ci(nl)|2 andlcﬁnz”2 by their average values, (R4(1—1g))n, are expected to be small. Now we can rewrite

Eq. (37) in a form similar to Eq.(14), but without any re-
Ic™2=w(E,; ,EM™) |C|((n2)|ZEW(Ek E(2))  (34)  Strictions on the summation variakile
i ’ 1 1 1

(N1nNy) _ /=~ ~
where the averaging goes as usual either over a number o34 = =(Aa(1=fp))n, 2 W(E EM)W(E+wg, EM?).

realizations of the two-body interaction matrix eleme(as- (39)
semble average or over a number of neighboring eigen-
states(physical energy averagein the spirit of ergodicity It was shown if12] that under some reasonable assump-

the results are presumably the same. The funatids pro-  tions about the function& one can introduce a “spreadl

portional to the strength function introduced by Wigh&d],  function” 'S(A),

which is also called the local spectral density of states. Note

that definition(34) also implies that the mean-square contri-~, , . 1 n n

bution of the componeritin the eigenstata, is determined o(4)=D, 2, w(E; E' l))W(Ei+w5“ E"2)

by their energiesE; and E( (in fact, by their difference

|E;—E(M)|). For states localized in the given basis,is a

bell-shaped function with a typical width determined by the

spreading widtH". There is some theoretical and experimen-

tal evidence that it can be approximated by the Breit-Wignewhere A=E™) —E(™)— ¢, and D; and D, are local

formula, although its tails decrease faster thanmean level spacings for the andn, eigenstates. The func-

|Ei— E(“l)|‘2 (see references in Seg. | tion §(A) is symmetric, its characteristic width is determined
The diagonal sum now takes the form by the spreading widths of the eigenstates and n,,

-1 dEI
=Dy | oo W(E EM)W(E;+ wg, ,E"?), (40)
1
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I'~I';+T'5, and it is normalized to unityﬁTS(A)dA =1, just

as the standard function. If w’s have Breit-Wigner shapes,

‘s is also a Breit-Wigner function withf =T, +T',. The fact M
that S{""?) is proportional to the functiod(A) is a particu-

lar manifestation of the energy conservation for transitions
between the quasistationary basis staf§ [if I'—0, then

5(A)— 8(A)]. Using Eqs(33), (39), and(40) we can finally

present the diagonal contribution to the variance of the ma-

trix elementM nyn, in the form

0.006 : : *
2

|Mn1n2|giag:a§;} IM gl 2(R(1—fg))n, . :
’ 0 100 200 300

XD,S(EM—EM—wg,). (41 @) 0,
This expression is apparently asymmetric with respect to the 0.006 : : :
statesn, andn,. By performing the calculation in a different — P
way we can obtain M £
A&
R . 0.004 "
Sgnlnz):(nﬁ(l— na)>n22k W(E — wg, ,E(n1>)w(Ek,E(nz)), :
(42 -
instead of Eq(39), and thereby arrive at a different formula 0.002 +
for the variance,
|M”1”2|§i39:a2,3 |Ma,8|2<ﬁﬁ(1_ﬁa)>n2 0.0 T T = ;
' 0 100 200 300
XD, 8(EM)—EM) — ®ga) (43 ®) =

where the occupancies factor is now calculated for the state FIG. 6. (a) The diagonal contribution to the mean-square matrix
n, (it represents the probability to find the orbit@loccu-  element as obtained from Eq89), (42) (solid lines in comparison
pied, anda empty). If the suppositions made in the above with the direct calculation oSy, Eq. (12) (circles. The TBRIM
derivations are correct, the two formuladgl) and (43)  parameters are the same as in Fig.(d. Same ag(a@), with the
should give identical results. occupancy factors in Eq$39), (42) calculated by means of Eq.

In the present work we use the TBRIM to check the ac-(44).
curacy of the statistical approach described above. Figure
6(a) presents a comparison between the vaIueSé?if‘Z) as thatthe TBRIM cf'ilculat_ion included=4 particles only, the
given by Eqgs.(39), (42), and those from the initial expres- agreement remains qmte_reasonable, thg error being at_)out
sion (12). Clearly, there is a good agreement between the-0%. To examine the quality of the approximation at the tails
three formulas. of the distribution, Fig. 7 shows the ratio 8f as given by

It is quite important for applications of the statistical ap- Eds: (39), (42) to the directly calculated diagonal terSy,
proach(see[4,20)) that further simplifications be made by Ed- (12. The difference between Figs(af and b) high-
replacing the correlated occupancies prodiigh ), in Eq. lights the inaccuracy introduced by an additional approxima-
(38) by the product of the two mean valugs,) 2?1 ) tion (44) for the occupation numbers.

