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Abstract
We investigate the role of dynamic polarization of the target electrons in the
process of recombination of electrons with multicharged ions (polarizational
recombination). Numerical calculations carried out for a number of Ni- and Ne-
like ions demonstrate that the inclusion of polarizational recombination leads
to a noticeable increase (up to 30%) in the cross sections for incident electron
energies outside the regions of dielectronic resonances. We also present a
critical analysis of theoretical approaches used by other authors to describe the
phenomenon of polarizational recombination.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we present analytical and numerical results of our study of the role of the so-called
‘polarizational mechanism’ in the process of recombination of electrons with multiply charged
ions. Polarizational recombination is a mechanism in which the recombination photon is
emitted by the target electrons, disturbed (polarized) by the incident electron. We demonstrate
that for moderate non-relativistic energies of the incoming electron, ε1 = 0.5–10 keV,
the effect of polarizational recombination noticeably enhances the recombination cross sections
for photon energies outside the regions dominated by dielectronic recombination. The
magnitude of the effect is 10–30% for Ne-like and Ni-like ions.

The most important energy loss mechanisms from high temperature plasmas such as those
found in solar and laboratory fusion environments are driven by interactions between multiply
charged ions and electrons. Radiation losses originating from dielectronic recombination and
radiative recombination are dominant and can have a marked effect on the plasma charge
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Figure 1. Schematic representation of the RR and DR processes. In the RR diagram ε1 and ε2
denote the initial and final states of the incident electron in the field of the target ion Aq+, and the
dashed line shows the emitted photon. In the DR diagram the shaded area describes the electron
interaction(s) leading to the capture of the incident electron in the quasi-bound state (A(q−1)+)∗,
which is then stabilized radiatively.

balance and electron temperature. Hence, it is important to evaluate rates for these processes.
This in turn leads to the requirement of reliable total recombination cross sections as a function
of energy. In particular, polarizational recombination must be correctly included for many-
electron multiply charged ions such as those discussed in this paper if reliable cross sections
and rates are to be obtained.

Furthermore, in experimental investigations, other cross sections are commonly
normalized to radiative recombination cross sections. For example, all experimentally
determined hydrogen-like highly charged ion cross sections available for a nuclear charge
greater than 20 have been normalized in this way (Watanabe et al 2002) as have dielectronic
recombination cross sections (see, e.g., Smith et al (2000), or O’Rourke et al (2004)). If these
types of experimental studies are to be extended to many-electron multiply charged ions, then
reliable non-resonant recombination cross sections seem requisite. Recent experiments using
heavy-ion accelerators and storage rings have provided increased amounts of information on
absolute values of the recombination cross sections at high energy resolution (see Kilgus et al
(1992), Schenach et al (1994), DeWitt et al (1994), and more recent work from these groups,
e.g., Hoffknecht et al (1998), Schnell et al (2003), Schuch et al (2003)). This allows one
to make direct comparisons between experimental and theoretical cross sections (see, e.g.,
Schippers et al (2002) and Tokman et al (2002)).

Theoretically, the process of recombination in binary electron–ion collisions is usually
considered in terms of two main mechanisms: radiative recombination (RR) and dielectronic
recombination (DR) (see, e.g., Hahn (1997)).

RR is a direct process e− + Aq+ → A(q−1)+ + ω in which an electron, initially in a
continuous spectrum state, undergoes a free-bound transition in the static field of the target
ion Aq+ (q stands for the ionicity), accompanied by the emission of a photon which carries
away the excess energy ω. In the final state, A(q−1)+, the electron is bound to the target.

DR stands for the two-step process: e− + Aq+ → (A(q−1)+)∗ → A(q−1)+ + ω. Here, in
the first stage, the incoming electron and the target ion form a quasi-bound excited state of
the compound ion, (A(q−1)+)∗. This capture is only possible if ε1 is close to the difference
between the total energy of (A(q−1)+)∗ and that of Aq+. The second stage of the process is a
radiative decay of the excited compound ion state. Both processes are illustrated in figure 1.

The main difference between RR and DR is that the latter is a resonant process. Its
contribution manifests itself as a set of peaks over the smooth RR background. The positions
and the widths of these peaks are related to the energies and widths of the allowed intermediate
excited states (A(q−1)+)∗.
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Another difference is that the final state of RR is assumed to be that of an electron moving
in the field of the (ground-state) target ion. In contrast, the final states populated in DR include
doubly excited states of the compound ion. Of course, the final states formed in RR can also
result from the DR process. However, their contribution to the DR cross section is by no
means dominant, since most DR resonances have many radiative decay channels. As a result,
one can often neglect the interference between RR and DR and obtain the total recombination
cross section as a sum of the smooth RR background and DR peaks.

The quantitative characteristics of the recombination process include, in particular, the
cross section of selective recombination, σ(ν2), when the electron is captured into the final
state, ν2, (characterized, e.g., by the principal quantum number n2 and orbital angular
momentum l2, if one adopts a non-relativistic description), and the total cross section,
σ = ∑

ν2
σ(ν2), when the final state is not specified.

