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Abstract. Absolute three-photon detachment cross sections are calculated for the fluorine
negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic
many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic
behaviour, corresponding to the true (experimental) binding energy. We show that in accordance
with the adiabatic theory (Gribakin and Kuchiev 1997Phys. Rev.A 55 3760) this is crucial for
obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations
and experimental data are presented.

1. Introduction

Starting from the pioneering works of Hallet al (1965) and Robinson and Geltman (1967) the
behaviour of negative ions in laser fields has been the subject of numerous studies for over
thirty years. Nevertheless, up to now there have been very few firmly established results on the
absolute values of the cross sections and photoelectron angular distributions in multiphoton
processes.

This is true even for the simplest two-photon detachment processes. For example,
the results of a number of experimental and theoretical works on the cross sections and
photoelectron angular distributions in the negative halogen ions (see, e.g., van der Hart 1996,
Gribakin et al 1999 and references therein) differ significantly from each other. A number
of experimental works reported the cross sections and angular asymmetry parameters of the
two-photon detachment from the halogen negative ions at selected photon energies (Trainham
et al 1987, Blondelet al 1989a, 1992, Kwonet al 1989, Davidsonet al 1992, Sturruset al
1992, Blondel and Delsart 1993). These measurements were performed from the end of the
1980s to the beginning of the 1990s, and to the best of our knowledge no new experimental
data on multiphoton detachment from the negative halogens have been published since.

On the theoretical side, a recent development in the study of multiphoton detachment from
negative ions has been done within the adiabatic approach (Gribakin and Kuchiev 1997a, b).
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It has established that the electron escape from an atomic system in a low-frequency laser field
takes place at large electron–atom separations,

r ∼ 1/
√
ω ∼
√

2n/κ � 1, (1)

whereω is the photon frequency,κ is related to the initial bound-state energy,E0 = −κ2/2,
andn is the number of quanta absorbed (atomic units are used throughout). Therefore, the
asymptotic behaviour of the bound-state radial wavefunction

R(r) ' Ar−1e−κr (2)

is crucial for obtaining correct absolute values of the probabilities of multiphoton processes.
Direct calculations of two-photon detachment from halogen negative ions within the lowest-
order perturbation theory (Gribakinet al1998, 1999) with both the Hartree–Fock (HF) and the
asymptotically correct valencenp wavefunctions confirm this understanding. The point is that
the HF wavefunctions are characterized byκ values generally exceeding the true experimental
ones. As a result, when we use asymptotically correct wavefunctions the cross sections are
significantly higher than those obtained with other methods which rely on the HF or similar
ground-state wavefunctions (Crance 1987, 1988, Jiang and Starace 1988, Panet al 1990, van
der Hart 1996).

The strong dependence of multiphoton detachment cross sections on the binding energy
was noticed earlier by Liuet al (1992). They evaluated it using the zero-range potential model
and showed that then-photon cross section for linear polarization in the near-threshold region
changes as1σn/σn ' −2n1ω/ω for evenn, and1σn/σn ' −(2n + 1)1ω/ω for oddn. The
value of1ω is related to the change in the binding energy. The minus sign means that bound
states with smaller binding energies have larger multiphoton detachment cross sections. A
similar estimate also follows from Gribakin and Kuchiev (1997b). Moreover, equation (5) of
the latter work can be used to estimate the cross section maximum at photoelectron momentum
p ∼ √ω. In this case we obtain

σ ′n
σn
=
(
A′

A

)2 ( ω
ω′
)2n−1/2

, (3)

where the two cross sectionsσn andσ ′n describen-photon detachment from the negative ions
with different binding energies|E0| and |E′0|, henceω/ω′ = E0/E

′
0 6= 1. Equation (3)

also allows for differentA in the asymptotic region (2). Of course forn � 1 the frequency
factor in (3) is much more important thanA′/A. Note that in the zero-range potential model
the normalization is fixed byA = √2κ, and instead of equation (3) one simply obtains
σ ′n/σn = (ω/ω′)2n−1. However, for not largen the normalization factor(A′/A)2 may be
important, as the results discussed below show.

