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Abstract
It has been suggested (Gribakin et al 1999 Aust. J. Phys. 52 443–57,
Flambaum et al 2002 Phys. Rev. A 66 012713) that strongly enhanced low-
energy electron recombination observed in Au25+ (Hoffknecht et al 1998
J. Phys. B: At. Mol. Opt. Phys. 31 2415–28) is mediated by complex multiply
excited states, while simple dielectronic excitations play the role of doorway
states for the electron capture process. We present the results of an extensive
study of configuration mixing between doubly excited (doorway) states and
multiply excited states which account for the large electron recombination
rate on Au25+. A detailed analysis of spectral statistics and statistics of
eigenstate components shows that the dielectronic doorway states are virtually
‘dissolved’ in complicated chaotic multiply excited eigenstates. This work
provides a justification for the use of statistical theory to calculate the
recombination rates of Au25+ and similar complex multiply charged ions.
We also investigate approaches which allow one to study complex chaotic
many-body eigenstates and criteria of strong configuration mixing, without
diagonalizing large Hamiltonian matrices.

1. Introduction

The aim of this paper is to study the details of configuration mixing between doubly excited
and more complicated many-electron states populated in the process of recombination of a
low-energy electron with a heavy multiply charged ion, Au25+.

Recombination of electrons with multiply charged ions is of fundamental importance
in different areas of modern physics. Cross sections and rate coefficients for the process are
particularly needed for the understanding of astrophysical and fusion plasmas, and also provide
useful information for the application in ion storage rings. The basic recombination process
provides a unique testing ground for atomic structure calculations and atomic collision theory.
It is usually considered in terms of two main mechanisms: radiative recombination (RR) and
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dielectronic recombination (DR). RR is the direct capture of a free electron by an ion, where
the excess energy is carried away by a photon. The electron can also be captured resonantly,
when the excess energy is used to excite an electron within the target ion. This capture is only
possible if the kinetic energy of the incident electron is close to the difference between the
total energy of the excited state of the compound ion and that of the initial state of the target
ion. In this process the compound ion is formed in a multiply (usually doubly) excited state.
Its subsequent decay by emission of a photon is known as DR.

Our present understanding of the role and details of DR is the result of a long, fruitful and
competitive development of theory and experiment. Its achievements are well documented
in Graham et al (1992) and a more recent review paper by Hahn (1997). However, in spite
of more than half a century of study ‘there are still serious difficulties with the low-energy
recombination process [. . . ] which are not yet fully understood’ (Hahn 1997). We address
one of them in this paper.

The major difference between RR and DR is that the latter is a resonant process. Its
contribution often reveals a rich structure, usually in the form of narrow peaks, over the
smooth RR background. This energy dependence together with an overall enhancement of
the (energy-averaged) recombination rate are the hallmarks of DR. This picture has become
increasingly clear and detailed through the results obtained in merged-beams experiments with
ion accelerators and storage rings (see, e.g., Müller 1999). Narrow energy spreads of electron
beams, down to 1 meV (Lindroth et al 2001), allow one to analyse the resonances populated in
the process of electron capture by the target ion and obtain unique information about complex
highly correlated doubly (or multiply) excited states of the compound ion with energies above
the ionization threshold. For example, the DR spectrum of C3+ revealed strong relativistic
effects (Mannervik et al 1998), and that of Pb53+ provided a test of quantum electrodynamics
in a many-electron system (Lindroth et al 2001), while a study of Sc3+ was geared towards
observing interference effects between direct and resonant recombination, or between adjacent
DR resonances (Schippers et al 2002).

There are two other interesting phenomena in low-energy electron recombination. The
first one is an enhancement of the recombination rate at very low electron energies (ε � 1 meV).
The ‘excess’ rate at ε = 0 increases with the charge of the ion (∝Z 2.8

i for light ions, Gao et al

(1997)), scales as T −1/2
⊥ and T −1/2

‖ with the transversal and longitudinal temperatures of the
electron beam, increases strongly with the magnetic field, but is insensitive to the electron
density (Hoffknecht et al 1998, Gwinner et al 2000). Since this effect is observed for bare
as well as many-electron ions (Gao et al 1997, Uwira et al 1997, Hoffknecht et al 2000), its
origins are not related to electron correlations or the structure of the target ion. A recent paper
by Heerlein et al (2002) suggests that this enhancement comes from high-lying Rydberg states
populated due to an external field effect on the merging ion and electron beams.

The second phenomenon is a huge uniform enhancement of the recombination rate over
the RR rate observed for Au25+ over a wide range of energies (Hoffknecht et al 1998). The
energy dependence of the rate at ε ∼ 1 eV is similar to that of RR, but the magnitude is about
200 times greater. What is equally puzzling is that the data taken with an energy resolution of
about 0.1 eV do not show any DR-type resonant features or, for that matter, any structure at
all, except two broad maxima around 30 and 80 eV.

To resolve this puzzle, Gribakin et al (1999) investigated the spectrum of multiply excited
states of Au24+ near the ionization threshold. These states can play a role in the process of
electron capture by Au25+ and, after emission of a photon, lead to recombination. Gribakin et al
(1999) showed that, due to a ‘gapless’ electron orbital spectrum and open-shell structure of the
system (the ground state of Au24+ belongs to the 4f9 configuration), the excitation spectrum
of this ion is extremely dense. They found that the mean spacing D between multiply excited
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Figure 1. Schematic diagram of electron capture into a complex multiconfigurational eigenstate
(shaded block) through a dielectronic doorway configuration γ −1αβ. Wavy lines show the electron
Coulomb interaction and the sum of diagrams on the left-hand side corresponds to a non-perturbative
(CI) calculation of the capture amplitude.

states with a given angular momentum and parity, J π , near the ionization threshold is very
small, D ∼ 1 meV, and concluded that the system was characterized by extremely strong, in
some sense complete and ‘chaotic’, configuration mixing. This mixing is characterized by an
energy interval � ∼ 0.5 au, called the spreading width. As a result, the eigenstates should
typically contain �/D � 104 basis state components and the process of electron capture is
mediated by complex multiply excited states rather than simple dielectronic resonances. A
very large energy density of the former would then explain why individual resonances could
not be observed experimentally,

Gribakin et al (1999) also proposed that, owing to such complexity, the system could be
studied by statistical means. This idea has been developed further by Flambaum et al (2002).
To explain their method, let us adopt a perturbation theory approach. The initial state of the
recombination process contains an electron with energy ε > 0 moving in the field of a target
ion in the ground state. The latter is usually simple and is dominated by a particular electron
configuration. Due to the electron Coulomb interaction, the incident electron may become
captured by exchanging energy and exciting one of the target electrons, thereby forming a
doubly excited state with the energy εα + εβ − εγ . Here α and β are the orbitals occupied
by the two electrons and γ is the parent orbital of the excited electron, occupied in the target
ground state. So far this picture is identical to that of DR, with a resonance at ε ≈ εα +εβ −εγ .
However, in a system characterized by a large density of excited states and strong configuration
mixing, a simple dielectronic excitation does not constitute an eigenstate. Instead, it is mixed
with other more complicated (multiply excited) configurations which cannot be populated
directly from the initial state. As a result, the dielectronic configuration plays the role of a
doorway for the electron capture process. This is shown schematically in figure 1.