As a function of ε1, the recombination cross section varies rapidly in those regions where
DR resonances occur. DR often dominates over RR, leading to σ(ν2) ≈ σDR(ν2). For
electron energies outside such regions σ(ν2) ≈ σRR(ν2), and the cross section exhibits smooth
behaviour. For electron capture accompanied by the target excitation from the j th subshell,
the range of incident electron energies ε1 where DR resonances occur is given by

Ij − 2Ie < ε1 < Ij , (1)

where Ij is the ionization potential of subshell j , and Ie is the ionization energy of the
lowest unoccupied (excited state) orbital. In multicharged many-electron ions the ionization
potentials of different subshells are well separated. Therefore, there exist wide ranges of
incident electron energies where the cross section is free from the DR resonances.

It is the aim of our paper to demonstrate that for electron energies outside the DR
resonance regions, defined by (1), the recombination cross section σ(ν2) is enhanced
compared to σRR(ν2). This increase is due to the contribution of another distinct mechanism
of recombination, the polarizational recombination (PR) (Connerade and Solov’yov 1996,
Bureeva and Lisitsa 1998). The PR mechanism is somewhat similar to ‘radiative dielectronic
recombination’ (Hahn 1997), characterized by off-shell excitations of the target electrons. It
was considered by Hahn (1997) and deemed ‘difficult to estimate’. It is closely related to the
polarizational bremsstrahlung (Amusia 1982, 1988, Korol and Solov’yov 1997). In the latter,
the photon emission occurs due to virtual excitations (polarization) of the target electrons by
the Coulomb field of the projectile. The polarizational mechanism plays an important role
in forming the bremsstrahlung spectrum of electrons over wide ranges of photon energies
(see, e.g., Korol et al (1997)). The bremsstrahlung and recombination processes are similar,
differing only in the type of radiative transition involved: the former corresponds to a free–free
transition, whereas the latter requires a free-bound one.

The PR mechanism was earlier studied by Connerade and Solov’yov (1996) in application
to collisions of electrons with clusters. They demonstrated that the polarizational mechanism
gives rise to a giant resonance in the recombination cross section. In the vicinity of the
resonance, which is related to the giant resonance in the photoionization of the cluster, the
recombination cross section is dominated by PR.

For electron collisions with multicharged ions, the PR mechanism was considered by
Bureeva and Lisitsa (1998, 1999) and further discussed by Astapenko et al (2000, 2002).
Using the arguments of classical mechanics, they derived a simple approximate formula for
the contribution of PR and for the ratio of the PR and RR cross sections4:

σPR(ν2)

σRR(ν2)
≈

∣∣∣∣ω
2α(ω)

Zeff

∣∣∣∣
2

, (2)

4 Atomic units are used throughout the paper.
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where α(ω) is the dynamic dipole polarizability of the target, and Zeff is the charge seen by
the projectile at some effective distance, r0, from the nucleus (see Bureeva and Lisitsa 1998,
Kogan et al 1992). The radius r0 depends on ε1 and ω. It is found as the root of the equation
(Bureeva and Lisitsa 1998)

ε1 = −Z

r0
+ Uel(r0) +

ω2r2
0

2
, (3)

where Z is the nuclear charge and Uel(r) is the electrostatic potential of the target electrons.
By definition, Zeff = Z − r0Uel(r0). For low electron energies Zeff reduces to the net ionic
charge, Z0, while for large ε1 and ω it becomes equal to Z. Based on their estimate (2), Bureeva
and Lisitsa (1998) claimed that ‘the contribution of PR to the total recombination rates may
be comparable to or exceed (by more than an order of magnitude) the standard contribution
of radiative recombination’.

However, estimate (2) should be used with caution. In a recent calculation (Gribakin
and Korol 2001) we found that this relation could greatly overestimate the contribution of
the PR mechanism to the cross section. In particular, we examined the contribution of PR to
the recombination of electrons with Au25+ within the energy range ε1 = 0.01–100 eV. It was
found that for the dominant channels of recombination into the low-lying states, equation (2)
overestimated the contribution of PR by up to two orders of magnitude, in comparison with the
results of more accurate calculations. For the capture into high Rydberg states, equation (2)
did reproduce the ratio of the cross sections correctly, but in that case the contribution of the
PR mechanism was negligibly small compared to RR.

In what follows we present the results of calculations of the contribution of PR mechanism
in electron collisions with a number of Ni- and Ne-like ions. In particular, we demonstrate
that PR leads to an increase of the cross section, mostly due to the interference between the
RR and PR amplitudes. This enhancement is much smaller than predicted by Bureeva and
Lisitsa (1998, 1999) and Astapenko et al (2000, 2002). On the other hand, the contribution of
PR seems to be more significant than estimated by Hahn (1997).

