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Quantum chaos in many-body systems:
what can we learn from the Ce atom?
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Abstract

Results of an extensive study of a real quantum chaotic many-body system – the Ce atom – are presented. We discuss
the origins of the quantum chaotic behaviour of the system, analyse statistical and dynamical properties of the multi-particle
chaotic eigenstates and consider matrix elements or transition amplitudes between them. We show that based on the universal
properties of the chaotic eigenstates astatistical theory of finite few-particle systemswith strong interaction can be developed.
We also discuss such important physical effects as enhancement of weak perturbations in many-body quantum chaotic
systems, distribution of single-particle occupation numbers and its deviations from the standard Fermi–Dirac shape, and ways
of introducing statistical temperature-based description in such systems.c©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main purpose of the present work is to inves-
tigate the behaviour of conservative finite quantum
systems of several strongly interacting particles. Ex-
amples of such systems are nuclei, atoms, molecules,
atomic clusters or quantum dots in solids. Under cer-
tain conditions which we discuss below, the spectra
of eigenvalues and the structure of the corresponding
many-particle eigenstates acquire universal features.
For example, the level spacing statistics become close
to those of the Wigner random matrices, and the tran-
sition amplitudes between the eigenstates appear as
uncorrelated Gaussian random variables.

∗ Corresponding author. E-mail: gribakin@newt.phys.unsw.
edu.au.

The interactions between particles or degrees of
freedom are very different in the many-body sys-
tems mentioned above. However, these systems have
much in common. In the first approximation one
chooses a particular mean field (e.g., that given by
the Hartree–Fock method in atoms, or the adiabatic
Born–Oppenheimer approximation in molecules) and
uses it to construct a set of single-particle states.
Many-particle states|Φk〉 are then obtained by simply
distributing the active particles among the single-
particle states. Such many-particle states are some-
times called configurations. Because of theresidual
(i.e., not included in the mean field) two-body interac-
tion between the particles these many-particle states
are not eigenstates of the system. However, they can
be used as a many-particle basis set to construct the
Hamiltonian matrix and find the eigenstates via its
diagonalization.

0167-2789/99/$ – see front matterc©1999 Elsevier Science B.V. All rights reserved.
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In the ground state of the system the particles just
fill the lowest available single-particle states, hence,
the ground state is usually characterized by a well-
defined configuration. The admixture of higher lying
configurations is rather small and can be taken into
account by perturbations. As the energy of the system
increases the number of single-particle states avail-
able for the active particles becomes large. For simple
combinatorial reasons the number of many-particle
states that can be constructed from them grows ex-
ponentially. The basis state energies, which can be
defined as the expectation values of the Hamilto-
nian, form a very dense mesh and the mean interval
between neighbouring basis state energies becomes
very small. Under these conditions even a small
residual interaction introduces strong nonperturbative
mixing of the basis states. Roughly speaking, this
happens when the configuration-mixing off-diagonal
matrix elementsHij of the Hamiltonian become
greater than the energy spacing between the basis
states coupled by the residual interaction (see, e.g.,
[1–4]).

As a result, the following structure of the eigen-
states is established. Each eigenstate is a linear com-
bination of the basis states,|Ψ 〉 = ∑

kCk|Φk〉. The
number of basis states that strongly participate in a
given eigenstate is large,N � 1. It can be estimated
as N ∼ Γ/D, whereΓ ' 2πH 2

ij ρ is the so-called

spreading width,ρ = D−1 is the eigenvalue density,
andD is the mean level spacing between the eigen-
values (approximately equal to the mean spacing
between the basis state energies). The value ofΓ is
usually comparable with typical energy scales in the
problem, thus,Γ ∼ eV in atoms andΓ ∼ MeV in nu-
clei. For basis statesk whose energies are close to the
eigenvalue,|Ek − E| . Γ , the components are large
Ck ∼ 1/

√
N , and these components dominate the nor-

malization condition
∑

kC
2
k = 1. Outside the spread-

ing width, at|Ek −E| > Γ , the components decrease.
These regular features aside, the components behave
like random variables. In other words, the mean-
squared value of the component〈C2

k 〉 is a smooth
function of Ek − E with a maximum atEk ≈ E.
For fixed Ek − E the statistics ofCk is close to
Gaussian.

In this situation the eigenvalue spectrum is char-
acterized by level repulsion effects and the statistics
of level spacings is described by the famous Wigner
formula. Note that in common random matrices, e.g.,
those of the Gaussian orthogonal ensemble, the
diagonal matrix elements fluctuate similarly to the off-
diagonal ones, whereas the diagonal matrix elements
of the many-body Hamiltonian increase monotoni-
cally.1 Studies of experimental data for the energy
levels in heavy nuclei [5] and complex atoms [6,7]
agree with the Wigner statistics. They have been
observed in numerical calculations for the atom of
cerium (Ce) [8] and the nuclear sd shell model [9–12].

When every eigenstate is a chaotic superposition of
a large number of basis states the eigenstates loose
their “individual features”, and the only good quan-
tum numbers remaining in the spectrum are the exact
ones: the total angular momentum and parity (if the
Hamiltonian is symmetric with respect to rotation and
inversion), and the energy itself. Since different con-
figurations are mixed together by the residual inter-
action, the occupation numbers of the single-particle
orbitals strongly deviate from integers and the eigen-
states cannot be characterized in terms of the single-
particle quantum numbers. The matrix elements of
some external perturbation (transition amplitudes) be-
tween the chaotic eigenstates have the statistics of a
random Gaussian variable with zero mean.2 Note that
all these effects take place in the energy range of pure
quantum dynamics, well below the semiclassical limit.
However, the picture of chaotic “compound” (nuclear
physics term) eigenstates produced by the strong resid-
ual interaction between the particles allows one to de-
scribe this situation as many-bodyquantum chaos.

1 Of course, this can always be achieved by appropriate enumer-
ation of the basis states. The physical importance of the diagonal
matrix elements is in that they essentially guide the behaviour of
the eigenvalue density in the system. On the contrary, in many
random matrix models the distribution of the diagonal matrix ele-
ments is narrow, e.g., Gaussian or rectangular, and the eigenvalues
spread over a much wider energy range. The eigenvalue density is
then determined by the mean-squared off-diagonal matrix element
and has the shape of semicircle.