The method developed by Flambaum et al (2002) is based on the assumption of strong
configuration mixing. It allows one to calculate the energy-averaged capture cross section
as a sum over the doorway states and to avoid diagonalization of very large configuration-
interaction (CI) Hamiltonian matrices. In the case of electron recombination with Au25+ the
size of the effective Hilbert space is so large that such diagonalization is hardly possible
(Gribakin et al 1999). Moreover, it is not needed, because the experiment does not resolve
particular resonances, and only energy-averaged quantities are measured.

It should be noted that the energy-averaged capture cross section in the method of
Flambaum et al depends weakly (through�) on the strength of mixing between the dielectronic
doorways and other multiply excited states. However, if the mixing is strong, the autoionization
widths of the doorways (which determine the size of the capture cross section) are shared
between a large number of complex multiply excited states. This makes the autoionization
widths of the corresponding resonances small. On the other hand, their radiative widths
are not suppressed, which results in fluorescence yields close to unity and explains the high
recombination rate of Au25+. On the quantitative side, the calculations of Flambaum et al
(2002) reproduce the observed recombination rates at ε ∼ 1 eV.
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In the present paper we verify the main assumption of the statistical theory about mixing
between the doorway configurations and more complicated excited states of Au24+. We also
want to establish the magnitude of the spreading width. Another aim is to test whether the state
mixing in this system has indeed reached its ultimate form termed many-body quantum chaos
(Flambaum et al 1994, 1999, Zelevinsky et al 1996). In this regime the configuration-based
basis states are mixed completely (within the energy range �) and the eigenstates lack any
‘individual features’. Such states do not possess any good quantum numbers except the exact
ones: energy, parity and the total angular momentum, and their components fluctuate similarly
to those of eigenstates of random matrices.

To achieve our goals we perform a detailed numerical study of the chaotic nature of
dielectronic doorways and other multiply excited states, keeping in mind that such states are
behind the enhancement of low-energy electron recombination with Au25+ and similar complex
multicharged ions.

2. The compound ion: Au24+

Electron recombination with Au25+ results in the formation of Au24+. This ion has 55
electrons and its ground state belongs to the 1s2 . . . 4d104f9 configuration. To determine
its ionization potential we start from a self-consistent relativistic Hartree–Fock calculation
of Au24+ 4f9. A CI calculation, which includes all relativistic 4f9 configurations, shows
that the Au24+ ground state is characterized by the total angular momentum J = 15

2 and
total energy Etot = −18 792.485 au. A similar calculation for the J = 6 ground state
of Au25+ 4f8, where the Hartree–Fock basis is optimized for the 4f8 configuration, gave
Etot = −18 764.804 au. This yields the ionization potential of I = 27.68 au = 753.2 eV,
slightly higher than I = 27.56 au reported in Gribakin et al (1999). The latter value was
obtained by using the same set of orbitals from the 4f8 Hartree–Fock basis in the CI calculations
of both ionic ground states (Etot = −18 792.359 au for Au24+).

In this work we are interested in multiply excited states of Au24+ near its ionization
threshold. A set of excited single-electron orbitals nl j (5s1/2, 5p1/2, 5p3/2, etc, up to 7g9/2) was
obtained from a relativistic Hartree–Fock calculation in the self-consistent field of the frozen
Au25+ 1s2 . . . 4f8 residue. For the purpose of our study, Au24+ is considered as a system of 19
active electrons above the frozen Kr-like core, Ecore = −17 822.262 au. The 4p orbitals are
sufficiently deep (ε4p1/2 = −49.1 au and ε4p3/2 = −45.2 au in Au24+, see Gribakin et al (1999)
or Flambaum et al (2002) for the single-electron energy level diagram) and can be regarded as
inactive. Excited state configurations are obtained by distributing the 19 electrons among 31
relativistic orbitals from 4d3/2 to 7g9/2. The basic structure of the excitation spectrum of Au24+

is found by calculating the energies of the configurations in the mean-field approximation:

Ec = Ecore +
∑

a

εana +
∑
a<b

na(nb − δab)

1 + δab
Uab, (1)

and evaluating the numbers of many-electron states Nc in each configuration:

Nc =
∏

a

ga!

na!(ga − na)!
, (2)

where na are the orbital occupation numbers of the relativistic orbitals in a given configuration,
so that

∑
a na = n is the total number of active electrons, i.e. 19. In the equations above,

εa = 〈a|Hcore|a〉 is the single-particle energy of orbital a in the field of the core, ga = 2 ja + 1,
and Uab is the average Coulomb matrix element for the electrons in orbitals a and b (direct
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minus exchange):

Uab = ga

ga − δab

[
R(0)

abab −
∑

λ

δp R(λ)
abba

(
ja jb λ
1
2 − 1

2 0

)2]
, (3)

where R(λ)
abba is the two-body radial Coulomb integral of multipole λ, and δp = 1 when la +lb +λ

is even and 0 otherwise. In section 3 we show that the mean energies obtained from equation (1)
are close to the accurate configuration averages. Even the CI ground state of Au24+ is only
0.28 au below the mean energy of the lowest configuration 4d4

3/24d6
5/24f6

5/24f3
7/2 obtained from

equation (1).
A computation slightly more involved than equation (2) allows us to calculate the range

of the total angular momenta J and the numbers of energy levels N (J )
c for each J , in each of

the configurations,
∑

J (2J + 1)N (J )
c = Nc. It turns out that for the configurations close to the

ionization threshold of Au24+, J = 9
2 is the most abundant value (see the inset to figure 2 in

Gribakin et al (1999)).
Using equations (1)–(3) we have generated a list of about 19 000 configurations with

energies within 40 au of the Au24+ ground state. Of these configurations, 1158 even and 1323
odd configurations have energies below the ionization threshold of Au24+. They comprise a
total of 1.01 × 107 even and 1.43 × 107 odd many-electron states. Our study focuses on the
configurations near the ionization threshold. We find 609 even configurations (1.24 × 107

states) and 298 odd configurations (2.56 × 106 states) within 1 au of the threshold.
These large numbers are the result of: (i) the open-shell nature of Au24+ and (ii)

the ‘gapless’ single-particle excitation spectrum of this ion. The latter also leads to a
characteristic exponential growth of the level density with the excitation energy E , ρ(E) �
AE−ν exp(a

√
E), where A = 31.6, ν = 1.56 and a = 3.35 (Gribakin et al 1999). Given that

the excited state configurations cover a whole range of angular momenta J (about 10), and
taking into account the 2J + 1 degeneracy, it is easy to estimate that the mean level spacing
between the J π eigenstates at E ≈ I is about 1 meV.