2. Formalism

To describe the RR and PR contributions, let us consider the incoming electron moving in the
static spherically symmetric potential of an ion in the ground state. The electron wavefunction
in the non-relativistic distorted partial wave approximation is given by (see, e.g., Landau and
Lifshitz (1977))

�(+)
p1

(r) = 4π

p1

∑
l1m1

il1 eiδl1 (p1)Y ∗
l1m1

(p1/p1)Yl1m1(r/r)r−1Pν1(r), (4)

where p1 is the electron momentum, Yl1m1 are the spherical harmonics, Pν1(r) is the radial
Hartree–Fock wavefunction in the frozen-core ionic potential, ν1 stands for the energy
ε1 = p2

1

/
2 and orbital angular momentum l1 of the electron, and δl1(p1) is the scattering

phase shift which includes the Coulomb correction due to the net ionic charge Z0.
The amplitude of RR is a single-electron bound-free dipole matrix element,

FRR = 〈2|e · r|1〉 ≡
∫

dr �∗
n2l2m2

(r) e · r�(+)
p1

(r), (5)

where e is the vector of the photon polarization, and �n2l2m2(r) = Yl2m2(r̂)Pν2(r)/r is the final
bound-state wavefunction of the captured electron with energy ε2 < 0. The energy of the
emitted photon is given by ω = ε1 − ε2.
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Figure 2. Diagrammatic representation of the PR amplitude. The upper solid line describes
the transition of the incident electron from the initial state ‘1’ into the final bound state ‘2’.
The double line corresponds to the target ion Aq+: ‘0’ denotes its initial and final states, and ‘n’
refers to the intermediate, virtual, state. Vertical dashed lines indicate the Coulomb interaction
between the projectile and the ion, and long-dashed lines describe the emitted photon.

In the same approximation, the PR amplitude is described by a compound matrix element.
It accounts for non-radiative capture of the projectile due to the Coulomb interaction with the
target electrons, accompanied by the formation of a virtual excited state of the target, which
decays via the emission of a photon. One should also allow for the alternate time sequence of
the two events. The corresponding diagrams are shown in figure 2.

Analytically, the PR amplitude is given by the following expression:

FPR = −
N∑

a,a′=1

∑
n

[ 〈0|e · ra|n〉〈n; 2|va′ |1; 0〉
ωn0 − ω

+
〈0; 2|va′ |1; n〉〈n|e · ra|0〉

ωn0 + ω

]
, (6)

where a and a′ enumerate the target electrons of the total number N, ra is the radius-vector
of the ath electron and va = 1/|r − ra| is its Coulomb interaction with the incident electron.
The sum

∑
n is carried out over the whole spectrum of excited states of the target, including

excitations into the continuum. Effectively, only the states allowed by the dipole selection
rules contribute to the sum. The quantity ωn0 = εn − ε0 is the transition energy.

When the photon energy ω is close to the excitation energy ωn0 of a discrete spectrum
state n (εn < 0), the PR amplitude is resonantly enhanced. This enhancement corresponds to
a dielectronic resonance at ε1 ≈ ε2 + εn − ε0, where amplitude (6) is dominated by the single
term

FPR|ω≈εn−ε0 ≈ −〈0|e · D|n〉〈n; 2|V |1; 0〉
εn − ε0 − ω − i	n/2

, (7)

where D = ∑N
a=1 ra and V = ∑N

a=1 va . We have also introduced the total width 	n of the
intermediate state in the denominator, to describe accurately the behaviour of the amplitude
near the pole. The amplitude 〈0|e · D|n〉 determines the partial radiative width of the state n
due to the transition n → 0, 	

(γ )

n0 ∝ |〈0|e · D|n〉|2.
The structure of the right-hand side of (7) shows that the resonant part of the PR amplitude

accounts for the DR processes leading to the final state with a single excited electron.
Therefore, in the region of dielectronic resonances the PR mechanism is indistinguishable
from the DR mechanism.

In this paper, we are interested in the role of the PR mechanism within the energy intervals
which are free from DR resonances (both of the type discussed above and more complex ones,
which are included in the full treatment of DR). For such energies the total amplitude of the
recombination process is given by the sum of FRR and the (non-resonant) PR amplitude (6):

Ftot = FRR + FPR. (8)
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The cross section is proportional to the modulus squared of the amplitude Ftot. Hence, it
can be written as a sum of three terms,

σtot = σRR + σint + σPR, (9)

where σRR ∝ |FRR|2 and σPR ∝ |FPR|2 stand for the cross sections of the RR and PR processes,
and σint is the interference term proportional to Re(F ∗

RRFPR). Note that σint can be of either
sign.

To calculate the contribution of PR, we assume that the ground and excited states of the
target are described in the Hartree–Fock approximation. Such excited states correspond to
electron–hole pairs. Applying the standard technique to obtain the cross section (see, e.g.,
Berestetsky et al (1982)) and carrying out the necessary angular momentum algebra (see,
e.g., Varshalovich et al (1988)) one obtains the following expression for the cross section of
selective radiative capture in the ν2 state:

σtot(ν2) = 16πω3

3p3
1c

3

∑
l1=l2±1

l>
(
Rν2ν1 + Pν2ν1

)2
, (10)

where l> = max{l1, l2}. The quantities Rν2ν1 and Pν2ν1 are the partial RR and PR amplitudes:

Rν2ν1 ≡ rν2ν1 =
∫ ∞

0
drPν2(r)rPν1(r), (11a)

Pν2ν1 = −
∑
ν0

Nν0

2l0 + 1

∑
νn

max{l0, ln}
2ωn0rν0νn

V
(1)
n2,10

ω2
n0 − ω2

, (11b)

where V
(1)
n2,10 denotes the radial matrix element of the dipole part of the Coulomb interaction:

V
(1)
n2,10 = 1

3

∫ ∞

0

∫ ∞

0
dr dr ′Pνn

(r ′)Pν2(r)
r<

r2
>

Pν1(r)Pν0(r
′), (12)

and r>(r<) is the largest (smallest) of r and r ′.
The outer sum in (11b),

∑
ν0

≡ ∑
n0l0

, is carried out over the orbitals n0l0 occupied in
the ionic ground state, and Nν0 stands for the number of electrons in the subshell ν0. The
inner sum,

∑
νn

≡ ∑
εnln

, is over the excited state orbitals (summation over εn also implies
integration over the continuous spectrum of excitations).

In numerical calculations we use nonrelativistic Hartree–Fock wavefunctions and restrict
ourselves to the case of low- and medium-Z targets. Electron correlations beyond the Hartree–
Fock scheme have not been included. For multiply charged ions they are of minor importance.

To conclude this section we demonstrate, within our formalism, how one can derive
expression (2) proposed by Bureeva and Lisitsa (1998). In doing so we will also establish the
limits of validity of (2).

Equation (2) contains the dynamic dipole polarizability. This implies that effective
distances between the projectile and the target, which are important for the PR mechanism,
are greater than the average radius of the ion, R. This condition is well known in the theory of
polarizational bremsstrahlung (see, e.g., Zon (1977), Amusia (1988) and Korol and Solov’yov
(1997)), where it has a clear physical justification. The dipole polarization of the electron
cloud is most pronounced if the Coulomb field of the projectile is uniform on the scale of R,
i.e. when the projectile is outside the target, r > R. For small distances, r 
 R, this field
is almost spherically symmetric. Therefore, it induces a small dipole moment on the target.
Hence, small distances are less important. An extension of the ‘large-distance approximation’
to the process of polarizational capture should be done with care. In particular, it requires that



Polarizational recombination 2417

the wavelength of the projectile must be much greater than R (i.e. a low-ε1 incoming electron)
and the final state ν2 must be a Rydberg state, whose effective radius also exceeds R.

Under these assumptions, the Coulomb interaction, which appears on the right-hand side
of (6), can be expanded as va ≈ ra · r/r3, which allows one to express the PR amplitude in
terms of the dynamic dipole polarizability α(ω),

FPR ≈ −
〈
2
∣∣∣e · r

r3

∣∣∣ 1
〉
α(ω), (13)

where

α(ω) = 2

3

∑
n

ωn0 |〈n|D|0〉|2
ω2

n0 − ω2
. (14)

The operator in (13) is proportional to −Z0r/r3, which is the acceleration operator of the
electron in the field −Z0/r . The latter is equal to the electrostatic potential of the target in the
region r � R. If one assumes that the initial- and final-state wavefunctions of the electron
can be treated as solutions of the Schrödinger equation in the field of a point charge Z0,
then the matrix element of the acceleration in equation (13) can be converted into the matrix
element of the operator r (see, e.g., Sobelman (1992)). This allows one to relate FPR to the RR
amplitude (5),

FPR ≈ −〈2|e · r|1〉ω
2α(ω)

Z0
= −FRR

ω2α(ω)

Z0
. (15)

Consequently, the ratio of the cross sections is given by

σPR(ν2)

σRR(ν2)
≈

∣∣∣∣ω
2α(ω)

Z0

∣∣∣∣
2

. (16)

This formula coincides with (2) if one puts Zeff = Z0 in the latter.
We would like to emphasize that the approximations tacitly made by Bureeva and Lisitsa

(1998) in deriving their estimate (see section 2 of their paper) are equivalent to those made
above. Hence, the distance r0 defined by (3) and used in (2) must be greater than R. This
means that in the range of validity of (2) one can put Zeff = Z0, while for r0 < R (where
Zeff > Z0) the estimate (2) is not valid.

The condition r0 > R imposes restrictions on the range of values of ε1 and ω for which
one can rely on (16) when estimating the relative contribution of the PR channel. To establish
these ranges, let us analyse equation (3) in the region r0 > R. Replacing Z/r0 − Uel(r0) with
Z0/r , one obtains

ε1 +
Z0

r0
= ω2r2

0

2
. (17)

From this equation it is clear that the radius r0 is a decreasing function of ω. Therefore, for
a given ε1 the relation r0 = R defines ωmax, the maximum photon energy consistent with the
large-distance approximation. Putting r0 = R one finds

ωmax = I

n∗

(
1 +

ε1

I

)1/2
, (18)

where I is the ionization potential of the target and n∗ is the effective principal quantum number
of the outermost occupied ionic orbital. In deriving (18) we used I = Z2

0

/
2n2

∗ and evaluated
R as the classical turning point of the outer-shell electron in the ionic field, R ≈ Z0/I .