2 Their distribution can therefore be characterized by the variance,
or the mean-squared value, alone. Its value varies smoothly as
a function of the energies of the eigenstates involved (secular
variation).
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The properties of the chaotic eigenstates can be used
to develop a statistical theory of finite few-particle
quantum systems [13–15]. The specificequilibrium
that emerges in the system due to the residual two-
body interaction enables one to introduce thermody-
namic temperature-based description in the isolated
few-body system [9,16] and use it, e.g., to calculate av-
erage occupation numbers of the single-particle states.
This is possible in spite of large deviations of the oc-
cupation numbers from the usual Fermi–Dirac distri-
bution caused by the strong interaction between par-
ticles [16]. Based on the structure of the many-body
compound states a statistical approach to calculation
of matrix elements (transition amplitudes) between
these states has been developed [17,18]. It expresses
the mean-squared matrix elements of an operator in
terms of the single-particle amplitudes and occupation
numbers, and characteristics of the chaotic eigenstates
involved, namely, their energies, spreading widths and
numbers of principal componentsN .

One of the most interesting properties of the chaotic
many-body systems isdynamical enhancementof per-
turbations. It is responsible for the huge 106-times en-
hancement of the weak interaction in compound nu-
clei (see, e.g., [19,20]). Due to this phenomenon parity
nonconservation effects at 10% level have been ob-
served in neutron scattering by heavy nuclei. The ori-
gin of the enhancement is in that the typical level spac-
ing in the chaotic many-body system is very small,
D ∼ Γ/N , whereN can be as large as 106 in nu-
clei. The matrix element of a perturbation between the
chaotic many-body eigenstates is also suppressed, but
only as 1/

√
N . Therefore, the effect of the perturba-

tion, estimated as the ratio of its matrix element to
the energy denominator, is

√
N times enhanced. Note

that the strong mixing of the basis states by the resid-
ual interaction is essential for the dynamical enhance-
ment. It cannot be observed in a system of noninter-
acting particles, e.g., a perfect gas, although its energy
spectrum can be very dense. The point is that nearby
multi-particle levels in this case will have very differ-
ent configurations and will not be coupled by a one-or
two-body external perturbation.

The purpose of this paper is three-fold. Using our
numerical calculations of the real four-particle system,

the Ce atom, we illustrate the properties of chaotic
many-body eigenstates and show how they can be used
to develop a statistical theory for such systems. Sec-
ondly, we analyse to what extent our realistic numer-
ical model agrees with usual assumptions and con-
clusions of the random-matrix theories (see reviews
[21,22]). Thirdly, we demonstrate that complex open-
shell atoms are convenient testing grounds for study-
ing many-body quantum chaos, open for both theoret-
ical and experimental investigation.

It looks appropriate to give a brief overview of the
problem of quantum chaos in atoms. Since Bohr’s the-
ory of the hydrogen atom atoms were considered as
perfectly regular dynamical quantum systems. How-
ever, as the theory of classical chaos evolved, it be-
came clear that highly excited atomic states in the Ry-
dberg range could become chaotic if an external field
is applied [23,24], as long as the underlying classical
motion was chaotic.

On the other hand, it was also due to Bohr that the
notion of compound nuclei was introduced in physics.
The behaviour of these highly excited nuclear states
is essentially quantum-mechanical. Nevertheless, they
display a number of chaotic properties described
above. The first insight into quantum chaotic proper-
ties of complex atoms was given by Rosenzweig and
Porter [6] who analysed experimental spectra of some
neutral atoms and showed that the spectral statistics
of heavy open-shell atoms are similar to those of
compound nuclei. That analysis was later extended
and refined in [7]. Of course, the study of eigenvalues
provides valuable information about the system. On
the other hand, the spectral statistics observed in the
heavy open-shell atoms are similar to those of the hy-
drogen atom in a strong magnetic field [25], or even
a particle in a two-dimensional classically ergodic
billiard [26,27]. However, the eigenstates of these
quantum systems must be completely different, and
it is clear that the eigenvalue statistics cannot really
tell us much about the origin of chaotic behaviour, or
indeed the structure of the chaotic eigenstates.

The first inquiry into the possibility of chaos in the
eigenstatesof complex atoms was done by Chirikov
[28]. He studied configuration compositions of the
eigenstates of the Ce atom using data from the tables
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[29], and came to the conclusion that the “eigenfunc-
tions are random superpositions of some few basic
states”. Inspired by that work we conducted an exten-
sive numerical study of the spectra and eigenstates of
complex open-shell atoms, using the rare-earth atom
of Ce as an example [8,16,30–32]. The present paper
summarizes our earlier findings, as well as gives new
insights into the problem of quantum chaos in a real
many-body system.

2. Eigenvalues and eigenstates

2.1. The cerium atom

The atom of Ce (Z = 58) has one of the most
complicated spectra in the periodic table. Besides their
energies, the atomic eigenstates are characterized by
the total angular momentumJ and parityπ (+ or
−). For a givenJπ the level density in Ce reaches
hundreds of levels per eV at excitation energies of just
few eV, well below the ionization threshold ofI =
5.539 eV [29]. The electronic structure of Ce consists
of a Xe-like 1s2 . . . 5p6 spherically symmetric core and
four valence electrons – active particles3 . The atomic
ground state is described by the 4f6s25d configuration
with Jπ = 4−.

The origin of extremely complex and dense excita-
tion spectra in Ce and other rare-earth atoms is in the
existence of several open orbitalsnlj near the ground
state, namely, 4f5/2, 4f7/2, 6s1/2, 5d3/2, 5d5/2, 6p1/2,
and 6p3/2. Each of the orbitals is 2j+1-degenerate and
this makes a total ofNs = 32 single-electron states.
For Ce withn = 4 valence electrons there are about
(Ns)

n/n! ≈ 4×104 possible many-electron states con-
structed from them. If we allow for the two possible
parities, about ten possible values ofJ , and 2J + 1
angular momentum projectionsJz (another factor of
10), there will still be hundreds of energy levels within
a givenJπ manifold.

3 The typical excitation energy of the core is about 20 eV. Below
this energy we can work in the “frozen core” approximation and
consider the wave function of the core as a “vacuum” state|0〉,
to which the four valence electrons are added.