Adiabatic theory reveals that this sensitivity is caused by the role of the exponential tail of
the bound-state wavefunction. It is common in multiphoton calculations to use experimental
values of the binding energies. However, if this is not accompanied by correcting the asymptotic
behaviour of the bound state, a large error can be introduced. Moreover, the use of the ground-
state wavefunctions with correct asymptotic behaviour in multiphoton detachment calculations
is often more important than other effects of electron correlations.

As far as three-photon detachment from negative ions is concerned, the experimental and
theoretical results are more scarce than those on the two-photon detachment. Thus, there
have been only two experimental measurements of the cross section for F− at a single photon
energy performed by Blondelet al (1989b) and Kwonet al (1989), and a few theoretical
values obtained in the early calculations by Crance (1987, 1988). Recently, van der Hart
(1996) applied anR-matrix Floquet approach to study the photodetachment from F− and Cl−

for n = 1, 2 and 3.
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The aim of this work is to perform direct numerical calculations of the three-photon
detachment cross section for the negative fluorine ion using an asymptotically correct ground-
state wavefunction and compare the results with the available theoretical and experimental data.
As in our previous two-photon calculations (Gribakinet al 1999) the correct 2p wavefunction
is obtained within the many-body Dyson equation method. Section 2 outlines briefly the
method of calculation. A discussion of our results and comparisons with other calculations
and experimental data are presented in section 3.

2. Three-photon detachment cross section

The total cross section of three-photon detachment of then0l0 electron from an atomic system
by a linearly polarized light of frequencyω can be written as

σ3(ω) =
∑
lf ,L

σlfL =
32π4ω3

c3

∑
lf ,L

|B(L)l0,lf
(ω)|2. (4)

In this sum above the partial cross sectionsσlfL are characterized by the orbital momentumlf of
the final-state photoelectron coupled with the atomic residue into the total orbital momentumL.
The second equality assumes that the continuous-spectrum wavefunction of the photoelectron
in the matrix elementB(L)l0lf

(ω) is normalized to theδ-function of energy. After absorption of
three dipole photons by an outernp electron in a halogen negative ionnp6 1S, the final-state
photoelectron can leave the system in the s-, d- or g-waves. So, the possible final states are:
lf = 0 (1P), lf = 2 (1P and1F) andlf = 4 (1F).

In the lowest perturbation-theory order the three-photon amplitudeB
(L)
l0lf
(ω) is

characterized by the following sequence of electronic states,n0l0(L0) → n1l1(L1) →
n2l2(L2) → Ef lf (L), produced by successive absorption of three photons. This amplitude
may be presented as

B
(L)
l0lf
=
∑
L2l2

√
(2L2 + 1)(2L + 1)

(
1 L L2

0 0 0

){
1 L L2

l0 l2 lf

}

×
∑
E2

〈εf lf‖d̂‖n2l2〉AL2
l0l2
(ω,E0, E2)

2ω − E2 +E0 + iδ
, (5)

wheren2l2 is the intermediate electron state after the absorption of the second photon,l2 is
the electron’s orbital momentum andL2 is the total orbital momentum of the system in the
intermediate state. For a halogen negative ionl2 = 1 withL2 = 0, 2 andl2 = 3 withL2 = 2.
In equation (5) and belowE0,E1,E2, andEf are energies of the corresponding electron states.
The amplitudeAL2

l0l2
(ω,E0, E2) in equation (5) is the two-photon amplitude (cf Panet al1990,

Gribakinet al 1999),

A
L2
l0l2
(ω,E0, E2) =

√
2L2 + 1

(
1 L2 1
0 0 0

)∑
l1

(−1)l1
{

1 1 L2

l2 l0 ł1

}
M
L2
l0l1l2

(ω,E0, E2),

(6)

where the two-photon radial matrix elementML2
l0l1l2

(ω,E0, E2) is given by

M
L2
l0l1l2

(ω,E0, E2) =
∑
E1

〈n2l2‖d̂‖n1l1〉〈n1l1‖d̂‖n0l0〉
ω +E0 − E1 + iδ

. (7)