Being the energy of the recombination photon, ωmax must satisfy the conditions

ε1 � ωmax < ε1 + I. (19)
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Indeed, the extreme case ωmax = ε1 corresponds to capture into the state with ε2 = 0, whereas
ωmax ∼ ε1 + I results from capture into the lowest vacant orbital of the ion. For many-electron
ions (n∗ � 1) relations (18) and (19) lead to

ε1 
 I, ω 
 I. (20)

Hence, estimates (2) and (16) are only applicable to the capture of low-energy electrons into
Rydberg states with principal quantum numbers n2 � n∗.

However, for such ε1 and n2 the contribution of PR is small. Indeed, for ω 
 I

the dynamic polarizability can be replaced by its static value α(0) ∼ R3/Z0. Then, using
R ≈ Z0/I , one obtains from (16): ω2α(ω)/Z0 ∼ (ω/I)2(R/a0) 
 1 (a0 is the Bohr radius).
The same result can be obtained using other estimates of the static polarizability. For example,
choosing α(0) ≈ 4(Z − Z0)

3/Z4 which corresponds to the Thomas–Fermi model (see [14] in
Astapenko et al 2002), it is easy to demonstrate that ω2α(ω)/Z0 � (n∗/n2)

4 
 1.
It will be shown in the next section that outside the region of low ε1 and large n2

equations (2) and (16) grossly overestimate the role of PR.

3. Numerical results and discussion

The cross sections σtot, σRR, σPR and the interference terms have been calculated for a range
of energies ε1 = 0.01–5 keV of the electron incident on a number of Ni-like (isoelectronic
sequence 1s22s22p63s23p63d10) and Ne-like (1s22s22p6) ions. The electronic structure of the
final state is that of one electron in the nl orbital (n � 4 in the Ni-like case, and n � 3 for
Ne-like ions) above the closed-shell target ground-state configuration.

In reporting our results, we use the following simplified notation: σ(nl) is the cross section
of selective capture into the nl state, σ(n) denotes the sum

∑n−1
l=0 σ(nl), and σ(n1 − n2) stands

for
∑n2

n=n1
σ(n).

3.1. Ni-like ions

The calculations have been performed for Kr8+, Zr12+, Ru16+, Sr20+, Xe26+ and Ba28+.
Figure 3 shows the cross sections σtot(4), σRR(4) and σPR(4) as functions of ε1 for Kr8+ and
Xe26+. As usual, the RR cross sections (dashed curves) exhibit a smooth monotonic behaviour,
decreasing rapidly with the electron energy ε1. The total (solid curves) and PR (dotted curves)
cross sections display sharp maxima corresponding to discrete ionic excitations: in both
figures the clump of peaks at low energies corresponds to resonant transitions from 3s, 3p and
3d orbitals, while that at higher energies is due to excitations from n = 2 shell. Outside the
resonance regions σtot(4) and σPR(4) do not show any irregularities.

As explained in section 1, our prime interest is in determining the role of PR in the
regions which are free of resonances. For Kr8+ and Xe26+ these are ε1 ≈ 0.3–1.5 keV and
ε1 > 2 keV in the case of Kr8+ and ε1 ≈ 1.1–3.9 keV for Xe26+. Examining these regions
in figure 3, one can clearly see the two main features of PR. First, the relative magnitude of
σPR is very small, varying between 10−3 and 10−1 of σRR. Accordingly, the ratio σPR/σRR in
non-resonant regions is much smaller than the values which can be inferred from (2). We will
discuss this point in more detail later in this section.

The second feature is that the total cross section systematically exceeds the RR cross
section in the non-resonant regions, although this effect is not large. Taking into account the
relation σPR/σRR 
 1 and recalling equation (9), one realizes that it is the interference term,
σint, which leads to this enhancement of the cross section. Hence, we can write

σtot

σRR
≈ 1 +

σint

σRR
. (21)
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Figure 3. Radiative, polarizational and total recombination cross section for capture into the n = 4
states for Kr8+ (top) and Xe26+ (bottom): – – –, σRR(4); · · · · · ·, σPR(4); ——, σtot(4).

For photon energies well above the ionization thresholds of many-electron subshells, the
interference between the radiation emitted via RR and PR mechanisms is constructive and
results in σint > 0 and, consequently, in σtot > σRR. A similar effect is also known in
bremsstrahlung (e.g., Amusia 1988, Korol and Solov’yov 1997). It will be examined more
closely further on in the paper.

These two features are typical for all Ni-like ions that we have investigated. They can also
be seen in the cross sections of selective capture into the states with different orbital angular
momenta, and into the states with n2 > 4. Thus, in figure 4 we show the selective capture
cross sections σtot and σRR for the 4s, 4p, 4d and 4f states in Kr8+ and Xe26+. In the case of
Xe26+ only the non-resonant interval of ε1 is presented. For all channels the excess of σtot

over σRR is clearly visible. Its origin is in the constructive interference between the photons
emitted via the RR and PR mechanisms. The contributions of σPR (not shown in the figure)
are negligibly small for all the channels.

A similar relationship between σtot, σRR and σPR in the non-resonant regions holds for the
capture into the states with higher principal quantum numbers n2, as illustrated by figure 5.
Here, the coloured curves correspond to the cross sections σtot(n2) and σRR(n2) with n2 = 4–7.
Black curves represent the total and RR cross sections summed over n2 from 4 up to 10. Again,
the curves for σPR are not shown because of the strong inequality σPR 
 σtot, σRR.