This number does not contain much information about the structure of the eigenstates.
In particular, one needs to know whether they are dominated by single configurations, or if
a strong configuration mixing is involved. This question can be answered by performing a
multiconfigurational CI calculation. In our case, however, the number of configurations is so
large, and the configurations are so rich, that this becomes virtually an impossible task.

3. Configuration mixing in Au24+

Earlier limited CI calculations which included just two multiply excited configurations,
4f3

5/24f3
7/25p1/25p3/25g7/2 and 4f3

5/24f3
7/25p1/25d3/25f7/2, pointed towards an extremely strong

configuration mixing (Gribakin et al 1999). In such situations each eigenstate |�〉 =∑
j C j | j〉, expressed as a linear combination of configuration basis states | j〉, contains

a large number N of principal components for which C j ∼ 1/
√

N (recall the normalization
condition

∑
j |C j |2 = 1). This number is estimated by N ∼ �/D, where the spreading

width � is related to the eigenvalue density ρ and the mean-squared value of the off-diagonal
Hamiltonian matrix element Hi j by means of a golden-rule type formula: � = 2π |Hi j|2ρ.
The principal components correspond to the basis states j whose energies are close to the
eigenvalue E , |E j − E | � �. Distant basis states for which |E j − E | 
 � are characterized
by small contributions. The mean-squared component |C j |2 is a smooth function of E j − E ,
well approximated by a Breit–Wigner (BW) formula, while for fixed E j − E the statistics of
C j are close to Gaussian (see, e.g., Flambaum et al 1994).
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In this case the eigenvalue spectrum displays so-called level repulsion effects, as small
level spacings are infrequent and the probability density of normalized level spacings is close
to the Wigner–Dyson ansatz (see, e.g., Bohr and Mottelson 1969):

P(S) = (π S/2) exp(−π S2/4). (4)

This formula describes level statistics for Hamiltonians modelled by random matrices. Studies
of experimental spectra of heavy nuclei (Bohr and Mottelson 1969) and complex atoms and ions
(Rosenzweig and Porter 1960, Camarda and Georgopulos 1983) agree with the Wigner–Dyson
statistics. Similar level repulsion effects and statistics of level spacings were also observed
in calculations for the cerium atom (Flambaum et al 1994, 1998, 1999) and in the nuclear
s–d shell model (Horoi et al 1995, Frazier et al 1996, Zelevinsky et al 1995, 1996). These
works show that this and other features of the spectrum and eigenstates allow one to speak of
many-body quantum chaos. In particular, equation (4) holds only if all states in a manifold
‘interact’, i.e. there are no extra quantum numbers which distinguish them and prevent mixing.

In what follows we present a systematic analysis of these features in the spectrum of
doubly and multiply excited states of Au24+.

3.1. Statistical features of the spectrum

In the paper by Flambaum et al (2002) the recombination cross section of Au25+ at low (eV)
electron energy was calculated as a sum over the dielectronic doorway states. They assumed
that the target ground state is described by the 4d4

3/24d6
5/24f6

5/24f2
7/2 configuration. This is a

reasonable approximation, given that in a CI calculation of the Au25+ ground state, which
includes all relativistic 4f8 configurations, the mean occupation numbers of the 4f5/2 and 4f7/2

orbitals are 4.93 and 3.07, respectively. Flambaum et al (2002) presented a list of important
doorways, i.e. those which give large contributions to the cross section. We begin by studying
configuration mixing between these doorways.

Most of the doorway configurations in table 1 of Flambaum et al (2002) are even. In fact,
the density of even multiply excited states is about five times that of the odd states near the
ionization threshold of Au24+ (see section 2), so we focus on the even states here. Of the 11
even doorway states, let us first consider those 6 which belong to the 4d104f75f5g configuration
(see table 1). Note that the energies of configurations and eigenstates in the table and below are
given with respect to the Au24+ ground state in the 4f8 basis, for which the ionization threshold
of Au24+ is at E = I = 27.56 au.

To analyse the mixing between the doorway states, we first perform a CI calculation for
the doorway configurations 1–6, which produces a total of 316 J = 9

2 levels. This value of
the total angular momentum is the most abundant of all J , which range from 1

2 to 35
2 . To

investigate the effect of mixing of the doorways with more complicated configurations, we
have performed three other CI calculations of increasing size. Besides the 6 doorways, they
include configurations 7 and 8 (a total of 893 J = 9

2 levels), configurations 8–11 (2091 levels)
and configurations 8–13 (3076 levels). All of the configurations lie close to the ionization
threshold. Table 1 lists the configurations, their mean energies, total numbers of states in each
configurations and the numbers of states with J = 9

2 . The mean energies Ec obtained from
equation (1) are close to those found by averaging over the J subspace of configuration c,
Ēc = ∑

i∈c H (J )

ii /N (J )
c , where H (J )

ii are the diagonal Hamiltonian matrix elements in the J
subspace. This proximity means that the simple mean-field approach (1) is a reliable tool for
finding configurations in a given energy range.

For an overview of the spectra of eigenvalues E (i) obtained in each of the four CI
calculations, figure 2 displays the cumulative number of levels:
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Table 1. 5f5g doorways and multiply excited configurations of Au24+.