2.2. Energy levels

The calculations are performed using the Hartree–
Fock–Dirac (HFD) and configuration interaction
methods. A self-consistent HFD procedure determines
the mean-field potential of the atom and calculates
the basis set of single-particle states for the active
(valence) electrons,|α〉 = |nljjz〉 with energiesεα.
This procedure defines the zeroth-order Hamiltonian
of the system,

Ĥ (0) =
∑
α

εαa†
α aα. (1)

The multi-particle configuration basis states (deter-
minants)|Φk〉 are constructed from the single-particle

states,|Φk〉 = a
†
ν1a

†
ν2a

†
ν3a

†
ν4|0〉. By construction|Φk〉

are eigenstates of thêJz operator. To account for the
conservation of the total angular momentum in the
system, a new symmetrized basis|Φ(J)

k 〉, Ĵ 2|Φ(J)
k 〉 =

J (J +1)|Φ(J)
k 〉, is obtained by a linear transformation

of |Φk〉.
The total HamiltonianĤ of the active electrons is

the sum of the mean-field Hamiltonian of the core
Ĥ (0) and the two-body residual interaction:

V̂ = 1

2

∑
αβγ δ

Vαβγ δa
†
α a

†
β aγ aδ, (2)

whereVαβγ δ is the matrix element of the Coulomb

interaction between the electrons. In the|Φ(J)
k 〉 basis

the Hamiltonian matrix has a block diagonal struc-

ture, 〈Φ(J)
i |Ĥ |Φ(J ′)

k 〉 = H
(J)
ik δJJ ′ . Since we always

consider states with a givenJ (and parity), the corre-
sponding superscript will be dropped hereafter.

The diagonal matrix elementsHkk = H
(0)
kk +Vkk ≡

Ek can be interpreted as energies of the basis states.
The off-diagonal matrix elementsHik = Vik are re-
sponsible for mixing of the multi-particle basis states.
Diagonalization of the Hamiltonian matrix yields the
energiesE(i) and the eigenstates|Ψi〉 = ∑

kC
(i)
k |Φk〉

of the system.
In our earlier work [8] we considered only a few

lowest nonrelativistic configurations constructed of the
4f, 6s, 5d, and 6p orbitals, and had 260 and 276 eigen-
states of theJπ = 4− and 4+ symmetries, respec-
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Fig. 1. Cumulative number of levels and level spacing statistics for theJπ = 4+ states in Ce. Dotted line is the calculation with 1433
basis states; dashed line is the small-scale calculation with 276 states; thick solid line describes 132 experimental levels from [29]. Thin
solid line is the independent-particle fit (4). The inset shows statistics of the normalized level spacingss for the 500 levels, compared with
the Wigner distribution (5).

tively. To make the results more realistic we have in-
creased the single-particle basis by including the 5f,
7s, 7p and 6 d orbitals, and extended the configura-
tion basis set by including all electron configurations
within 10 eV of the atomic ground state. This increased
the total number of 4− and 4+ states to 862 and 1433,
respectively4 .

Fig. 1 shows the calculated cumulative number of
levels

N(E) =
∫ E

−∞
ρ(E′) dE′, (3)

whereρ(E) = ∑
iδ(E −E(i)) is the level density, for

the Jπ = 4+ eigenstates of Ce. Note that the energy
scale is chosen so that theE = 0 corresponds to the
energy of the Ce 4− ground state. The main feature

4 For the given choice of the basis the numbers of positive-parity
eigenstates withJ = 0–10 were 343, 917, 1354, 1493, 1433, 1153,
826, 497, 262, 107, and 34, respectively, i.e., the full size of our
Hilbert space is about 8× 103. We have chosen to analyse the
states withJ = 4, as this manifold is among the most abundant.

of the spectrum is a rapid growth of the level density
with energy (cf. our earlier small-scale calculation).
In the independent-particle model this dependence is
described by the following exponent [5]:

ρa(E) = ρ0 exp[a(E − Eg)
1/2], (4)

whereEg is the ground state energy. It can be seen
from Fig. 1 that forρ0 = 0.65 eV−1, a = 2.55 eV−1/2

andEg = 0.25 eV (energy of the lowest 4+ level with
respect to the 4− Ce ground state), Eq. (4) gives a
good overall fit of the level density. The experimental
spectra of the rare-earth atoms and their ions examined
in [7] are also in agreement with Eq. (4).

The second feature typical for the spectra of com-
plex many-body systems is level repulsion. It is de-
scribed well by the random-matrix theory. A good
approximation to the distribution of level spacings is
given by the Wigner formula

P(s) = (πs/2) exp(−πs2/4), (5)
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where s is the nearest-neighbour level spacing nor-
malized ass = ∫

sP (s) ds = 1. As we pointed out in
Section 1, spectral statistics do not tell much about the
eigenstates of the system. However, Eq. (5) is still a
good test for some possible hidden quantum numbers,
e.g., the total spin or orbital momentum, which might
characterize atomic eigenstates besidesJπ . If those
did exist small level spacings (“degeneracies”) would
be more abundant than that predicted by Eq. (5). The
spectral statistics were checked for many experimental
and calculated complex atomic spectra [6–8,33–35],
as well as for molecular vibronic spectra [36].

On the inset in Fig. 1 we compare Eq. (5) with
the level spacing distribution for the 500 lowest 4+

states in Ce. The calculated level spacings were nor-
malized using the analytical density fit:sn = (En+1 −
En)ρa(En). The agreement is good and the deviations
are probably due to the long-range fluctuations of the
level density, not accounted for by the simple expo-
nential (4).

Thus, we see that the eigenvalue density in the
many-body system indeed rapidly increases with en-
ergy. The level spacing distribution evidences that
there is strong nonperturbative configuration mixing
in the system. The energy, total angular momentum
and parity remain the only good quantum numbers.

2.3. Chaotic eigenstates

Fig. 2(a) depicts a typical eigenstate of Ce. It shows
the componentsCk of the 400th 4+ eigenstate vs.
the energies of the basis statesEk. The energy of the
400th even state isE = 5.73 eV above the Ce ground
state. The contributions of the basis states whose ener-
gies are close to the eigenvalue are large, whereas for
Ek further away from the eigenvalue the components
show a steady decrease. In general the large (principal)
components are centred around some energyE +∆E

slightly shifted away from the eigenvalue. This effect
is especially strong near the edges of the spectrum.
Thus, at the low energy end of the spectrum the eigen-
values are systematically shifted down with respect to
the diagonal matrix elements of the Hamiltonian. This
is just another manifestation of the level repulsion due
to the off-diagonal matrix elements.

Fig. 2. Components of the 400thJπ = 4+ eigenstate (a) and
the mean-squared values for the 400± 9 eigenstates (histogram)
(b) fitted by a Breit–Wigner (solid curve, Eq. (7),N = 421,
Γ = 1.44 eV) and squared Breit–Wigner (dashed curve) functions.
Plot (c) is done using a logarithmic scale to magnify〈C2

k 〉 at the
wings, for |Ek − E| > Γ .