The sums in equations (6) and (7) run over the intermediate electron statesn1l1 populated after
the absorption of the first photon (l1 = 0, 2 with L1 = 1 for the halogen negative ions). The
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reduced dipole matrix elements are defined in the usual way, e.g. in the length form,

〈nl‖d̂‖n0l0〉 = (−1)l>
√
l>

∫
Pnl(r)Pn0l0(r)r dr, (8)

wherel> = max{l, l0} andP are the radial wavefunctions.
If one describes the initial staten0l0 in the HF approximation, the asymptotic behaviour

of the corresponding radial wavefunction is incorrect. Namely, it is characterized byκ

corresponding to the HF binding energy, rather than the exact (experimental) one. Thus,
in F− the HF value isκ = 0.6, whereas the true one isκ = 0.5. As we showed for the
two-photon detachment (Gribakinet al1998, 1999), it is very important to use asymptotically
correct bound-state wavefunctions. In this paper we refine the bound-state wavefunction using
the Dyson equation method in the same way as it is done in our two-photon calculations
(Gribakinet al 1999). The bound-state orbitalPn0l0(r) is found from

Ĥ (0)Pn0l0(r) +
∫
6E0(r, r

′)Pn0l0(r
′) dr ′ = E0Pn0l0(r), (9)

whereH(0) is the single-particle HF Hamiltonian of the negative ion, and6E(r, r
′) is the

self-energy of the electron’s single-particle Green function. This energy-dependent non-local
operator describes electron correlation effects, and, if known exactly, produces exact bound-
state energies and quasi-particle orbitals from equation (9). We calculate6E using second-
order perturbation theory. It improves the agreement between the calculated eigenvalue and
the experimental binding energy, e.g. for F− the Dyson equation givesE2p = −0.187 Ryd,
which is closer to the experimentalEexp

2p = −0.250 Ryd, than the HF valueEHF
2p = −0.362

Ryd. In order to further improve the wavefunction we introduce a scaling parameter in6E (see
Gribakinet al1999) and choose it in such a way that equation (9) reproduces the experimental
binding energy of the fluorine negative ion,|E2p| = 0.250 Ryd (Hotop and Lineberger 1985).

The wavefunctions of the intermediate (n1l1, n2l2) and final (Ef lf ) states of the
photoelectron are calculated in the HF field of the frozen neutral F-atom residue 2p5. The
photoelectron is coupled to the atomic residue to form the total spinS = 0 and the angular
momentaL1 = 1 for the first intermediate s and d states (l1 = 0, 2),L2 = 0, 2 for the second
intermediate p-wave state (l2 = 1), andL2 = 2 for the second intermediate f-wave state
(lf = 3). In the final state the photoelectron is coupled to the core withLf = 1 for the s- and
d-wave, andLf = 3 for the d- and g-wave. The intermediate state continua are discretized and
represented by a 70-state photoelectron momentum mesh with constant spacing1k.

Note that the importance of large distances in multiphoton problems speaks in favour of
the length form of the photon dipole operator (Gribakin and Kuchiev 1997a, b). This is in
agreement with the results of Panet al (1990) who showed that the two-photon detachment
cross sections obtained with the dipole operator in the velocity form are much more sensitive
to the shift of the photodetachment threshold and correlation corrections. On the other hand,
electron correlations have a much weaker effect on the calculations with the length form, and
the corresponding results are more robust, and hence, more reliable.

The two-photonAL2
l0l2
(ω,E0, E2) (6) and three-photonB(L)l0lf

(ω) (5) amplitudes are
calculated by direct summation over the intermediate states. This method involves accurate
evaluation of the free–free dipole matrix elements, and special attention is paid to pole- and
δ-type singularities of the integrand (Korol 1994, 1997).

3. Results

This paper highlights the effect of the asymptotic behaviour of the bound-state wavefunction.
In what follows we compare the results obtained using the HF 2p wavefunction (EHF

2p =
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Figure 1. Three-photon detachment cross sections of F−. Present calculations:- - - - and —·—,
adiabatic theory, equation (5) of Gribakin and Kuchiev (1997b), with parameters corresponding
to the HF 2p wavefunction and to the corrected 2p wavefunction, respectively; —· ·—, direct
calculation using the HF wavefunctions of the 2p, intermediate and final states and experimental 2p
energy; ——, same with the 2p wavefunction from the Dyson equation;· · · · · ·, 2p wavefunction
from the Dyson equation and plane waves for the intermediate and final states. The vertical line
shows the position of the two-photon detachment threshold.