Doorway configurations from Ec
a Ēb

c

No Flambaum et al (2002) (au) (au) Nc N (J )
c

1 4d4
3/24d6

5/24f6
5/24f7/25f5/25g7/2 27.367 27.397 384 6

2 4d4
3/24d6

5/24f5
5/24f2

7/25f5/25g7/2 27.742 27.782 8 064 90

3 4d4
3/24d6

5/24f6
5/24f7/25f7/25g7/2 27.565 27.581 512 7

4 4d4
3/24d6

5/24f6
5/24f7/25f7/25g9/2 27.629 27.721 640 8

5 4d4
3/24d6

5/24f5
5/24f2

7/25f7/25g7/2 27.905 27.944 10 752 108

6 4d4
3/24d6

5/24f5
5/24f2

7/25f5/25g9/2 27.846 27.892 10 080 97

Other configurations

7 4d4
3/24d6

5/24f5
5/24f2

7/25f7/25g9/2 27.939 27.981 13 440 117

8 4d4
3/24d6

5/24f4
5/24f3

7/25f7/25g7/2 28.182 28.252 53 760 460

9 4d4
3/24d5

5/24f5
5/24f3

7/25p3/25f5/2 27.774 27.897 48 384 519

10 4d4
3/24d6

5/24f4
5/24f3

7/25f5/25g7/2 28.054 28.129 40 320 381

11 4d4
3/24d6

5/24f4
5/24f3

7/25f5/25g9/2 28.128 28.196 50 400 415

12 4d4
3/24d6

5/24f4
5/24f3

7/25f7/25g9/2 28.186 28.286 67 200 507

13 4d4
3/24d6

5/24f4
5/24f2

7/25p3/25d3/25f5/2 28.428 28.478 40 320 478

a Ec is the configuration energy (1) and Nc is the total number of states (2).
b Ēc is the average configuration energy in the J subspace and N (J )

c is the number of energy levels
with a given J (= 9

2 ).

N(E) =
∫ E

−∞
ρ(E ′) dE ′, (5)

where ρ(E) = �iδ(E − E (i)) is the eigenvalue density for J π = 9
2

+
. The scale of figure 2

makes it impossible to see that N(E) are, in fact, discontinuous step-like functions. When the
level mixing is strong the spectra have only a small proportion of small spacing (due to level
repulsion) and virtually no large spacings, and are ‘rigid’. It may be seen that our spectra have
a high degree of rigidity and it is the configuration mixing that makes them so smooth and
uniform.

In all four cases the level density is fitted accurately by a Gaussian function with the
skewness (κ1) and excess (κ2) corrections:

ρ(E) = NJ
exp(−x2/2)√

2πσ

[
1 +

κ1

6
(x3 − 3x) +

κ2

24
(x4 − 6x2 + 3)

]
(6)

where NJ is the number of levels in the spectrum, x = (E − Ē)/σ is a dimensionless
variable, Ē = N−1

J

∑
i E (i) is the mean energy of the manifold, σ 2 = N−1

J

∑
i(E (i) − Ē)2

characterizes the width of the spectrum, while κ1 = N−1
J

∑
i(E (i) − Ē)3/σ 3 and κ2 =

N−1
J

∑
i (E (i) − Ē)4/σ 4 − 3 are determined by the third and fourth moments of the eigenvalue

distribution, respectively (see, e.g., Ratcliff 1971, Karazija 1991). Parameters of the fits for
the four sets of CI calculations are given in table 2.

Using the density fit (6) we test the statistics of the normalized nearest-neighbour level
spacings Si = (E (i+1)−E (i))ρ(E (i)) for each of the spectra. Figure 3 shows that the distribution
of the spacings is in agreement with the Wigner–Dyson formula (4),which provides evidence of
strong level mixing both within and between the configurations. Such mixing also manifests
in long-range correlations between the eigenvalues. For example, one could examine the
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Figure 2. Eigenvalue spectra from CI calculations of J π = 9
2

+
levels: (a) 316 states, (b) 893 states,

(c) 2091 states and (d) 3076 states. The step-like graphs of N(E) are almost indistinguishable,
except in (b), from the smooth curves obtained by fitting the level density with equation (6) using
parameters from table 2.

Table 2. Parameters of the level densities.

NJ Ē σ κ1 κ2

316 27.858 0.308 0.411 0.178
893 28.081 0.396 0.410 −0.096

2091 28.071 0.451 0.231 −0.369
3076 28.169 0.455 0.135 −0.285

uniformity (or rigidity) of the spectrum by studying the Dyson–Mehta �3 statistic (Dyson and
Mehta 1963):

�3(L) = 1

L

〈
min(A, B)

∫ E+L

E
[N(E ′) − AE ′ − B]2 dE ′

〉
, (7)

where the averaging on the right-hand side is over E . This statistic is often used to study
level spectra fluctuations (see, e.g., Camarda and Georgopulos 1983). However, with the
electron recombination problem in mind, it is more instructive to examine the structure of the
eigenstates.

3.2. Eigenstate components

As mentioned at the beginning of section 3, in the regime of strong configuration mixing, the
eigenstate components C j have the statistics of Gaussian random variables. At the same time
the behaviour of the mean-squared components |C j |2 as a function of the basis state energy is
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Figure 3. Comparison of the statistics of normalized level spacings obtained in the CI calculations
(histograms) with the Wigner–Dyson distribution (4) (full curves): (a) 316 states, (b) 893 states,
(c) 2091 states and (d) 3076 states.

described by the BW formula

|C j |2 = 1

N

�2/4

(E j − E)2 + �2/4
, (8)

where E is the energy eigenvalue. In a random matrix model the averaging of |C j|2 is performed
over an ensemble of random Hamiltonian matrices. When dealing with a real system, we have
a unique Hamiltonian matrix. So, the averaging can be done over a number of components
falling within fixed narrow bins on the energy scale, and also over a number of neighbouring
eigenstates. Equation (8) gives a precise definition of the number of principal components
N : |C j |2max = N−1. The normalization condition links it to the mean level spacing and the
spreading width by N = π�/2D.

In figure 4 we present the mean-squared components for the J π = 9
2

+
eigenstates from

the middle of the spectra of the four CI calculations. Values of |C j |2, shown as histograms, are
obtained by bin averaging the squared components over 19 neighbouring eigenstates in each
case. Their energy dependence is in good agreement with the BW profile, except at the edges

of the spectrum. In each case the BW fit of |C2
j | yields the number of principal components

and the spreading width, see table 3.
Note that the spreading width changes little between the four calculations, although the

size of the Hamiltonian matrix, NJ , varies by a factor of ten. On the other hand, the number of
principal components increases in proportion to NJ . By means of the normalization condition,
N = π�/2D = (π�/2)ρ, the growth of N can be related to the increase in the level density
ρ, which results from adding more configurations within the same energy range.
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Figure 4. Values of |C j |2 obtained by averaging over 19 neighbouring eigenstates (histograms),
and BW fits (8) (full curves) for: (a) 158th eigenstate of 316 states, (b) 446th eigenstate of 893
states, (c) 1046th eigenstate of 2091 states and (d) 1538th eigenstate of 3076 states.