Therefore, the many-body eigenstates appear to be
chaotic and localized atEk ≈ E with respect to the
configuration-state basis|Φk〉. The latter property is
best characterized by the strength function introduced
by Wigner and also known as the local density of
states:

ρw(E, k) =
∑

i

C
(i)2
k δ(E − E(i)) ' 〈C2

k 〉Eρ(E), (6)

where〈C2
k 〉E ≡ 〈C(i)2

k 〉 is the mean-squared compo-
nent averaged over the eigenstates withE(i) ≈ E, and
ρ(E) is the eigenvalue density. We present〈C2

k 〉E ob-
tained by averaging the components of the 400± 9th
eigenstates within discrete energy intervals in Fig.
2(b). Its shape is described well by the Breit–Wigner
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(BW) profile

〈C2
k 〉E = 1

N

Γ 2/4

(Ek − E − 1E)2 + Γ 2/4
, (7)

which also defines the spreading widthΓ and the num-
ber of principal componentsN . Since〈C2

k 〉 = 1/N at
the centre of the eigenstates, the value ofN character-
izes the number of eigenstate components around the
maximum of the profile. By means of the normaliza-
tion

∑
k〈C2

k 〉E = ∑
kC

(i)2
k = 1, Eq. (7) impliesN =

πΓ/2D, whereD = 1/ρ is the mean level spacing.
The BW shape of the strength function was first de-

rived for the infinite-size band random matrix (BRM)
model [37,38]. It was assumed in the model that the di-
agonal matrix elements are equally spacedHkk = kD

(thus,ρ = D−1 = const), and the off-diagonal ma-
trix elements are independent random variables with

Hij = 0, andH 2
ij = V 2 for |i − j | ≤ b (b � 1

characterizes the width of the band) andHij = 0 out-
side the band. Wigner showed that inside the band,
for |Ek − E| < Db, the strength function is given by
Eq. (7) with Γ = 2πV 2ρ, provided the eigenstates
are localized within the band:Γ < Db. Recently this
result has been derived for sparse matrices with a dif-
fuse band [39]. The BW spreading also emerges in the
well-known nuclear physics model of a state interact-
ing with a large set of states withρ = const by means
of a constant or weakly fluctuating matrix element [5].
It has been verified numerically in our earlier calcula-
tions in Ce [8], the sd shell nuclear model [9–12] (for
the interaction strengths which satisfiedΓ < Db), and
the two-body random interaction model [40]. Some of
the deviations from the BW shape observed in [9–12]
were attributed to the fact theρ 6= const. in realis-
tic calculations. They also noticed that〈C2

k 〉E demon-
strates a much better agreement with the BW profile
than the strength function (6) itself.

If we use the parameters of the BW fit we can es-
timateD = πΓ/2N ≈ 5.4× 10−3 eV, ρ = 185 eV−1

near the 400th even eigenstate (a similar number is ob-
tained from Eq. (4)). Combined with the mean-squared
off-diagonal matrix element for theJπ = 4+ states,

H 2
ij = 1.22× 10−3 eV2 (see Section 2.4) we can ob-

tain a theoretical value ofΓ = 2πH 2
ij ρ = 1.42 eV,

in agreement with that obtained from the BW fit in
Fig. 2(b). There are two reasons for discrepancies be-
tween the numerical〈C2

k 〉E and the BW shape. Firstly,
there are some configurations which mix better than

others, i.e.,H 2
ij for them is greater than that for the

whole matrix. Hence, one observes a shoulder-like
structure on the low-energy side of the〈C2

k 〉E maxi-
mum. Secondly (see Fig. 2(c)), as|E −Ek| increases,
the squared components tend to drop faster than that
predicted by Eq. (7). This effect is emphasized by the
squared Breit–Wigner fit in the figure. It is caused by
an effective bandedness of the Hamiltonian matrix,
which means that for greater|E−Ek| the coupling de-
creases, and the mixing is achieved effectively through
higher perturbation theory orders. This becomes espe-
cially obvious in the Wigner BRM model where the
decrease of the strength function outside the band is
exponential [8,37,38].

The systematic behaviour of the components’ vari-
ance is described by〈C2

k 〉E . Apart from this their
statistics at a givenEk − E should become Gaus-
sian with zero mean if the basis state mixing is com-
plete and uniform. We observed this effect earlier by
analysing the statistics of the normalized components
C

(i)
k [〈C2

k 〉E ]−1/2 [8]. If on the contrary there were sub-
systems not coupled or coupled weakly by the residual
interaction, there would be a large abundance of zero
or very small components. In the present calculation
besides the lowest electron orbitals of each symmetry,
4f, 6s, 5d and 6p we had in [8], we have included or-
bitals with higher principal quantum numbers. They
have larger radii and the residual Coulomb interaction
is smaller for them. Nevertheless, Fig. 3 shows that
the distribution of the normalized components of the
400th eigenstate used as an example is rather close to
Gaussian.

The picture of chaotic many-body eigenstates out-
lined above is valid when the number of principal
componentsN is large. This happens when the exci-
tation energy is much greater than the single-particle
level spacingd0. The effective value ofd0 can be es-
timated from the fitting parametera in Eq. (4) and
its analytical value in the Fermi gas model [5],a =
2[π2g0/6]1/2, whereg0 is the single-particle level den-
sity at the Fermi level. Usinga = 2.55 eV1/2 we ob-
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Fig. 3. Statistics of the normalized componentsC
(i)
k [〈C2

k 〉E ]−1/2

for the 400thJπ = 4+ eigenstate (histogram), compared to the
normal Gaussian distribution (solid curve).

tain d0 = g−1
0 = 1 eV. Practically, at a twice greater

excitation energyE−Eg = 2 eV, whereρ ≈ 25 eV−1,
the number of prinicipal componentsN ∼ ρΓ ∼ 40
is already large.

We can compare this estimate with the condition
for the onset of chaos presented in [1–4]. At this
energy the spacing between the many-body states is
D ≈ 0.04 eV. The spacingd2 between the basis states
coupled directly byHij is approximately two times
greater,d2 ≈ 0.08 eV, since the sparsity of the Hamil-
tonian matrix isS ≈ 0.5 (see Section 2.4). The typ-
ical nonzero off-diagonal matrix element isHij ∼
0.1 eV (see below), thus, the condition of chaotic mix-
ing Hij & d2 is fulfilled.