The small sizes of σPR relative to σRR seem to be in contradiction with the estimates of
Bureeva and Lisitsa (1998). To highlight the size of this discrepancy, in figures 6(a)–(d) we
plot the ratio σPR(4p)/σRR(4p) for Kr8+ and Xe26+ in the nonresonant regions, calculated using
different approaches. Our numerical results in figures 6(a) and (b) show that the contribution
of σPR(4p) to the total cross section is at the level of ∼0.1–1%. To calculate the ratio
[ω2α(ω)/Zeff]2, we take into account the relationship between the photon energy and that of
the incoming electron: ω = ε1 + I4p, where I4p is for the Hartree–Fock ionization energy of
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with different principal quantum numbers in Xe26+. Red curves correspond to σtot(n) and σRR(n)
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the 4p orbital (see table 1). The dynamical polarizability is evaluated in the Hartree–Fock
approximation. The effective charge Zeff for each pair of ε1 and ω is found following the
prescription of Bureeva and Lisitsa (1998), as Zeff = Z − r0Uel(r0), where the radius r0

is found by a numerical solution of equation (3). The electrostatic potential of the target
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and (d) solid curves show estimate (2), and dashed curves show the results obtained from the
approximate expression for [ω2α(ω)/Zeff ]2 (see explanations in the text). Vertical bars mark the
ionization thresholds in the Hartree–Fock approximation (see table 1).

Table 1. Hatree–Fock ionization energies of the ground state orbitals and excited 4p orbital
(in eV) for Ni-like ions.

Orbital Kr8+ Zr12+ Ru16+ Cd20+ Xe26+

1s 14 288 17 941 22 032 26 558 34 166
2s 2 037.3 2 721.1 3 516.4 4 422.2 5 986.7
2p 1 850.4 2 507.4 3 275.6 4 153.8 5 677.2
3s 427.3 662.7 948.2 1 283.0 1 876.9
3p 359.0 580.6 852.0 1 172.6 1 745.0
3d 236.9 432.5 677.8 972.5 1 506.3
4p 105.5 206.5 335.7 492.9 780.2

electrons, Uel(r), is calculated using the Hartree–Fock wavefunctions. For ε1 = 0.01–5 keV
the effective charge Zeff varies between 8 and 22 in the case of Kr8+, and between 27 and 35
for Xe26+. It is obvious that the values obtained from equation (2), and shown in figures 6(c)
and (d), overestimate the true ratio of the cross sections (figures 6(a) and (b)) by orders of
magnitude.

This discrepancy can also be seen if we use a simple estimate for [ω2α(ω)/Zeff]2.
For photon energies between the n = 2 and n = 3 thresholds, the quantity −ω2α(ω) is
approximately equal to 18, i.e. the number of electrons in the 3s, 3p and 3d subshells, while
for I2s,2p 
 ω 
 I1s, it is approximately 26 (the number of electrons in all subshells but 1s).
Here I1s, I2s, . . . are the ionization potentials of the subshells (see table 1). Hence, one can
write the following estimate [ω2α(ω)/Zeff]2 ≈ (N/Zeff)

2. The values of (N/Zeff)
2 are shown
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Figure 7. Ratios σtot/σRR for the Ni-like ions. Dotted curves correspond to σtot(4)/σRR(4), while
solid curves show σtot(4–10)/σRR(4–10).

in figures 6(c) and (d) by dashed lines. They are comparable to the values of [ω2α(ω)/Zeff]2

calculated accurately, which confirms that equation (2) cannot be relied upon to estimate the
PR cross section.

In order to appreciate the true role of PR, the ratios σtot(4)/σRR(4) and
σtot(4–10)/σRR(4–10) are plotted in figure 7 as functions of the electron energy. As observed
above, PR leads to enhanced recombination cross sections in the non-resonant regions, mainly
due to the interference term σint (see equation (21)). The interference nature of the PR effect
can also be inferred from the dip which occurs at energies just below the region of n = 2
dielectronic excitations. Here the PR effect leads to a destructive interference.

The actual value of the enhancement due to PR is about 10 to 30%. It depends on
the energy but changes little along the isoelectronic sequence. A comparison between the
selective and total recombination cross sections (shown in figure 7 by dotted and solid curves,
respectively), and, also, between σtot and σRR calculated for different n2 (figure 5) shows that
the ratio σtot/σRR depends weakly on the principal quantum number of the final electron state.
This indicates that the main contribution to the radial integrals rν2ν1 and V

(1)
n2,10, equations (11b),

(11a) and (12), which determine the RR and PR partial amplitudes, comes from small distances
r (much smaller than the mean radius of the final-state orbitals with n2 = 4).

3.2. ‘Stripping’ approximation

To understand the enhancement of σtot over σRR in non-resonant energy regions qualitatively,
one can use arguments similar to those developed in the theory of polarizational
bremsstrahlung, where the analogous effect (Buimistrov and Trakhtenberg 1977, Amusia



Polarizational recombination 2423

et al 1985, Korol 1992, Korol et al 2002) is known as the ‘stripping’ phenomenon (Amusia
et al 1985).

