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The behavior of the positron-2g annihilation rate on an atomic target near the positronium (Ps) forma-
tion threshold is determined. When the positron energy ´ approaches the threshold ´thr from below, the
effective number of electrons contributing to the annihilation, Zeff, grows as Zeff � A�p´thr 2 ´, where
A is related to the size of the Ps formation cross section, sPs � B

p
´ 2 ´thr, by A � B

p
2´thr�32p

(in atomic units). Taking account of the finite Ps lifetime eliminates the singularity in Zeff and shows
that close to threshold the positron annihilation cross section is identical to the para-Ps formation cross
section.
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The behavior of cross sections near thresholds is of great
interest, because it can be investigated analytically, as was
demonstrated in the classic work by Wigner [1]. This and
subsequent works [2] explained threshold features in many
reactions, however, the behavior of the positron annihi-
lation cross section near the positronium (Ps) formation
threshold has not yet been established. This problem has
become more pressing with the advent of variational cal-
culations that are able to accurately calculate positron an-
nihilation cross sections near the Ps formation threshold
[3]. These calculations have revealed a discrepancy with
the existing model of threshold behavior [4] (see below).
In this Letter we have established the relation between the
near-threshold energy dependence of the annihilation rate
and Ps formation, and shown that, when the finite Ps life-
time is taken into account, the annihilation cross section
connects smoothly with the Ps formation cross section.
The solution found also applies to a general problem of
a threshold law for creation of an unstable particle [5].

The scattering of positrons by atoms differs consider-
ably from the case of electron scattering. This is due to
the possibility of Ps formation and annihilation. For atoms
whose ionization potentials I are lower than the Ps binding
energy (jE1sj � 6.8 eV), it is open at all positron energies.
For atoms with I . 6.8 eV, e.g., noble gases, Ps forma-
tion is often the first inelastic scattering channel to open,
with a threshold ´thr � I 2 jE1sj. The positron can also
annihilate with an atomic electron, which leads predomi-
nantly to the emission of two g-quanta [6].

The positron annihilation rate in a gas of density n
is usually expressed in terms of the effective number of
electrons (Zeff) as l � pr2

0 cZeffn [7], which corresponds
to the annihilation cross section

sa � pr2
0 �c�y�Zeff , (1)

where r0 � e2�mc2 is the classical electron radius, c is
the speed of light, and y is the incident positron velocity.
Equation (1) defines Zeff as the ratio of the positron an-
nihilation cross section on the atom to the spin-averaged
annihilation cross section on a free electron in the Born
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approximation. Zeff can therefore be written as [7]

Zeff �
Z NX

i�1

d�ri 2 r�

3 jC�r1, . . . , rN , r�j2 dr1 . . . drN dr , (2)

where C�r1, . . . , rN , r� is the full �N 1 1�-particle wave
function of the N electron coordinates ri and positron co-
ordinate r. The wave function is normalized to a positron
plane wave at large distances,

C�r1, . . . , rN , r� � F0�r1, . . . , rN �eik?r, (3)

where F0�r1, . . . , rN� is the target ground-state wave func-
tion, and k is the incident positron momentum.

In Ref. [4] Laricchia and Wilkin proposed a simple phe-
nomenological model for Zeff. In particular, they ap-
proximated the lifetime of virtual Ps by the uncertainty
principle,

Dt � j´ 2 I 2 E1sj
21 (4)

(atomic units, h̄ � m � jej � 1, are used henceforth),
and predicted the following energy dependence of the an-
nihilation rate near Ps formation threshold [8]:

Zeff ~ Dt � j´ 2 ´thrj
21. (5)

Numerical calculations have confirmed that virtual Ps does
lead to increased annihilation near the threshold [3], but, as
we show below, the actual rate of increase is much slower,
Zeff ~ �´thr 2 ´�21�2. Qualitatively, the problem is that
Eq. (4) assumes that virtual Ps is formed with a zero ki-
netic energy and momentum K � 0. However, due to the
momentum-coordinate uncertainty principle, this would
have meant that the virtual Ps is spread over the whole
space.

Although Zeff represents the annihilation cross section,
Eq. (2) has the form of a transition amplitude. This allows
one to represent Zeff by a many-body theory diagrammatic
expansion [9,10]. It enables one to identify the contribu-
tion of annihilation within the virtual Ps to Zeff (Fig. 1).
This diagram gives a relatively small contribution to Zeff
© 2002 The American Physical Society 163202-1
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FIG. 1. The contribution of virtual Ps to Zeff. The shaded
blocks C1s,K represent propagation of the (virtual) ground-state
Ps, formed when the positron (k) picks up an electron from
an atomic orbital n. The wavy lines are the electron-positron
Coulomb interaction V , and the solid circle is the annihilation
vertex.

at low positron energies [10], however, it is the only one
which is singular at the Ps formation threshold.