2.4. Statistics of the Hamiltonian matrix

We have seen that the properties of the eigenvalues
and eigenvectors of a real chaotic many-body system
(Ce) are similar to those obtained in random matrix
models. Of course, the Hamiltonian of Ce is in no
sense random: this is a purely dynamic system driven
only by the Coulomb interaction between the electrons
and with the nucleus. Moreover, it is easy to check
that the statistics of the off-diagonal Hamiltonian ma-
trix elements shown in Fig. 4 bears very little resem-
blance to the Gaussian distribution adopted in many
random-matrix studies. It should rather be described

Fig. 4. Distribution of the off-diagonal matrix elements of the
Jπ = 4+1433× 1433 (upper histogram) andJπ = 4−862× 862
(lower histogram) Hamiltonian matrices. Thick solid and dashed
curves show simple fits (8) withκ = 1 andVκ = 0.16 and 0.19 eV,
respectively.

by a singular expression

P(Hij ) ∝ |Hij |−κ exp(−|Hij |/Vκ), (8)

whereκ > 0 andVκ characterizes the typical value of
the matrix element.

In our previous work [8] we analysed the distribu-
tion of Hij for small Hamiltonian matrices in the con-
figuration space built from the seven lowest electron
orbitals, and adoptedk = 1/2. We see from Fig. 4
that addition of new configurations involving higher-
lying electron orbitals has increased theκ value to 1.
This means that there is a larger fraction of small ma-
trix elements in the Hamiltonian now. In the nuclear
sd shell model values ofk = 1 and 2 were obtained,
depending on the total angular momentum and isospin
of the states. Note that forκ ≥ 1 distribution (8) has
an infinite norm. On the other hand the true dimension
of the Hilbert space and the Hamiltonian matrix of a
real many-body system is infinite. Accordingly, most
of the matrix elements describe mixing between very
distant and different configurations, hence, they must
be very small. The fact that we obtainκ ≥ 1 in realis-
tic numerical calculations is probably a manifestation
of this general phenomenon.

Fig. 5 gives a better insight into the distribution of
the matrix elementsHij over the matrix. We have not
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Fig. 5. Properties of the Hamiltonian matrix of theJπ = 4+
states obtained by averaging over a running 99× 99 window: (a)
sparsity; (b) mean-squared matrix elements.

mentioned yet that the Hamiltonian matrix of a many-
body system with two-body interaction between parti-
cles is alwayssparseif the number of active particles
is greater than 2. In this case there are basis states|Φi〉
and|Φj 〉 that differ by positions of more than two par-
ticles, which means that the two-body residual interac-
tion (2) does not couple them:Hij = 〈Φi |V̂ |Φj 〉 = 0.
Thus, the Hamiltonian matrix contains a certain num-
ber of zero off-diagonal elements. This property is bet-
ter characterized by specifying the fractionS of non-
zero matrix elements, which we call sparsity. If allHij

are nonzero,S = 1. The Hamiltonian matrix calcu-
lated in the determinant basis is quite sparse (S � 1),
because the number of single-particle states is usu-
ally much greater than the number of active particles
(32 and 4 in our original calculation of Ce, or 24 and

12 in [9–12]). In the symmetrizedJπ basis there are
much fewer zero matrix elementsHij due to a certain
“pre-mixing” of the determinants through the angular-
momentum algebra5 . As a result, just over 50% of
Hij are zeros in our calculation of theJπ = 4+ states
of Ce. As seen in Fig. 5(a)S is almost constant over
the matrix. The average sparsity for the whole matrix
is S = 0.45.

On the contrary, the locally averaged squared ma-

trix elementsH 2
ij show a considerable variation, Fig.

5(b). In spite of the roughness of theH 2
ij surface one

can clearly see the existence of a wide and diffuse
band withb ∼ 500. Inside this band the matrix ele-
ments are noticeably larger than the mean-square off-

diagonal matrix element for the whole matrixH 2
ij =

1.22× 10−3 eV2. Note that the rms value calculated
over the nonzeroHij (0.052 eV) is of the same order of
magnitude as theVκ parameter in Fig. 4. The existence
of the band in the Hamiltonian matrix explains the
faster-than-BW decrease of the mean-squared compo-
nents at the wings|Ek − E| & Db seen in Fig. 2(c).

The banded structure of the Hamiltonian matrix was
also seen in our early calculations for Ce [30] and in
the nuclear sd shell model [9–12]. Thus, it appears that
the Hamiltonian matrix of a real chaotic many-body
system can be described as both sparse and banded,
with a singular distribution (8) of the nonzero matrix
elements. However, the parameters of the matrix, like
the mean spacing between the diagonal matrix ele-
ment, the mean-squared off-diagonal matrix element
and the effective width of the band may vary along
the matrix.

3. Occupation numbers in the few-body Fermi
system

3.1. Equilibrium brought by the interaction between
particles

The picture of chaotic mixing of basis states re-
vealed in Section 2 means that the strong residual

5 This effect has been described as “geometrical chaoticity” in
[9–12].
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two-body interaction between the active particles in-
troduces some kind of statisticalequilibrium in the
system. It is governed by the large number of com-
ponentsN mixed together within every eigenstate of
the system6 . Accordingly, the size of fluctuations is
∼ 1/

√
N . This situation is different from the standard

statistical mechanical notion of the equilibrium that
requires the number of particles or degrees of freedom
in the system to be large. On the contrary, the equilib-
rium in Ce is achieved with just four electrons.

This equilibrium enables one to develop a statis-
tical theory for finite few-particle quantum systems
with strong interaction between the particles [14,15].
This theory should allow one to introduce tempera-
ture, entropy, etc., and calculate various properties of
the system, e.g., the occupation numbers, or the rms
values of matrix elements of an external perturbation
between the chaotic many-body states. Several differ-
ent ways of defining the temperature and entropy for
such systems have been considered in [9–12,14]. Both
the sd shell model and the two-body random interac-
tion model showed that for sufficient two-body inter-
action strengths the occupation numbers agree with
the Fermi–Dirac distribution (FDD). This could be
expected from the point of view of Landau–Migdal
Fermi-liquid theory which describes the excitations of
the system in terms of interacting quasiparticles.

On the other hand, our study of Ce [16] demon-
strates that there could be serious deviations from the
FDD due to strong fluctuations of the two-body inter-
action between different orbitals, Fig. 6. Nevertheless,
it is possible to introduce the temperature, and even
describe the non-trivial behaviour of the occupation
numbers observed in the configuration–interaction cal-
culations using a thermodynamic approach. The study
of the occupation numbers provides a clear illustration
of the relation between the statistical equilibrium due
to many-body chaos and the usual one, due to inter-
action of the system with a heat bath.