For a fixed energy ε2 of the captured electron, the initial energy ε1 defines that of the
emitted photon, ω = ε1 − ε2. In a many-electron target where the ionization potentials of
different subshells are well separated, the electrons can be divided into two groups, the ‘inner’
and the ‘outer’ electrons, with respect to ω. The inner electrons are those whose binding
energies, Iin, exceed ω. Conversely, the outer electrons have binding energies Iout less than ω:

Iout < ω < Iin. (22)

The cloud of strongly bound inner electrons is weakly distorted, or polarized, by an external
electromagnetic field of frequency ω. Therefore, assuming the strong inequality ω 
 Iin, one
can neglect the contribution of the virtual excitations of the inner electrons to the sum in (6).
Then, the amplitude FPR can be approximated by the contribution of the outer-shell electrons
alone

FPR ≈ −
Nout∑

a,a′=1

∑
n

[ 〈0|e · ra|n〉〈n; 2|va′ |1; 0〉
ωn0 − ω

+
〈0; 2|va′ |1; n〉〈n|e · ra|0〉

ωn0 + ω

]
, (23)

where Nout is the number of such electrons.
Assuming the strong inequality ω � Iout as well, one can expand the denominators in

powers of the small parameter ωn0/ω ∼ Iout/ω. The leading term, proportional to ω−2, is
evaluated with the help of closure

∑
n |n〉 〈n| = 1. The result is

FPR ≈ 1

ω2
〈2|e · aout|1〉, (24)

where aout is the acceleration due to the static field of the outer electrons (Korol et al 2002).
To obtain the final expression for Ftot, let us introduce the operator of the total acceleration

a of the electron in the field of the ion:

a = −Z
r
r3

+ ain + aout, (25)

where ain is the acceleration due to the potential created by the inner electrons. With the help
of the relation between the dipole matrix elements in the ‘length’ and ‘acceleration’ forms
(see, e.g., Sobelman (1992)), the RR amplitude (5) can be cast in the form

FRR = − 1

ω2
〈2|e · a|1〉. (26)

Taking into account equation (24), one obtains the following approximate formula for the total
amplitude:

Ftot ≈ − 1

ω2
〈2|e · aeff|1〉, (27)

where

aeff = −Z
r
r3

+ ain (28)

is the effective acceleration.
Comparing (26) with (27) one notes that the latter does not contain the acceleration due

to the outer electrons. Hence, in Ftot the outer electrons do not participate in the screening of
the nucleus (or, in other words, the ion is ‘stripped’ of its Nout outer electrons). As a result,
the cross section of the radiative capture is enhanced compared with σRR, since the effective
acceleration of the projectile becomes larger. A physical origin of ‘stripping’ is in that for
ω � Iout the outer electrons can be considered as quasi-free, which means that there is no
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Figure 8. Ratio σtot/σRR for the selective capture into the 4p states of Ni-like ions as a function of
the photon energy ω. The ratios shown by solid curves were obtained using the exact form of the
total amplitude, equations (6) and (7). Dashed curves correspond to the stripping approximation
(27), while dotted curves show the results obtained from equation (32). Vertical bars (in some
cases obscured by the resonances) indicate the Hartree–Fock ionization energies of the orbitals.

dipole photon emission from the system ‘incident electron plus outer electrons’ (see, e.g.,
Landau and Lifshitz (1971)). In other words, the radiation of the incident and outer electrons,
due to their interaction with each other, cancels out.

It is interesting to test the effect of ‘stripping’ quantitatively. In figure 8 we show the
ratios σtot(4p)/σRR(4p) calculated using different approximations, as functions of the photon
energy ω = ε1 − I4p, for the Ni-like ions. Solid curves indicate the value obtained by using
the exact amplitude FPR, equations (5), (6) and (8), while the dashed curves correspond to
the ‘stripping’ approximation for the total amplitude, equation (27). In implementing this
equation, we drop the contributions of the outer subshells successively, as the photon energy
crosses their ionization thresholds.

We see that the ‘stripping’ approximation provides a correct estimate of the PR effect
away from the thresholds, in the energy intervals I3d,3p,3s < ω < I2p,2s and ω > I2p,2s. Close
to the thresholds the polarizational amplitude has a strong energy dependence, because of the
resonant denominators, see equation (6). This feature is obviously not accounted for by the
‘stripping’ approximation.

Thus, the role of the target polarization can be described in terms of ‘stripping’. However,
it would be useful to have an even simpler way of estimating the role of polarization. Below
we derive an analytical estimate for the ratio σtot/σRR, based on the ‘stripping’ approximation
and on the use of the arguments of the so-called Kramers electrodynamics (Kogan et al 1992).
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Let us first re-write equation (24) as

FPR ≈ 1

ω2

〈
2

∣∣∣∣e · r
Nout(r)

r3

∣∣∣∣ 1

〉
, (29)

where Nout(r) = 4π
∫ r

0 ρout(r
′)r ′2 dr ′ is the number of outer-shell electrons within the sphere

of radius r, and ρout is their density.
To estimate the size of FPR relative to FRR = 〈2|e · r|1〉, we want to extract the factor

Nout(r)/r3, taken at some point r = r0, from the matrix element (29). The choice of r0 is
determined by the condition that the distances r ∼ r0 contribute most effectively to the matrix
element.