−0.362 Ryd), with those based on the 2p wavefunction from the Dyson equation, which has
correct (experimental) energyEexp

2p = −0.250 Ryd and asymptotic behaviour. The Dyson
orbital is in fact very close to the HF wavefunction inside the atom, whereas forr > 2 au it
has larger values than the HF solution, due to smaller binding energy andκ. The asymptotic
behaviour of the Dyson 2p orbital is characterized byκ = 0.50 andA = 0.64, while the HF
orbital hasκ = 0.60 andA = 0.94. For comparison we also calculate the cross sections
within the plane-wave approximation and by using the adiabatic theory formula (Gribakin and
Kuchiev 1997a, b).

In figure 1 we present three-photon detachment cross sections calculated for F− using
various approaches for the whole energy range studied. Figure 2 shows a comparison between
our results and other theoretical and experimental results. In general, all calculations reveal a
small near-threshold maximum due to the contribution of the final photoelectron s-wave, and
a broad maximum at larger energies due to the d-wave contribution.

When we use the experimental threshold energy together with the HF 2p wavefunction
(double-dot-dash curve in figure 1), the overall magnitude of the cross section remains close
to that obtained with the HF threshold and wavefunction. On the other hand, when we
use the Dyson orbital (solid curve) the cross section becomes substantially higher. This
clearly demonstrates the effect of the asymptotic behaviour of the bound-state wavefunction.
Moreover, the difference between the three-photon cross sections obtained with the HF and
Dyson 2p wavefunctions is greater than that between the corresponding two-photon cross
sections (Gribakinet al 1999), in accordance with equation (3). Physically this can be related
to the fact that with the increase ofn the range of important distances (1) increases, and the
difference between the two bound-state wavefunctions becomes more significant. Note that if
we use the parameters of the HF and Dyson orbitals quoted above, equation (3) gives a ratio
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Figure 2. Three-photon detachment cross sections of F− from different calculations and
experiment. Present calculations: —·—, analytical adiabatic theory (Gribakin and Kuchiev
1997a, b) with parameters corresponding to the corrected 2p wavefunction; —· ·—, direct
calculation using the HF wavefunctions of the 2p, intermediate and final states and experimental
2p energy; ——, same with the 2p wavefunction from the Dyson equation. Other results:, HF
calculation of Crance (1987);- - - -, R-matrix Floquet approach (van der Hart 1996);� and4,
experiment of Blondelet al (1989b) and Kwonet al (1989), respectively. The vertical line shows
the position of the two-photon detachment threshold.

of three, in agreement with the difference observed in figure 1.
The cross section obtained using the HF orbital together with the experimental energy

(double-dot-dashed curves in the figures) shows a maximum ofσ3 = 12.5 au atω = 0.125
Ryd, near the two-photon detachment threshold. The HF results of Crance (1987) below
the two-photon detachment threshold (solid squares in figure 2) are close to ours. The cross
section of van der Hart (1996) obtained within theR-matrix Floquet approach is 20–30%
higher (dashed curve in figure 2) with a maximum ofσ3 = 14.5 au atω = 0.111 Ryd. Note
that a similar difference between the HF calculations with the experimental energy and the
R-matrix Floquet approach was found for the two-photon detachment cross sections of F− and
Cl− (Gribakin et al 1999). The F− ground-state wavefunction used by van der Hart (1996)
was obtained from a small-scale configuration-interaction (CI) calculation, which gave the
binding energy of 0.22 Ryd. As discussed in the introduction, a weaker-bound ground state
should have produced larger cross section values. However, the wavefunction from a small CI
expansion does not have an appropriate asymptotic form. Moreover, because of the dominant
role of the 2p6 configuration, the CI wavefunction at large distances is probably close to the
HF wavefunction. This fact, together with a relatively small role played by other correlation
effects, might explain the proximity of the cross section of van der Hart to the HF results.
Experimental results are shown in figure 2 as open symbols. Measurements by Blondelet al
(1989b) and Kwonet al (1989) atω = 0.0856 Ryd produced values ofσ3 = 4.75(+2.02