The occupation number of a given single parti-
cle stateα in a many-body eigenstatei is given by

〈Ψi |n̂α|Ψi〉 ≡ 〈Ψi |a†
α aα|Ψi〉. It is more instructive to

6 Except, possibly, the ground state and a few low-lying excited
states.

Fig. 6. Energy dependence of the occupation numbers. Thin solid
and dashed line show〈Ψi |n̂α |Ψi〉 calculated numerically and av-
eraged over an energy window. Thick solid and dashed lines are
the result of the thermodynamic description equations (11) and
(12). The solid and dashed lines correspond to the lower and
upper fine-structure components (4f5/2 and 4f7/2, and 5d3/2 and
5d5/2, respectively). Dotted line in the middle plate connectsn6s

calculated for every eigenstate.

average these occupation numbers over a few neigh-
bouring eigenstates withE(i) ≈ E and definenα(E)

as

nα(E) = 〈Ψi |n̂α|Ψi〉 =
∑

k

〈C2
k 〉E〈nα〉k

≈
∫

ρw(E, k)〈nα〉k dEk, (9)

where〈nα〉k = 〈Φk|nα|Φk〉, and the summation over
k has been replaced by integration using Eq. (6). We
also use the similarity between the eigenvalue density
ρ(E) and that of the basis state energiesEk.
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3.2. Temperature

Let us now suppose the off-diagonal part of the
residual interaction (2) is switched off. The basis states
|Φk〉 then represent the eigenstates of the system with
energies

Ek =
∑
α

εα〈nα〉k

+
∑
α<β

(Vαββα − Vαβαβ)〈nα〉k〈nβ〉k. (10)

If we bring the system in contact with a heat bath
at temperatureT the probabilities of finding the sys-
tem in different statesk will be given by the canoni-
cal distributionwk = Z−1 exp(−Ek/T ), whereZ =∑

k exp(−Ek/T ). Accordingly, the average occupa-
tion number at temperatureT is given by

nα(T ) =
∑

k

wk〈nα〉k '
∫

wT (Ek)〈nα〉k dEk, (11)

where wT (Ek) = Z−1 exp(−Ek/T )ρ(Ek) is the
canonical probability density. It peaks at some energy
because of the competition between the two expo-
nents (see Eq. (4)). The position of the peak gives
the usual thermodynamic relation between the most
probable energy of the system and the temperature,
T −1 = d[ ln ρ(E)]/dE. If the temperature is not too
small the energy defined by this equation is close to
the mean energy

E(T ) =
∑

k

wkEk '
∫

EkwT (Ek) dEk. (12)

Compare Eqs. (9) and (11). In both the cases the
occupation numbers of the basis states are folded
with a bell-shaped distribution, provided either by
the strength function (spreading due to the residual
interaction which mixes the basis states), or by the
thermodynamic probability density (“mixing” due to
interaction with a heat bath). In this sense the mixing
produced by the strong two-body interaction can be
indeed viewed as an equilibrium similar to the ther-
modynamic one. Besides, one can use the statistical
model given by Eqs. (10)–(12) to find the relation

between the energy and temperature7 and calculate
the occupation numbers in the system of few strongly
interacting particles.

Using the single-particle energies and the two-body
matrix elements for the 14 lowest electron orbitals in
Ce we have performed the thermodynamic calculation
of the occupation numbers for the even states of Ce.
For a rotationally symmetric system it is more conve-
nient to look at the occupation numbers of the orbitals

nlj : n̂nlj = ∑
jz

a
†
nljjz

anljjz , which are independent of
the z componentsjz of the angular momentum, as
well as of Jz (see [16] for details). The results are
shown in Fig. 6 by thick curves. They fit well the en-
ergy dependence of the occupation numbers from the
exact Hamiltonian diagonalization. For the 6s orbital
we also show the unaveraged occupation numbers. At
E > 2 eV the fluctuations ofn6s become small. This
boundary corresponds to the onset of strong mixing
and chaotic eigenstates in the system.

4. Matrix elements between chaotic eigenstates

4.1. Statistical theory

The random-like behaviour of the components of
the chaotic many-body eigenstates (Fig. 2) means that
the matrix elements of an operator̂M calculated for
such states

Mab = 〈Ψa|M̂|Ψb〉 =
∑
k,l

C
(a)
k C

(b)
l 〈Φk|M̂|Φl〉 (13)

display Gaussian statistics, as any sum of a large num-
ber of uncorrelated random variables. This results in
the Porter–Thomas statistics of the probabilities pro-
portional to the square of (13) – a factwell known for
nuclear processes involving compound (chaotic) states
[5]. In complex many-body systems there is no hope
of calculating the highly excited chaotic eigenstates

7 The true relation betweenE andT should include a correction,
E = E(T ) − 1E(T ), where 1E(T ) is positive in the lower
(physical) part of the spectrum. It takes into account the shift of
the eigenvalues with respect to the basis states due to the off-
diagonal part of the Hamiltonian [14–16]. In fact,T > 0 even in
the ground states of the system, since there is admixture of some
higher lying configuration to it.
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accurately enough to allow state-by-state comparison
with the experiment. The same is true for the transi-
tion amplitudes (13) between them. In some cases the
spectra can be so dense that it becomes impossible to
resolve particular levels, and the experiment can only
produce some average characteristics. Thus, it is im-
portant to be able tocalculatethe mean-squared val-
ues of the transition amplitudes. Averaged over level-
to-level fluctuations they will vary smoothly with the
energies of the states involved.

A statistical approach to calculation of mean-
squared values of the matrix elements between chaotic
many-body states has been developed and described
in [8,17,18,32], and we will only present the re-
sults here. SupposêM is a one-body operator8 M̂ =∑

α,β〈α|m̂|β〉a†
α aβ ≡ ∑

α,βmαβρ̂αβ , which causes
transitions between the chaotic statesa and b. Eq.
(13) then becomes

〈Ψa|M̂|Ψb〉 =
∑
α,β

mαβρ
(ab)
αβ , (14)

whereρ
(ab)
αβ = 〈Ψa|a†

α aβ |Ψb〉 is a nondiagonal matrix
element of the density matrix operator. It gives the
contribution of the single-particle transitionα → β in
the many-body matrix elements between the statesa

andb. The mean value of the matrix element (13) is
zero if a 6= b (in many applications statesa andb are
even of different symmetry, e.g., if one examines elec-
tromagneticE1 transitions they must have opposite
parities). For chaotic many-body eigenstates contribu-
tions of transitions between different pairs of single-
particle statesα, β are uncorrelated, and the mean-
squared matrix element is given by

|〈Ψa|M̂|Ψb〉|2 =
∑
α,β

|mαβ |2|ρ(ab)
αβ |2. (15)