Table 3. Parameters of the mean-squared components of the eigenstates.

NJ Eigenstate Ea N a �a 2π |Hij |2ρ
316 158 27.86 246 0.46 0.46
893 446 28.09 627 0.54 0.50

2091 1046 28.12 1547 0.60 0.70
3076 1538 28.21 2167 0.60 0.62

a Values determined by fitting numerical |C j |2 by the BW formula (8).

Using the parameters of the BW fit we can extract the densities as ρ = D−1 = 2N/π�.
Combined with the mean squared values of the off-diagonal Hamiltonian matrix elements
in the J subspace, |Hi j|2 (table 4), they provide golden-rule values of the spreading width,
� = 2π |Hi j|2ρ. Table 3 shows that the latter are close to the spreading widths obtained
from the eigenstates in figure 4. This is a useful consistency check for the picture of strong
(complete, chaotic) basis-state mixing within the eigenstates.

To examine the evolution of the eigenstate shapes |C j |2 across the whole spectrum, in
figure 5 we present them for the 300th, 600th, etc, eigenstates of the largest CI calculation
(NJ = 3076). Features to notice here are the following.

(i) The spreading width remains almost constant.

(ii) The bell-shaped |C j |2 is centred on the energy eigenvalue, and is shifted with it as the
energy increases. There is also a small outward displacement of the eigenvalue from the
peak of |C j |2 noticeable for the states at the edges of the spectrum. This is a consequence
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Figure 5. Mean squared components |C j |2 for a number of eigenstates of the NJ = 3076 CI
calculation. Histograms show numerical values obtained by bin averaging over 19 neighbouring
eigenstates for (a) 300th state, (b) 600th state, (c) 900th state, (d) 1200th state, (e) 1500th state,
(f) 1800th state, (g) 2100th state, (h) 2400th state and (i) 2700th state. Full curves are BW fits.
Vertical bars indicate positions of the corresponding energy eigenvalues.

Table 4. Statistical characteristics of the eigenstates near the middle of the spectrum in each of
the four CI calculations.

ρ(Ē)c |Hij |2 2π |Hij |2ρ(Ē) �d

NJ IPRa N/3b (au) (au) (au) (au)

316 85 82 418 2.14 × 10−4 0.56 0.44
893 245 211 888 1.08 × 10−4 0.60 0.57

2091 513 487 1765 6.81 × 10−5 0.75 0.62
3076 777 715 2603 4.27 × 10−5 0.70 0.60

a Maximal window-averaged IPR.
b Derived from the maximal number of principal components N .
c Eigenvalue density at E = Ē from fit (6).
d Spreading width from BW fits averaged over the middle 30% of eigenstates.

of level repulsion and overall broadening of the eigenvalue spectrum in comparison with
that of basis state energies, due to the off-diagonal Hamiltonian matrix elements.

(iii) The peak values of |C j |2 are larger for the eigenstates near the edges of the spectrum.
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Figure 6. Dependence of the spreading width � on the eigenstate energy in the four CI calculations:
triangles—NJ = 316, diamonds—NJ = 316, circles—NJ = 2091 and squares—NJ = 3076.

As seen from equation (8), this means smaller N , which correlates with smaller level densities
at the edges.

Figure 6 shows the dependence of the spreading width on the eigenstate energy in each
of the four CI calculations. It was obtained by performing BW fits of the mean squared
components for a number of eigenstates across the spectra (e.g. 50th, 100th, 150th, 200th
and 250th, for the smallest NJ = 316). Most importantly, the spreading widths from the
calculations of different sizes have similar magnitudes. They also remain relatively flat over
the whole energy range. The drop towards the edges is not a physical feature but a consequence
of the limited (and relatively small) number of configurations included in the calculations.
The magnitude of � remains close to 0.5 au, a value that was originally obtained for Au24+

(Gribakin et al 1999) based on the study of just two large configurations (see the beginning of
section 3). This value is only about five times greater than the spreading width in the neutral
atom of Ce (Flambaum et al 1994). This is in contrast with the very different energy scales
involved—the ionization potentials of Au24+ and Ce differ by two orders of magnitude. All
these features reflect the nature of the spreading width as a robust characteristic of level mixing
in a system.

Large numbers of principal components N in table 3 signify that the eigenstates examined
contain sizeable contributions of many basis states. A direct measure of the degree of basis-
state mixing, which is not related to any particular shape of |C j |2, is the inverse participation
ratio (IPR), ξ = (� j |C j |4)−1. This quantity can be calculated for each of the eigenstates
and is a standard tool for studying eigenstate complexity. In particular, if an eigenstate
is a uniform mixture of N components with Gaussian statistics (as that of the Gaussian
orthogonal ensemble, see, e.g., Brody et al (1981)), then |C j |2 = N−1, |C j |4 = 3(|C j |2)2

and ξ = N/3.
In figure 7 we plot the IPRs of the eigenstates as a function of their energy. The main

feature of the ‘raw’ IPR values in (a), (c), (e) and (g) is their regular dependence on the
energy combined with relatively small level-to-level fluctuations. It confirms that the basis-
state mixing is practically complete, i.e. no particular configurations or basis states escape
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Figure 7. IPRs of the eigenstates as a function of their energy: (a) and (b)—CI with 316 states, (c)
and (d)—893 states, (e) and (f)—2091 states, (g) and (h)—3076 states. Thin full curves in (a), (c),
(e) and (g) connect the IPRs for all eigenstates, and thick full curves in (b), (d), (f) and (h) show
window-averaged IPRs. Open squares show values of N/3, with N obtained from BW fitting of
|C j |2.

mixing with the rest of the manifold. (If they did this would manifest in a large scatter of IPR
values over a narrow energy interval.) Both the IPR and the number of principal components N
measure the complexity of the eigenstates. Plots on the right-hand side of figure 7 show that the
values of N/3 are close to the IPR, as expected if the statistics of the eigenstate components
were Gaussian (see the appendix for a detailed discussion). Both quantities peak near the
middle of the spectrum where the level density is largest. Peak values of the IPR and N/3 in
each of the four calculations are shown in table 4.