7 o ] ) a/ng N BNy In order to make a more direct test of the validity of
Th|§ is deﬁmtely a val|d_operat|lon when the numbers ofgpstitution (44), we plotted in Fig. 8 the correlator
excited _partlcles and active orbitals are large, so that_ thgﬁaﬁﬁ>n I[{(Au)n(Rg)n.] as a function ofn,. Consistent
occupation numbers for different orbitals become statisti- ! ! :

cally independent. Then one would be able to use the reIatioWith the small number of particles, this correlator displays
y P ' narge fluctuations; however, its average value of about 0.8 is

<ﬁa(1_ﬁﬁ)>zn(€a)[1_n(eﬁ)]v (44) still rather close to 1.
wheren(e,) andn(e,) are the occupation numberShey V. SPREADING WIDTHS FOR DIFFERENT BASIS
can be calculated, e.g., using the Fermi-Dirac formula with COMPONENTS

an effective temperature, sg€7,20; see alsd9] where the

relation between thermalization and chaos is studied in In Sec. IV when considering the statistical approach to the
nuclear shell-model calculationsThe result of such simpli- calculation of the variance of matrix elements between com-
fication is shown in Fig. @), where the diagonal contribu- pound states, it was assumed that the spreading witdtre

tion (12) is again compared with the values obtained fromthe same for all basis components. However, this question is
Egs.(39), (42), using approximatior44). In spite of the fact not trivial. As is discussed in the literature, the spreading
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FIG. 9. The spreading width; calculated as the rms deviation
from the center of the distribution of the compone)ﬂé”lﬂz for
each basis state The data are obtained for one matkiy; corre-
sponding ton=6 particles andn=12 orbitals.

the 2p-1h states is two orders of magnitude smaller than that
of 1p states. In such a case one might expect that in our
model the spreading width would show a rapid decrease as a
function of the number of excited particles in the basis com-
ponent.
- - - To study this question in detail, we have performed addi-

0 100 200 300 tional tests. In Fig. 9 the root-mean-squared spreading width

(b) n I'; for all basis stategj) is presented fom=6, m=12

(N=924). Here we use the following definition:
FIG. 7. (a) The ratioR, of the approximation represented in Fig.

6(a) by the solid lines, to the value &;. (b) Same as in Fig. (b) Fj2:<j [(H —<j|H|j>)2|j Y, (45)
for the data of Fig. ().

which can also be presented in several equivalent forms,
widths of components corresponding to different numbers of

2_
excited particles could have significantly different values. I _(|'|2)ij_(HJj)2 (46)
For example, if22] it is argued that two-particle—one-hole
states (d-1h) can lead to correlations between values of :z H2 (47)
parity nonconserving effectdl], if the spreading width of R

2.0 . . . . . . =M,—(Myp)?, (48

Qw the last one relatind’; directly to the moment$/, of the
16 strength functiorp,,(E,j)==,|C{"|?5(E—E™),
1.2 d H I | l! I Mp=j pW(E,j)EpdEzE |C}”)|2(E(”))p. (49)
a0 B ! L \ n
"Fm””t ‘ H” | ‘ r\pvmwm }w
0.8 ! I Equations (46)—(48) can be obtained using closure,

2ij){(j|=Znln){n|=1, where|j) and|n) are the basis state
041 | and the eigenstate, respectivelj/n)=C("™. We should
note that the rms spreading width is different from that in-
. ‘ ‘ . ‘ ‘ troduced intuitively in Sec. IV as the characteristic width of
0 50 100 150 200 250 300 the strength function. For example, if the strength function
nl has a Breit-Wigner form, its second and higher moments are
infinite. In Wigner's BRM the rms spreading width is deter-
FIG. 8. The correlato,,z=(M,Ag)n /[{Aa)n (fg)n ] Vs the mine_d b_y the bandv_vidtrb. as fj=\/2bV2, whereas the
eigenstate number, . The TBRIM parameters are the same as in “‘Breit-Wigner spreading width” isI'gy,=2v?/D (see In-
Fig. 1. The average value of the correlator is about 0.8, whicHroduction. However, in a more realistic situation the
means that the correlations between the occupancies of differestrength function drops rapidly, its second moment is finite,
orbitals are not very strong. and the difference between the rifisandI'gy is not large.