The main result of the statistical theory is that the
mean-squared value of the density matrix operator can
be expressed in terms of the parameters of the chaotic
eigenstatesa andb and the average occupation num-

8 For example, the interaction with the electromagnetic field, or
the parity-violating weak potential. One can also consider matrix
elements of two-body operators [17,18].

bers of the single-particle statesα and β in the fol-
lowing two forms:

|ρ(ab)
αβ |2 = Daδ̃(Γa, Γb, 1)〈n̂β(1 − n̂α)〉b,

|ρ(ab)
αβ |2 = Dbδ̃(Γa, Γb, 1)〈n̂α(1 − n̂β)〉a,

(16)

whereDa,b are the mean level spacings for the states
a and b, and δ̃ is a “finite-width δ function”. It de-
pends on the spreading widthsΓa,b of the eigenstates
and on the energy difference1 = ωβα − E(b) + E(a)

between the many-body state energiesE and the en-
ergy of the single-particle transitionωβα = εβ − εα.
The exact form of the functioñδ(Γa, Γb, 1) depends
on the spreading of the many-body states over the ba-
sis components〈C2

k 〉E . If its shape is described by the
BW equation (7),̃δ also has a Breit–Wigner profile

δ̃(Γa, Γb, 1) = 1

2π

Γa + Γb

12 + (Γa + Γb)2/4
. (17)

It describes the specific “energy conservation” in tran-
sitions between the chaotic multicomponent eigen-
states and has a maximum atE(b) − E(a) = εβ − εα.

In systems with rotationally symmetric Hamiltoni-
ans the eigenstates are characterized by theJ and
Jz values. Thanks to the Wigner–Ekhart theorem one
only needs to calculate thereducedmatrix element
〈Ψa‖M̂‖Ψb〉 independent of theJz values of the states
a and b. At the same time, one should replacemαβ

with the reduced single-particle amplitudes and use
occupation numbers of the orbitalsnlj rather than the
single-particle statesα ≡ nljjz (cf. Section 3.2). The
expression for the mean-squared reduced matrix ele-
ment retains the structure of Eqs. (15) and (16), but
must be modified (see [8,32]). The result will depend
on therankk of the irreducible spherical tensor opera-
tor M̂. ForJa = Jb the mean-squared reduced matrix
element can be estimated as

|〈Ψa‖M̂‖Ψb〉|2

≈ 2Ja + 1

2k + 1
Da

∑
nlj,n′l′j ′

|〈nlj‖m̂‖n′l′j ′〉|2

×δ̃(Γa, Γb, 1)

〈
nn′l′j ′

2j ′ + 1

[
1 − nnlj

2j + 1

]〉
b

, (18)

or a similar form corresponding to the lower expres-
sion in Eq. (16).



V.V. Flambaum et al. / Physica D 131 (1999) 205–220 217

Fig. 7. Statistics of the normalizedE1 amplitudesM(n)
ab for tran-

sitions between the 191–210 odd and 261–280 even states with
J = 4 in Ce (histogram). The solid line is the normal Gaussian
distribution. The inset shows the rms values [〈M2〉a ]−1/2 of the
E1 amplitude (in units of the Bohr radiusa0). Dashed lines are
the values obtained from the statistical theory, Section 4.1.

4.2. Numerical results

We illustrate the theory outlined above by studying
the amplitudesMab of electromagnetic dipole (E1)
transitions between the 191–210 odd and 261–280
even states withJ = 4 in Ce. These states lie around
5 eV above the ground state, far into the quantum
chaotic region9 . To separate out level-to-level fluctu-
ations of the amplitude from the slow secular varia-
tion of its rms value we normalize the amplitudes as
M

(n)
ab = Mab[〈M2〉a ]−1/2, where〈M2〉a is calculated

for all odd statesa by averagingM2
ab over the 40 even

states. The statistics obtained for the 800 amplitudes
M

(n)
ab is shown on Fig. 7. It agrees well with the Gaus-

sian distribution with zero mean and unit variance.
The Gaussian statistics of the amplitude is a trivial

consequence of the chaotic nature of the eigenstates
involved. It is much more important to see how the
statistical theory of Section 4.1 works for its mean-
squared value. The inset in Fig. 7 shows the rms am-
plitudes [〈M2〉a ]−1/2 as functions of the energy of the
odd statesEa . To check the theory we first determine

9 In [32] we looked at the transitions between the 14 lowest
Jπ = 4− states below the quantum chaos boundary and the 20–
100 Jπ = 4− states, which are already chaotic. It is in fact
sufficient if only one of the statesa or b is chaotic to make the
consideration of Section 4.1 valid.

the parametersN andΓ andD of the odd and even
eigenstates involved. This is done by fitting BW pro-
files to 〈C2

k 〉E for them, as shown in Fig. 2(b). We
can also find the average occupation numbers of the
orbitals involved. Both procedures are done for the
eigenstates in the middle of the energy intervals stud-
ied: 200±9 (odd) and 260±9 (even). The result is then
obtained from Eq. (18). The two forms of the answer
(cf. Eq. (16)) yield slightly different values (0.607 and
0.569) shown in Fig. 7 (inset) with dashed lines. They
are close to the numerical rms value of 0.637 obtained
as an average over all 800 transitions.

Of course, the main goal of our statistical theory is
not to reproduce the results obtained by exact diago-
nalization of the Hamiltonian matrix. There are many
complex systems (e.g., compound nuclei) where the
size of the Hilbert space makes exact diagonalization
impossible. Nevertheless, the statistical theory should
enable one to estimate all important parameters of the
system, such as the density of states, spreading widths
of the chaotic many-body eigenstates, orbital occupa-
tion numbers, and finally, the mean-squared transition
amplitudes between the chaotic states. From this point
of view Ce is nothing but a convenient testing ground.
The main ideas and approaches should be applicable
with some little modifications to the whole variety of
finite Fermi systems with strong interaction between
particles.