A picture of typical chaotic eigenstates can be found in Flambaum et al (1994) for the
neutral Ce atom, or in Gribakin et al (1999) for Au25+. Apart from the systematic variation of
the magnitudes of C j with the distance between E j and eigenvalue E , which is represented
by |C j |2 (figures 4 and 5), the components display strong fluctuations. To analyse these, we
eliminate the systematic variation of the size of C j by using normalized eigenstate components
C j [|C j |2]−1/2. Their statistics are presented in figure 8 for the same eigenstates that were used
to construct |C j |2 in figure 4. The fact that these statistics are so close to Gaussian is another
confirmation of complete basis state mixing. If there were configurations which did not
participate in the mixing (e.g. because of some hidden selection rules or for some dynamical
reasons), the distribution would show an abundance of small component values.



3362 G F Gribakin and S Sahoo

–4 –2
Normalized component

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y 

de
ns

ity

–4 –2
0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y 

de
ns

ity

–4 –2
Normalized component

0

0.1

0.2

0.3

0.4

0.5
–2 4–4

0

0.1

0.2

0.3

0.4

0.5

(a) (b)

(c) (d)

20420

420 420

Figure 8. Histograms show statistics of the normalized components C j [|C j |2]−1/2 for 19 J = 9
2

+

eigenstates from the middle of the spectrum in the CI calculations of four sizes: (a) 316 states, (b)
893 states, (c) 2091 states and (d) 3076 states. Full curves are normal Gaussian distributions.

3.3. Mixing between dielectronic doorways with more complex configurations

So far we have examined the dynamical and statistical properties of configuration mixing in the
eigenstates of Au24+. This picture of chaotic complete mixing underpins the statistical approach
to the calculation of recombination developed by Gribakin et al (1999) and Flambaum et al
(2002). More specifically, we can now check the assumption that dielectronic states populated
at the first step of the capture process (figure 1) are indeed mixed strongly with more complex
multiply excited states. To do this we examine the weights of large dielectronic (doorway)
configurations listed under 2, 5 and 6 in table 1. The weight of a doorway configuration c
is defined for each eigenstate as a sum over the basis states belonging to this configuration,
wc = � j∈c|C j |2.

If a doorway configuration does not mix with any other configurations, then its weight in
an eigenstate will be either 1 or 0. If, on the contrary, it mixes with them completely then its
weight in each of the eigenstates must be close to the mean weight w̄c = N (J )

c /NJ , a fraction
of the Hilbert space occupied by the doorway. Figure 9 shows the weights of the three large
doorway configurations for the calculations of increasing size. It is evident that the doorway
configurations are shared between all eigenstates. This sharing is not completely uniform,
since the doorway configuration energies are lower than those of most other configurations
included (table 1), and as a result, the doorways are more prominent in the lower part of the
spectrum, where their weights exceed w̄c. Nevertheless, the main feature of the graphs is that
the weights of the doorways in individual eigenstates decrease as the size of the Hamiltonian
matrix increases. This provides evidence that the doorway states are completely mixed within
the chaotic eigenstates containing mostly more complicated multiply excited configurations.
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Figure 9. Weights of doorway configurations 2, 3 and 5 from table 1, with 90, 108 and 97 J π = 9
2

+

states, respectively, in the eigenstates obtained from the CI calculation with NJ = 893 states (top
row), NJ = 2091 (middle row) and NJ = 3076 (bottom row). Horizontal dotted lines indicate the
mean weights of doorway configurations, w̄c.

4. Statistical approach and criteria of strong mixing

4.1. Spreading width

Table 4 shows that an increase in the eigenstate complexity in the four calculations, as shown
by IPR and N , follows the increase of the level density. At the same time, the spreading width
changes little and the golden rule gives a reasonable estimate of � (table 3). The latter is an
important point.

Even the largest calculation performed includes a relatively small number of configurations
in the energy range of interest. According to the estimates of the level density near the ionization
threshold of Au24+ (section 2), the true mean level spacings for a given J π can be as small as
10−5 au. Given the fact that � remains approximately constant, the corresponding eigenstates
may contain tens of thousands of principal components N ∼ �/D. A straight CI calculation of
this size would be very difficult and impracticable, if not altogether impossible. Moreover, its
results will be largely meaningless, because in a spectrum of such complexity one will hardly
be able to guarantee correct configuration compositions of the individual states.

On the other hand, if the individual eigenstates are not resolved in experiment, one may
only be interested in some energy-averaged characteristics of the spectrum and eigenstates,
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Table 5. Additional doorway configurations of Au24+.

Doorway configurations from Ec
a Ēc

No Flambaum et al (2002) (au) (au) Nc N (J )
c

1′ 4d4
3/24d5

5/24f6
5/24f3

7/27p1/2 27.465 27.599 672 10

2′ 4d4
3/24d5

5/24f6
5/24f2

7/25d3/25d5/2 26.887 26.995 4032 55

3′ 4d4
3/24d5

5/24f6
5/24f3

7/26f5/2 26.585 26.697 2016 26

4′ 4d4
3/24d6

5/24f5
5/24f2

7/25d5/26f5/2 27.084 27.112 6048 76

5′ 4d4
3/24d5

5/24f6
5/24f3

7/26f7/2 26.643 26.797 2688 31

a Ec, Ēc, Nc and N (J )
c have the same meaning as in table 1, J = 9

2 .

such as the level density, spreading width, number of principal components, etc. Therefore, it
is desirable to be able to determine these quantities without diagonalizing huge Hamiltonian
matrices. Our use of the golden rule to evaluate the spreading width as � = 2π |Hi j|2ρ(Ē) is
an illustration of such an approach. The value of the density at the centre of the spectrum is
given by equation (6), ρ(Ē) ≈ NJ (2πσ 2)−1/2, where σ is the root-mean-squared width of the
eigenvalue spectrum about the mean Ē :

σ 2 = 1

NJ

∑
i j

H 2
i j − 1

N2
J

(∑
i

Hii

)2

= (NJ − 1)|Hi j|2 +
1

NJ

∑
i

(Hii − Ē)2. (9)

One could also account for the skewness and excess corrections, since both κ1 and κ2 can be
expressed in terms of the Hamiltonian matrix elements. The golden-rule formula then gives
estimates of the spreading width which are in reasonable agreement with the values obtained
from the eigenstate shapes |C j |2, see table 4.

In fact, the golden-rule values are slightly higher in magnitude than those obtained from
BW fitting. This can be due to the fact that, for the purpose of fitting, |C j |2 is considered as a
function of the basis state energy E j , rather than the energy eigenvalues (see, e.g., figure 5).
Because of the level repulsion, the mean spacing between the eigenvalues is greater than that
between the basis states. Consequently, the BW spreading width, which must satisfy the
normalization condition π�/2D = N , appears to be lower.