0.0
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From Fig. 9 one can see that apart from small naturature of the interaction between particles manifests itself in
fluctuations, the rms spreading width is the same for all comthe existence of correlations between the components of the
ponents. To exclude a weak dependencE;obn the energy “chaotic” compound eigenstates. These correlations taken
of the basis stat¢ (boundary effects seen as riseslgfat  together with the correlations between the many-particle
small and largg), we calculate the mean valdeand the Hamiltonian matrix elements result in a relatively large cor-
rms deviationsT' of the spreading width by averaging over relation contribution to the mean-square matrix element. The
j=50-874. The results arB~2.22, ST ~0.12. The latter COrrelations exist even if the two-body matrix elements are
value shows that the fluctuations of the width are very smallindependent random variables, as in the TBRIM. Such cor-
This result is in agreement with computations made for thé€lations can be understood in terms of the perturbative mix-
Ce atom[12]; similar results have been recently obtained ining Of the distant small components to the principal compo-
the nuclearsd-shell-model calculation9,23). The fluctua- nents of the eigenstates. If the Hamiltonian matrix elements
tions of the width are small due to the large number of “de-are random variables the correlations of this type vanish.
cay channels” for each basis componéesich component is One of the most interesting features of the correlations
coupled to many others by random interaciidd]. For-  found in our work is that they do not decrease with the in-
mally, this can be obtained from E¢47). For example, in crease of the number of excited particles or active orbitals.

the TBRIM one obtains Thus they must be taken into account when calculating ma-
o trix elements of a weak interaction between compound states
I2=(n—1)VZK,+V2K,=K V2, (500  in nuclei.

Another feature concerns the shape of the distribution of
which shows that for a large number of “independent decaythe density matrix operator near its maximum. As one can
channels,”K,=(n—1)K;+K, [see Eq.(3)], the statistics see from Figs. (&) and Za), the correlations create a sharp
of I'; is given by they? distribution withK,,>1 degrees of spikelike form of the distribution, instead of a smooth Gauss-
freedom, resulting in the- 1/{K,, decrease of fluctuations. ian or Breit-Wigner form. With such sharp peaks, the
More accurately, the relative rms fluctuation of the squaredtrength function for any particular operatdr can have the
width (45) is given by 5(F2)/\/§= 2/Kq, For n=6, So-called g_roshs structure_,d(lzls%? 'i;)v_rrr:any iingle-part?;:_le transi-

_ . =N . tion terms in the expressi . Without these specific cor-
tin;; 1|§ OEg.7(5'CI)')h)g§cled?/a\l/li;zfrlglcilggg ttgetrrglitlljvrﬁeﬂr?ccetrao-n relations, the strength function would be much smoother and
quoted aibO\'/e{the discrepancy is mainly due to the differ-et%e gross structure would not be seen. It' is also interesting to

) . note that there are very large mesoscopic-type fluctuations in
ence between the mean width and its rms value, and thﬁ]e distribution near the maximum. dependi if
: . . i 2 , depending on a specific
corresponding difference in the fluctuationsigfandI')).

To check the independence B of the number of excited (randon) realization of the two-body interactiov. This fact

. i . is also the consequence of strong correlations.
particles in the component we have calculated the average o stydy also demonstrated that the spreading widths of

spreading widtt'(p) for basis states with a fixed number of gifferent basis components are approximately constant and

excited particlep, p=1,2, ... n—1. In the numerical x-  fiyctuate very weakly. In particular, we have not found any
periment shown in Fig. 6 all'(p) for p=1-5 proved to be dependence on the number of excited particles in the com-
approximately the samé;(p)~2.2. ponent.

The above consideration shows that the statistical ap- The statistical approach to the calculations of such matrix
proach does not provide any support for the dependence @lements has been tested in the present work with the help of
the spreading width on the number of excited particles. Thishe TBRIM. The numerical results obtained in this work sup-
indicates that the argumentation in favor of a strong depenport the validity of the statistical approach. The TBRIM has
dence, based on different decay phase volumes for differertiso enabled us to check that the matrix elements of different
numbers of excited particles, seems to be incorrect. In outransition operators between a pair of compound states are
opinion, the difference in the spreading widths could appeauncorrelated, as are the matrix elements of a given operator
as a result of specific dynamical effects. For example, thidbetween different pairs of compound states.
could be an influence of levels in other potential wells which
appear at higher nuclear deformation, or due to an interaction ACKNOWLEDGMENTS

with collective motions, such as rotations and vibrations.
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