The matrix element in equation (29) describes a radiative transition from the continuum
state ‘1’ into the bound state ‘2’ under the action of an effective operator. According
to the quasi-classical theory of radiative transitions (Kogan et al 1992), the emission of
electromagnetic waves of frequency ω by a charged particle is most effective in the vicinity
of the turning points of classical trajectories for which the particle’s angular velocity at these
points is close to ω. Therefore, the distance r0 can be estimated as a root of equation (3). The
right-hand side of equation (29) then becomes

FPR ≈ 〈2|e · r|1〉Nout(r0)

ω2r3
0

= FRR
Nout(r0)

ω2r3
0

, (30)

and the total amplitude is written as

Ftot ≈ FRR

(
1 +

Nout(r0)

ω2r3
0

)
. (31)

This gives the following estimate:
σtot

σRR
≈ 1 +

2Nout(r0)

ω2r3
0

, (32)
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Figure 10. Dependence of the ratios σtot/σRR on the electron energy for Ne-like ions. Dotted
curves depict σtot(3)/σRR(3), while solid curves correspond to the ratios of cross sections summed
over the final states, σtot(3–10)/σRR(3–10).

where we have assumed that the second term in brackets in equation (31) is a small correction.
The second term on the right-hand side of equation (32) corresponds to the ratio σint/σRR,
cf equation (21).

The results obtained from equation (32) are shown in figure 8 by dotted curves. Comparing
these to the accurate numerical results (solid curves) one concludes that in spite of its simplicity,
equation (32) yields a reasonable estimate for the ratio σtot/σRR in the non-resonant regions.

3.3. Ne-like ions

Numerical calculations of the recombination cross sections have also been performed for a
number of Ne-like ions: Kr26+, Zr30+, Ru34+, Sr38+, Xe44+ and Ba46+. They show that, as in
the case of Ni-like targets, the PR mechanism leads to an increase of the cross section in the
non-resonant regions, see figure 9. As before, this increase is due to constructive interference
between the RR and PR amplitudes. However, for a Ne-like target with a given Z, the ratio
σtot/σRR is smaller than that for the corresponding Ni-like ion. The decrease of the relative role
of polarization and the interference term σint with the ionicity Z0 could be expected. We can
deduce an explicit dependence of the ratio σint/σRR on Z0 from (32). Let us first approximate
the factor Nout(r0)/r3

0 by Nout/R
3
out, Rout being the (average) radius of the outer electrons.

Using Rout ∼ Z0/Iout and Iout ∼ Z2
0, we derive σint/σRR ∼ (Nout/Z0)

(
I 2

out/ω
2
)
. Hence, for

a fixed number of outer electrons and for a given Iout/ω ratio, the relative magnitude of σint

decreases as Z−1
0 . This conclusion is confirmed by the result presented in figures 9 and 10.
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In figure 9 the cross sections σtot(3), σRR(3) and σtot(3–10), σRR(3–10) are plotted for
Kr26+ and Xe44+ ions. Sharp peaks in σtot correspond to discrete ionic excitations from the 2s
and 2p shells. We observe that σtot is greater than σRR outside the resonance regions, although
this enhancement is less pronounced than in the case of Ni-like Kr and Xe ions (figures 3–5).

The ratios σtot(3)/σRR(3) and σtot(3–10)/σRR(3–10) versus the electron energy are plotted
in figure 10. As for the Ni-like targets (figure 7), the recombination cross section is enhanced
in the non-resonant regions due to the polarizational mechanism. The actual size of this
enhancement varies between 5 and 15%. Similar to the Ni-like case, the ratio σtot/σRR

depends weakly on the principal quantum number of the final electron state. It is also worth
noting that the polarization contribution results in a prominent dip in σtot at the energy just
below the dielectronic resonance region.

4. Conclusions

We have demonstrated that for electron energies outside the regions of DR resonances, the
cross sections of electron–ion recombination are enhanced due to the constructive interference
of the photons emitted via the radiative recombination and the polarizational recombination
mechanisms. For multiply charged targets this enhancement, which is characterized by the
ratio σint/σRR, varies from a few per cent to a few tens of per cent, depending on the ionicity and
on the energy of the incident electron. The values for σint/σRR obtained in this paper indicate
that the contribution of the polarizational recombination channel is sufficiently large and could
be detected experimentally. The enhancement due to PR needs to be taken into account in
order to obtain accurate absolute values of the recombination cross sections between the DR
resonance regions. However, the size of the enhancement is orders of magnitudes smaller than
predicted by Bureeva and Lisitsa (1998, 1999) and Astapenko et al (2000, 2002).

In the present paper we restricted ourselves to the cases of Ni- and Ne-like ions. In the
former case the ionic core is less rigid and is polarized more efficiently. It would be interesting
to carry out a wider survey of the effect of polarization recombination, by analysing ionic
targets of other isoelectronic sequences, over wider ranges of electron energies and at lower
ionicities, where the role of target polarization is stronger.
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