4.2. Criterion of mixing

As mentioned at the beginning of section 3.1, the CI calculations were performed with six even
configurations out of the 11 shown in table 1 of Flambaum et al (2002). CI calculations which
include the remaining five doorway configurations, listed under 1′ to 5′ in table 5, show that
they do not mix strongly either between themselves, or with other configurations considered
above1.

For example, a calculation which includes all NJ = 198 states with J = 9
2 of the

five doorway configurations from table 5 produces a level spacing distribution which does
not obey the Wigner–Dyson law, while the IPR of the eigenstates shows large fluctuations,
figure 10. The relative weakness and non-uniformity of mixing in this case becomes evident if
we compare these graphs with figures 3(a) and 7(a), which illustrate strong mixing of doorway
configurations 1–6. Of course, this does not mean that configurations 1′–5′ are fundamentally
different from 1 to 6. Figure 10(b) does show that most of the eigenstates still contain substantial

1 In fact, of the doorway configurations 1–6 and 1′–5′, only 5 and 4′ are directly coupled by the two-body Coulomb
interaction.
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Figure 10. Distribution of normalized level spacings (a) and IPRs (b) of the J = 9
2 eigenstates

obtained in the CI calculation of the doorway configurations 1′–5′ (table 5). The full curve in (a)
is the Wigner–Dyson ansatz (4).

contributions of many basis-state components. It is also likely that there are multiply excited
states which mix strongly with doorways 1′–5′. Such configurations may also promote mixing
between the configurations in tables 5 and 1. However, a calculation of this type would require
a further increase of the size of the basis and Hamiltonian matrix.

Instead, in this work we would like to understand why the mixing between doorways 1′–5′
is so different from that of 1–6. More importantly, we put forward a simple estimate which
allows one to predict whether a particular set of configurations will exhibit strong mixing,
without diagonalizing the relevant Hamiltonian matrix. This question is part of a more general
problem of finding a criterion of strong chaotic mixing which was addressed in a number
of recent papers, see Altshuler et al (1997), Jacquod and Shepelyansky (1997), Mirlin and
Fyodorov (1997), Flambaum and Izrailev (1997).

The basic result of these works is in agreement with a perturbation-theory argument that
two levels i and j mix strongly if the dimensionless ratio

Hi j

Ei − E j
(10)

is of the order of unity or greater and the perturbation series diverges. Applying this idea to
configuration mixing, we may compare the root-mean-squared Hamiltonian matrix element
V , defined by

V 2 = |Hi j |2 = 1

N (J )
c N (J )

c′

∑
i∈c, j∈c′

|Hi j|2, (11)

with the typical level spacing �E between neighbouring basis states belonging to
configurations c and c′. If the two configurations do not overlap on the energy scale, then
�E is large and determined by the configurations’ centroids, �E ∼ |Ec − Ec′ |. In this case
strong mixing is unlikely, unless V is very large. On the other hand, if we deal with overlapping
configurations, then

�E = min{Dc, Dc′ }, (12)

where Dc and Dc′ are the level spacings within the configurations c and c′, which can be small.
A simple estimate of these is
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Table 6. Parameters of configurations and their mixing for the doorway configurations from
table 1.

Conf. 1 2 3 4 5 6

1 27.40 0.003 81 0.006 48 0.006 29 0.000 70 0.000 52

0.105a 1.04b 0.23 0.33 0.24 0.15
2 27.78 0.006 06 0 0.001 81 0.001 65

0.132 1.65 0 0.61 0.47
3 27.58 0.008 12 0.003 39 0

0.079 0.43 1.15 0
4 27.72 0.003 60 0.006 46

0.061 1.22 1.82
5 27.94 0.006 20

0.127 2.10
6 27.89

0.137

a Diagonal cells show values of Ec and σc in atomic units.
b Off-diagonal cells show values of V in atomic units and dimensionless κ (in bold).

Dc �
√

2πσc

N (J )
c

, (13)

where σc is given by equation (9) with the sums restricted to the basis states within c.
Combining equations (11)–(13), we can estimate the ratio

κ = V

�E
, (14)

which should indicate whether the mixing is strong (κ � 1) or weak (κ � 1). Of course, the
boundary between the two cases is not sharp,as there is an intermediate regime characterized by
‘non-uniform’ mixing and large non-Gaussian fluctuations. Note that κ is wholly determined
by the Hamiltonian matrix elements.

Tables 6 and 7 show, respectively, the six strongly interacting doorway configurations as a
6×6 ‘matrix’ and the five weakly mixed configurations as a 5×5 ‘matrix’. The diagonal cells
of each ‘matrix’ contain values of the configuration centroids Ēc and σc for each configuration.
The off-diagonal cells show the root-mean-squared Hamiltonian matrix element V for a pair
of configurations, together with the mixing parameter κ . Since such ‘matrices’ are symmetric,
only the upper triangles are shown.

It is seen from the tables that the mixing strength parameter κ has much larger values
for configurations 1–6, many of them close to or greater than unity. On the other hand, all
values of κ in table 7 are small, which explains our earlier finding that configurations 1′–5′ do
not show strong mixing. It is also instructive to look at figure 11, which shows the positions
of the 11 doorway configurations on the energy scale. The bars in the figure correspond to
energies from Ēc − σc to Ēc + σc, and show approximately the energy ranges covered by each
of the configurations. It is evident that most of the configurations in each of the two sets
overlap, e.g. the larger doorways 2, 5 and 6, or 2′ and 4′. Smaller values of κ , however, prevent
configurations 1′–5′ from mixing strongly with each other.

As an additional test of the role of the size of V , we boosted the configuration mixing for
configurations 1′–5′ by multiplying the corresponding off-diagonal parts of the Hamiltonian
matrix by a factor larger than unity. By making it sufficiently large (10 and greater) we did
attain the Wigner–Dyson level repulsion features characteristic of the strong mixing regime.
The use of such a factor meant that the values of κ in table 7 were artificially increased by an
order of magnitude and brought into the range (∼1) where strong mixing should take place.
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Figure 11. Energy ranges Ec ± σc of the doorway configurations 1–6 (full line bars) and 1′–5′
(broken line bars).

Table 7. Parameters of configurations and their mixing for the doorway configurations from
table 5.

Conf. 1′ 2′ 3′ 4′ 5′

1′ 27.60 0.000 74 0.001 43 0 0.000 42

0.177a 0.087b 0.079 0 0.024
2′ 27.00 0.000 11 0.000 75 0.000 15

0.187 0.013 0.175 0.018
3′ 26.70 0.000 47 0.001 43

0.189 0.110 0.082
4′ 27.11 0

0.130 0
5′ 26.80

0.217

a Diagonal cells show values of Ec and σc in atomic units.
b Off-diagonal cells show values of V in atomic units and dimensionless κ (in bold).