−1.40) au and
σ3 = 6.15(+5.14

−2.80) au, respectively. Within the error bars, the latter value is consistent with the
HF andR-matrix Floquet calculation. However, bearing in mind the role of correct asymptotic
behaviour, we believe that this agreement is probably fortuitous.
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The best results of the present calculation, shown by a solid curve in figure 2, indicate
that the cross section is substantially larger. Let us repeat once more that this increase of
the cross section is due to the events which take place at large electron–atom separations,
where all correlation corrections are controlled very well. Henceforth we believe that our
calculations (solid curve) give the most accurate values for the cross section. Our cross section
substantially exceeds, by a factor of two, the HF andR-matrix Floquet results. It has a
maximum ofσ3 = 27 au atω ≈ 0.114 Ryd. As is seen from figure 1, the difference between
the cross sections obtained with the Dyson and HF orbitals decreases towards the one-photon
detachment threshold (ω = 0.25 Ryd). Indeed, with the increase ofω and the energy of the
photoelectron, smaller distances become more important, see (1), and at these distances the
two bound-state wavefunctions are quite close.

As noted above, the strong enhancement of the three-photon cross section due to the
modified asymptotic behaviour of the wavefunction is in agreement with the two-photon
calculations (Gribakinet al 1998, 1999) and with the conclusions of the analytical adiabatic
theory. To make a direct comparison with this theory we calculate the cross section by using
equation (5) of Gribakin and Kuchiev (1997b). The short-dashed curve (figure 1) is obtained
usingA andκ values of the HF 2p orbital. The corresponding cross section is rather close to the
HF result (dashed curve) shifted to the HF threshold. When we useAandκ of the Dyson orbital,
dot-dashed curves in figures 1 and 2, the cross section becomes much higher. It is about 30%
greater than our direct perturbation-theory calculation with the Dyson orbital, which is a good
accuracy for a simple analytical formula. If we describe the photoelectron in the intermediate
and final states using plane waves instead of the HF wavefunctions the numerical results (dotted
curve in figure 1) become very close to the predictions of the adiabatic theory. Therefore, we
can attribute the discrepancy between the adiabatic theory and numerical calculations to the
use of free-electron Volkov states in the theory. As seen from figure 1, this discrepancy is
not large (and is expected to become smaller with the increase of the number of absorbed
photonsn).

We see that the use of the asymptotically correct 2p wavefunction changes the three-
photon detachment cross section by a factor of two or more. This is similar to the two-
photon detachment process, where the effect described above is greater than other correlation
effects (Panet al 1990, Gribakinet al 1999). There is no reason to expect that the role
of such correlations in three-photon detachment is stronger than in two-photon detachment.
Thus, we conclude that inmultiphotonprocesses the error introduced by using a bound-state
wavefunction with incorrect asymptotic behaviour could be much greater than the effects of
electron correlations. For the sake of terminology we should mention that to describe correctly
the asymptotic behaviour of the ground-state wavefunction, one needs to include many-electron
correlations, e.g. through the Dyson equation. However, these correlations are very particular,
their manifestation can be described as a simple shift of the electron binding energy. In contrast,
conventionally, the term ‘many-electron correlations’ also includes processes whichcannot
be described in the single-electron picture. It seems though that they areless importantin the
problem considered.

4. Concluding remarks

In this paper we have performed direct numerical calculations of three-photon detachment
from the fluorine negative ion, and paid special attention to the correct description of the initial
ground-state wavefunction. We ensured that it has a correct asymptotic behaviour by using the
many-body theory Dyson equation for calculation of the 2p electron orbital, and adjusting the
non-local correlation potential to reproduce the experimental binding energy. Our calculations
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demonstrate explicitly that the use of asymptotically correct initial state wavefunctions is very
important for finding absolute values of multiphoton detachment cross sections. This confirms
the conclusion of the adiabatic theory (Gribakin and Kuchiev 1997a, b, Gribakinet al 1999)
about the significance of large electron–atom separations in multiphoton processes.
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