The diagram in Fig. 1 corresponds to the following
expression:

DZeff �
Z �n, kjV jC1s,K� jw1s�0�j2�C1s,KjV jk, n�

�´ 1 en 2 E1s 2 K2�4�2

3
d3K

�2p�3 , (6)

where ´ � k2�2 is the incident positron energy,
�C1s,KjV jk, n� is the Ps formation amplitude [11], w1s is
the wave function of the internal motion of Ps [w1s�0� �
�8p�21�2 a.u.], K is the Ps center-of-mass momentum,
and ´n is the energy of the atomic orbital n (´n � 2I for
the removal of the outermost electron).

At threshold, ´ 1 en 2 E1s � ´ 2 ´thr ! 0 and
K ø 1 dominate the integral. For K ! 0 the amplitude
�C1s,KjV jk, n� is constant and independent of the direc-
tion of K, since s-wave Ps formation is dominant [12].
The amplitude can therefore be taken out,

DZeff �
j�C1s,0jV jk, n�j2

64p4

Z d3K
�´ 2 ´thr 2 K2�4�2

. (7)

After elementary integration we obtain the following
threshold behavior:

Zeff �
1

8p2

jAPsj
2

p
´thr 2 ´

, (8)

where APs � �C1s,0jV jk, n� is the Ps formation amplitude
at threshold, or for the annihilation cross section (1),

sa �
r2

0 c
8pk

jAPsj
2

p
´thr 2 ´

, (9)

where k �
p

2´thr is the positron momentum at threshold.
The Ps formation cross section is given by the golden

rule as

sPs �
2p

k

Z
j�C1s,KjV jk, n�j2d

µ
´thr 1

K2

4
2 ´

∂

3
d3K

�2p�3
. (10)
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Near threshold this gives

sPs �
4

pk
jAPsj

2p´ 2 ´thr , (11)

which is simply Wigner’s threshold law [1]. Note that,
apart from the reciprocal energy dependences, both the
annihilation rate and cross section, Eqs. (8) and (9), and
the Ps formation cross section, Eq. (11), are proportional
to the same squared Ps formation amplitude. Note also that
both threshold laws are due to the s-wave Ps formation.

The above formulas can also be derived in a more con-
ventional fashion by considering the asymptotic form of
the wave function of the positron-atom system above and
below threshold. For simplicity we will present the deriva-
tion for a one-electron atom. The generalization to many-
electron systems is straightforward. Above threshold, the
wave function takes the asymptotic form,

C�r1, r� � F0�r1�
∑

eik?r 1 f
eikr

r

∏
1 fPs

eiKR

R
w1s�r� ,

(12)

where f is the positron elastic scattering amplitude, fPs

is the Ps formation amplitude, R � �r1 1 r��2 is the
Ps center of mass, and r � r1 2 r is the internal Ps
coordinate.

The differential Ps formation cross section is given by
dsPs�dV � �K�Mk� jfPsj

2, where M � 2 is the mass
of the Ps atom, and K � 	2M�´ 2 ´thr�
1�2. Close to
threshold the slow Ps is formed primarily in the s wave,
and the total Ps formation cross section is

sPs �
4p

p
´ 2 ´thr

k
j fPsj

2. (13)

By comparison with Eq. (11) we find that [13]

APs � 2pfPs . (14)

Below threshold, the Ps formation channel is closed,
the Ps momentum becomes imaginary, K � ijKj �
i	2M�´thr 2 ´�
1�2, and the asymptotic part of the wave
function (12) corresponding to virtual Ps formation is then

fPs
e2jKjR

R
w1s�r� . (15)

For the positron energies approaching threshold, jKj ! 0,
the range of typical virtual Ps center-of-mass distances be-
comes large, R � jKj21 ¿ 1 a.u., and the contribution of
this term in Zeff, Eq. (2), becomes dominant. By substi-
tuting it into Eq. (2) we have

Zeff �
Z

d�r� j fPsj
2e22jKjRR22jw1s�r�j2 dRdr , (16)

where we have changed the integration variables from r1
and r to R and r. The asymptotic forms (12) and (15) are
valid only when the positron is outside the atom. However,
since large distances R give the major contribution to the
integral in (16), we can formally extend the integration
to the whole space. The contribution of small distances
163202-2
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r � 1, as well that of the first term in (12), remain finite
at threshold. Integrating over R and r in Eq. (16), we have

Zeff �
j fPsj

2

8
p

´thr 2 ´
, (17)

in exact agreement with Eq. (8). A term similar to (15)
was used in variational calculations of positron scattering
on H and He to improve the convergence near threshold
[14]. The derivation above explains why it also leads to
the near-threshold rise of Zeff, as noticed in Ref. [3].

As an illustration, let us compare our threshold law to
the accurate numerical Zeff for hydrogen [3]. In hydro-
gen the s-wave Ps is formed by the s-wave positron. Fig-
ure 2 shows that, in accordance with Eq. (8), the numerical
s-wave Zeff is a linear function of �´thr 2 ´�21�2 close to
threshold. To verify the coefficient in the �´thr 2 ´�21�2

dependence we use the Ps formation cross section obtained
by the same authors [14] and extract jAPsj

2 � 0.53. Af-
ter substitution into Eq. (8) and the addition of a constant
background (not accounted for by this equation), we see
that our analytical form gives an excellent description of
the numerical s-wave Zeff (Fig. 2). Figure 2 also shows
that the addition of higher positron partial waves does not
change the slope of the �´thr 2 ´�21�2 dependence and
only adds to the constant background.