5. Conclusions

An extensive CI study of doubly and multiply excited states near the ionization threshold of
Au24+ has confirmed earlier expectations of strong chaotic configuration mixing in this system.
As a result of such mixing, ‘simple’ doubly excited states, which play the role of doorway
states in electron–ion recombination, are shared between large numbers of chaotic multiply
excited multiconfigurational eigenstates.

The existence of a dense spectrum of such multiply excited states explains the experimental
observation of a strongly enhanced but featureless electron recombination rate on Au25+

(Hoffknecht et al 1998). It is crucial for this phenomenon that sharing of the doorways
between multiply excited states leads to small autoionizing widths of the resonances which
mediate the process of electron recombination. The small autoionizing widths give rise to
large fluorescence yields close to unity (Flambaum et al 2002).

Our calculations demonstrate that configuration basis state mixing in Au24+ is
characterized by the BW shapes of the mean-squared components with the spreading width
� ∼ 0.6 au and Gaussian statistics of the (normalized) eigenstate components. We have
also shown that parameters of the chaotic eigenstates, such as �, can be estimated without
diagonalization of large CI Hamiltonian matrices. In addition, we have shown that one
can make conclusions about the degree of configuration mixing by examining a simple
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dimensionless parameter κ . It is equal to the ratio of the root-mean-squared Hamiltonian
matrix element V between a pair of overlapping configurations to the typical level spacing
�E : κ = V/�E . Strong mixing is observed for κ � 1.

A further development of these and similar approaches should lead to a complete statistical
theory of Fermi systems with chaotic multiply excited eigenstates, for which a brute force
diagonalization of huge Hamiltonian matrices is either very difficult or impossible. The basic
ingredients of such a theory are becoming clear now (see Zelevinsky et al 1996, Flambaum and
Izrailev 1997, Flambaum and Gribakin 2000). There is some similarity between its methods
and those of the unresolved transition array formalism and other statistical approaches (see,
e.g., Karazija 1991, Bauche et al 1988). However, the emerging theory focuses on systems
where the transitions are ‘unresolved’ due to strong chaotic level mixing, rather than because
of the apparent complexity of the spectra or experimental limitations. In the future this theory
should enable one to calculate physical properties of the system averaged over an energy
interval containing many chaotic multiply excited eigenstates without diagonalization of the
Hamiltonian matrix. Owing to small level spacings, this energy interval can be made small
enough to allow useful comparisons with the results of many experiments, including those
performed with high energy resolution.

Appendix. Relation between statistics and the shape of components and IPR

There are two main features which characterize the components C j of a chaotic eigenstate
with energy E . The first feature concerns the statistics of the components, which appear to be
random or almost random. This behaviour is a consequence of strong mixing and quasi-random
Hamiltonian matrix elements in a complex system, which make the components corresponding
to different basis states statistically independent2.

The second feature is a systematic dependence of the size of the components on the basis
state energy E j ≡ H j j. Thus, C j are typically large for the basis states whose energies are close
to E , and small for those j for which |E j − E | > �, where � is the energy width characteristic
of the mixing (spreading width). Such behaviour is in agreement with an understanding based
on perturbation theory—contributions of distant basis states become smaller as |E j − E |
increases.

A natural way to separate out the systematic and random features of C j is by calculating
locally averaged mean-squared components |C j |2 (for fixed E j − E) and considering the
statistics of locally normalized components C j (|C j |2)−1/2, see figures 4, 5 and 8. These
figures show that, for the eigenstates studied, this statistic is close to Gaussian, while the
shapes are described well by the BW profiles (8), although |C j |2 drops faster at the edges.

Assuming that the statistics of locally normalized components are the same for all E j − E ,
we can directly relate the IPR to the eigenstate shape and fourth moment of the (locally
normalized) components. To do this, we express the fourth moment in terms of the second
moment as

|C j |4 = A(|C j |2)2, (A.1)

where A depends on the (local) distribution of C j . Thus, if the fluctuations of C j are locally
Gaussian then A = 3. If there is a certain excess of both small and large components, as in
figure 8(c), then A > 3. The IPR ξ = ∑

j |C j |4 for an eigenstate with energy E is then found

2 Note that in a many-body system there are some correlations between distant components, due to a two-body nature
of the interaction between the particles (Flambaum et al 1996).
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as follows:

ξ−1 =
∑

j

|C j |4 = A
∑

j

(|C j |2)2 ≈ A
∫

[ f (E j)]
2 dE j

D
, (A.2)

where we eliminate level-to-level fluctuations of ξ−1 by averaging over a number of
neighbouring eigenstates and f (E j ) ≡ |C j |2 describes the shape of the eigenstate and is
normalized by

∫
f (E j) dE j/D = 1.

For a Gaussian orthogonal ensemble where all basis states are equivalent, f (E j) = 1/N =
constant, and A = 3, we have ξ = N/3. For eigenstates with f (E j) given by the BW
formula (8), equation (A.2) gives ξ = 2N/A. A stronger localization of the eigenstate with
more rapidly decreasing |C j |2 can be modelled by a Gaussian envelope:

|C j |2 ≡ f (E j) = 1

N
exp

[
− (E j − E)2

2a2

]
. (A.3)

The normalization condition requires a = N D/
√

2π , the full width at half-maximum being
� = 2a

√
2 ln 2, and equation (A.2) yields ξ = √

2N/A. In all these cases the number of
principal components N is defined by |C j |2max = N−1.

Therefore, we see that, although the IPR and N are proportional to each other, the
coefficient can be different, depending on the eigenstate shape f (E j ) and the value of A
determined by the local statistical distribution of C j. If the eigenstates components had accurate
BW shapes and exact Gaussian statistics, we would have ξ = 2N/3. However, figure 7 shows
that values of IPR are close to N/3. To understand this discrepancy, we calculate A for the
distributions shown in figures 8(a)–(d) and obtain 3.69,3.54, 3.98 and 3.70, respectively. Using
values of |C j |2 from figure 4 (histograms), we evaluate

∫
[ f (E j)]2 dE j

D and obtain 0.67, 0.65,
0.64 and 0.63. These values are between 0.5 and 2−1/2 ≈ 0.71, which characterize the BW
and Gaussian shapes, respectively. The resulting ratios N/ξ = 2.47, 2.30, 2.54 and 2.33, are
smaller than, but close to, 3, in qualitative agreement with figure 7.
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