5. Dynamical enhancement of perturbations

Consider a many-body quantum chaotic system
whose properties are similar to those studied above
for the Ce atom. Suppose a weak perturbationM̂ that
mixes states of different symmetry is applied. This
can be an external electric field, or the weak interac-
tion between the electrons and the nucleus in an atom,
or between the nucleons in a nucleus. The effect pro-
duced by the perturbation (e.g., parity violation) is
proportional to the mixing coefficient

ηab = 〈Ψa|M̂|Ψb〉
Ea − Eb

. (19)

The strongest mixing takes place between nearby
states|Ea −Eb| ∼ D, whereD is exponentially small
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compared to typical single-particle spacingsωαβ .
The rms matrix element between the chaotic states
estimated in Section 4.1 is, forEa ≈ Eb: Mab ∼
(Dm2

αβq/Γ )1/2 ∼ mαβ

√
q/N , wheremαβ here is the

typical single-particle matrix element,Γ is the larger
of the two spreading widths, andq is the effective
number of single-particle transitions that contribute
to the sum in Eq. (15), comparable to the number of
active particles. Thus, the matrix element between
chaotic states is suppressed as 1/

√
N with respect to

simple single-particle matrix elements. Nevertheless,
the typical mixing of the chaotic many-particle states

η ∼ Mab/D ∼
√

qNmαβ/Γ � mαβ/ωαβ (20)

is
√

N times enhanced compared to the single-particle
mixing. The last inequality impliesΓ ∼ ωαβ , which
is usually true. This effect characteristic for many-
body systems with strong interaction between particles
and dense spectra is often referred to asdynamical
enhancement of perturbations10 .

There is no repulsion between the energy levels of
different symmetry, and the distance to the nearest
neighbour should be described by the Poisson distri-
bution. If we take into account that the matrix ele-
mentsMab obey Gaussian statistics, the mixingsη will
be distributed according to the Cauchy distribution:
fc(η) = (ηc/π)/(η2+η2

c ), whereηc is the ratio of the
rms matrix element to the mean level spacing between
the mixed levels [41]. At largeη f (η) ∝ η−2, hence
the variance of the mixing is infinite, and the mean
is zero only in the principal value sense. This means
that large mixings are highly probable. The origin of
this effect is the absence of repulsion between levels
of different symmetries and the large probability of
coming across very smallEa − Eb in Eq. (19). There
is another interesting property which follows from the
infinite variance. Such random variables do not obey
the central limit theorem. Consequently, the average
value ofn independent mixings fluctuates as strongly
as any single mixing coefficient, and there is no 1/

√
n

10 In principle, this effect takes place for perturbations which mix
states of the same symmetry as well. For example, in complex
open-shell atoms it aids the removal of the conservation of the
total spin S and orbital angular momentumL by the spin–orbit
interaction.

Fig. 8. Statistics of the maximal mixings for 20Jπ = 4− levels
in Ce (191–210) with evenJ = 4 states, by the electric fieldE1
transition operator. Solid curve is Eq. (21) fitted to the numerical
data.

suppression. Therefore, averaging overn consecutive
levels (e.g., due to poor experimental resolution) does
not suppress the dynamical enhancement effect [41].

If instead of nearest-neighbour mixing we consider
the maximal absolute value of the mixing for a given
state their distribution can be approximated by

f (η) = (η0/η
2) exp(−η0/η), (21)

whereη0 ∼ ηc is the characteristic value of the max-
imal mixing [8]. Both the mean and the variance are
infinite for this distribution. Fig. 8 illustrates the dis-
tribution of maximal mixings and the existence of dy-
namical enhancement in Ce. To make the latter more
obvious we presentη values in units ofηsp– the typical
single-particle mixing. We estimated it from the 7s–7p
transition in Ce:ηsp = 〈7p‖E1‖7s〉/(ε7p−ε7s) ≈ 500
a.u.11 . Note that for the Cs atom (Z = 55) which has
only one valence electron and a very simple spectrum
η7s7p≈ 800 a.u., close to our estimate ofηsp in Ce.

The value ofη0 = 10.8ηsp obtained from the fit
characterizes the magnitude of the enhancement factor.
This value could also be estimated by dividing the rms
E1 amplitude for these states, 0.637a0, by the mean
distanceD/2 = 2.7 meV from the odd state to the
nearestJπ = 4+ state in this part of the spectrum:
η0 ∼ 13ηsp. Note that there are much large mixings

11 For the mixing by an electric field 1 atomic unit equals 3.67×
10−2a0 eV−1.
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in Fig. 8. For the three out of 20 levels the maximal
mixings fall outside the plot:η = 137, 244 and 568ηsp

(manifestation of the slow drop off (η)). Thus, the
dynamical enhancement increases the mixing of states
by the external perturbation in Ce by a factor of more
than 10. Note that for the eigenstates considered the
number of principal components isN ∼ 300, and
the

√
N estimate of the enhancement is confirmed.

In more complicated systems the enhancement can be
much stronger, e.g., in heavy nuclei whereN ∼ 106,
the dynamical enhancement factor reaches 103.

Some of the properties of many-body quantum
chaotic systems studied in this work depend on the
choice of the single-particle and many-body basis
sets. The natural choice for them is provided by the
mean field of the system. However, the mean field
cannot be defined uniquely for open-shell systems.
To this extent the basis-dependent properties of the
system, e.g., the number of principal components or
the single-particle occupation numbers may vary with
the change of the basis. Unlike them, the effect of
dynamical enhancement isbasis independent. It can
be directly observed and measured, and its magni-
tude is an important characteristic of the “degree” of
quantum chaos in the system.

6. Summary

We have presented the results of an extensive case
study of quantum chaos in a realistic many-body sys-
tem – the atom of cerium. The properties of its eigen-
value spectra are quite generic for such systems, and so
should be those of the chaotic many-body eigenstates.
The eigenstates are characterized by the spreading of
their basis components, which is described well by the
Breit–Wigner profile around its maximum. Together
with the level density the spreading width is one of
the most important characteristics of the eigenstates.

We have shown how to develop a statistical theory
of these systems based on the structure of the eigen-
states, and compared its results with direct numerical
calculations in Ce. The theory enables one to intro-
duce temperature and calculate the occupation num-
bers using a thermodynamic approach. These occupa-

tion numbers and the parameters of the chaotic eigen-
states are needed to obtain mean-squared values of
transition amplitudes due to an external perturbation
from the statistical theory. Using Ce as an example
we have demonstrated the existence of dynamical en-
hancement of perturbations in many-body chaotic sys-
tems. This effect may be viewed as a quantum coun-
terpart of the exponential divergence of trajectories
(high sensitivity to the initial conditions in classically
chaotic systems). It can also be important for the prob-
lem of quantum measurement.

Our investigation shows that heavy atoms are nat-
ural testing grounds for studying many-body quan-
tum chaos. Quantum chaotic regime can possibly be
achieved in any atom by exciting a sufficient number
of electrons. Actinides and especially positive atomic
ions [42] can be among the most interesting objects
for future studies.
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