The threshold law for Zeff is applicable in a narrow
energy range below threshold, comparable to that of the
Wigner law for sPs above it. For hydrogen this range is
jKj & 0.03 a.u., or j´ 2 ´thrj & 0.01 eV. On the other
hand, at ´ 2 ´thr ! 0, Eqs. (8) and (9) predict a non-
physical infinity, which would contradict unitarity of the
S matrix. Therefore, one cannot use them too close to the
threshold.

The problem is that the above formulas have been de-
rived by assuming that the reaction product, Ps, is a stable
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FIG. 2. Solid circles, numerical Zeff (s wave) from Ref. [3];
solid line is Eq. (8), with jAPsj

2 � 0.53 and background Zeff �
1.4 added. Open circles are total Zeff (s, p, and d waves) from
Ref. [3].
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particle. However, Ps has a finite lifetime. The lifetime of
Ps depends upon its total spin S. The S � 0 state, para-Ps,
decays into 2g. The S � 1 state, ortho-Ps, decays with the
emission of 3g, at a rate 103 times smaller than para-Ps
[6]. We will therefore only account for the annihilation of
para-Ps in the following analysis, which is correct as long
as positron-atom annihilation into 2g is considered.

The finite para-Ps lifetime results in its ground-state en-
ergy acquiring a small imaginary part,

E1s ! E1s 2 iG�2 , (18)

where G � r2
0 c�2 � 2 3 1027 a.u. is the para-Ps annihi-

lation width [6]. Equation (7) now becomes

DZeff �
j�C1s,0jV jk, n�j2

64p4

Z d3K
�D´ 2 K2�4�2 1 G2�4

,

(19)

where D´ � ´ 2 ´thr. After an elementary integration
we have

Zeff �
jAPsj

2

8p2	 1
2 �

p
D´2 1 G2�4 2 D´�
1�2

. (20)

The annihilation cross section then becomes

sa �
r2

0 cjAPsj
2

8pk	1
2 �

p
D´2 1 G2�4 2 D´�
1�2

. (21)

For the Ps formation the finite para-Ps width means
that we must interpret the d function in Eq. (10) in the
following way [12]:

d

µ
K2

4
2 D´ 2

iG

2

∂
!

1
p

G�2
�D´ 2 K2�4�2 1 G2�4

.

(22)

Integrating this expression in Eq. (10), and taking into ac-
count that the probability of forming S � 0 state is 1

4 , we
obtain the para-Ps formation cross section as

spara-Ps �
jAPsj

2

pk

∑
1
2

�
p

D´2 1 G2�4 1 D´�
∏1�2

. (23)

A similar formula was obtained using a different method
by Baz’ [5], who considered the general problem of the
threshold behavior for the creation of an unstable particle.

Away from threshold, jD´j ¿ G, Eqs. (20) and (21) re-
produce Eqs. (8) and (9), respectively (for D´ , 0), and
Eq. (23) becomes Eq. (11) for D´ . 0. Close to thresh-
old, for jD´j � G, the threshold laws have been altered.
The cross sections are now finite at ´ � ´thr. It is also
easy to check that the annihilation cross section (21) and
the para-Ps formation cross section (23) are in fact iden-
tical. This means that for an unstable particle there is no
clear-cut difference between its virtual and real formation.
In other words, the smearing of the Ps formation cross sec-
tion near threshold and the enhancement of annihilation
below threshold have the same origin. This is illustrated
by Fig. 3 using the hydrogen values of APs and k.
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FIG. 3. The solid line shows the identical annihilation and
para-Ps formation cross section [Eqs. (21) and (23)]. When
the effect of the Ps width is neglected, the para-Ps formation
cross section is given by Eq. (11) times 1

4 (dotted line), and the
annihilation cross section is given by Eq. (9) (dashed line).

We have shown that Zeff grows as �´thr 2 ´�21�2 below
the Ps formation threshold. The singularity in Zeff is re-
moved when the finite lifetime of para-Ps is considered.
The virtual Ps contributions to the two-photon annihila-
tion cross section and the para-Ps cross section are found
to be identical. A similar relation can be derived for the
three-photon annihilation and ortho-Ps formation.

In hydrogen the predicted threshold law gives a good
description of Zeff from the numerical calculations [3].
For other atoms, e.g., heavier noble-gas atoms, the s-wave
Ps formation cross sections can be much larger than that
for hydrogen [15]. For example, we estimate that for Xe
jAPsj

2 is about 102 times that for hydrogen. This means
that 0.1 eV below threshold the threshold enhancement of
Zeff [Eq. (8)] is about 10.

Previously there was little hope that the above effects
could be observed experimentally. The recent development
of a cold positron beam [16] looks promising. However,
the finite-energy spread of the beam (�20 meV) poses a
problem. If the high-energy tail of the positron energy
distribution overlaps with the large Ps formation cross sec-
tions above threshold, the “real” Ps annihilation will drown
163202-4
the enhanced (but still small) subthreshold annihilation
signal.
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