
J. Phys. B: At. Mol. Opt. Phys.29 (1996) L809–L815. Printed in the UK
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Perturbation of Rydberg series by atomic compound states
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Abstract. The discrete spectrum of excited states of an atom contains Rydberg series of states
and valence excited states, made up of electron orbitals with small principal quantum numbers.
For an atom with a few electrons in the open outer shell the spectrum of the valence excited
states is extremely dense and extremely complicated, and the corresponding atomic eigenstates
are strongly chaotic and similar to nuclear compound states. This enables us to consider mixing
of the Rydberg and compound valence atomic states in a general form as a function of the
residual interaction strength. It appears that the mixing reaches its maximum for the ‘physical’
values of the interaction. The Rydberg series are strongly perturbed forn < D−1/3, whereD

is the mean level spacing between the compound states (in atomic units). For larger values of
n the mixing is weak for any interaction strength. This follows from the separable character of
the interaction between the Rydberg and compound states.

As is known the discrete excitation spectra of most atoms contain two distinctly different
types of states: Rydberg states and so-called ‘valence’ states. In the Rydberg states one of
the electrons has a large principal quantum numbern. The Rydberg states are characterized
by large orbital radiir ∝ n2. Their energy spectrum is regular and is characterized by the
quantum defectµ, En ' −1/2(n−µ)2 (atomic units are used throughout). The density of the
Rydberg statesρn goes to infinity at the ionization threshold,ρn = D−1

n , whereDn ' 1/n3

is the mean level spacing between Rydberg states. In contrast, the atomic valence states
are built up of several excited electrons with small principal quantum numbers. Unlike the
Rydberg states, they have small radii of about a few Bohr radii (this difference has been
used by experimentalists to discern Rydberg states among valence states in lanthanides and
actinides [1, 2]). The energy spacing between the valence states fluctuates strongly with
respect to its mean valueD. The density of the valence excited statesρ = 1/D is finite
but increases rapidly with energy. As a result, the spectra of heavy open-shell atoms are
enormously complex.

The study of Rydberg series has important applications. Experimentally, it provides a
highly accurate method for measuring ionization limits of atoms. Due to the high density
of the valence states the procedure of assigning Rydberg series in complex atoms becomes
extremely difficult. For example, near the ionization threshold of U the observed level
density of Rydberg and valence states wasρ ∼ 103 eV−1 [1], and the experimentalists
could identify the Rydberg states only forν > 36 (ν = n − µ).

The aim of this work is to estimate how strong the perturbation of the Rydberg series is in
a situation when the spectrum of valence excited states is dense. Of course, even in the most
complex spectra there are Rydberg series converging to the ionization limit. The questions

† E-mail address: anna@newt.phys.unsw.edu.au

0953-4075/96/230809+07$19.50c© 1996 IOP Publishing Ltd L809



L810 Letter to the Editor

we want to answer are: at whichn do the Rydberg states become ‘visible’? How does
the mixing between the Rydberg and valence states depend on the strength of the residual
interaction? Can this interaction mix the two manifolds completely, thus eliminating the
Rydberg states in some part of the spectrum? We show in this paper that forDn < D, i.e.
for n > D−1/3, there is almost no mixing between the manifolds for any residual interaction
strength. This result is a consequence of a separable form of the interaction between the two
level manifolds. Curiously, it appears that the state mixing is maximal for the ‘physical’
strength of the interaction.

It has been shown in [3] that simultaneous excitation of several valence electrons in a
rare-earth atom (Ce) produces a dense spectrum ofcompoundvalence atomic states. Using
a configuration-interaction approach the atomic eigenstates

|i〉 =
∑

j

Cj |8j 〉
(∑

j

C2
j = 1

)
(1)

are obtained by diagonalizing the Hamiltonian matrixHjj ′ ≡ 〈8j |H |8j ′ 〉. The basis states
|8j 〉 possess the exact angular momentum and parityJπ and correspond to various electron
configurations. The coefficientsCj describe mixing of the basis states by the residual
Coulomb interaction. The number of basis states formed by distributing several electrons
among a few open orbitals is large (for pure combinatorial reasons), and the mean level
spacingD between such states is small (. 0.01 eV). In this situation the basis states are
strongly mixed by the perturbation, and each of the eigenstates is a superposition of a large
number of basis states. This strong mixing takes place within a certain energy range0spr

called the spreading width. The value of0spr ∼ 2 eV [3] can be used to estimate the
numberN of principal components, i.e. thoseCj which contribute noticeably to the sum
(1), N ∼ 0spr/D ∼ 100. The principal componentsCj have typical values|Cj | ∼ 1/

√
N .

Their statistics is close to that of independent random variables and becomes Gaussian when
the mixing is complete. The properties described above make atomic valence excited states
similar to nuclear compound states [4] and allow one to talk about many-body quantum
chaos in complex atoms.

Spectral properties of compound states in nuclei were successfully modelled using
ensembles of random matrices and, in particular, the Gaussian orthogonal ensemble (GOE,
see, e.g., [5]). Energy level statistics in complex atomic spectra were also compared with
the predictions of the GOE model [6, 7] and good agreement was found. As such the
energy level statistics do not carry much information about the structure of the corresponding
wavefunctions. The latter can be probed either directly, in numerical calculations, or through
studying amplitudes or probabilities of transitions involving compound states.

In [8] statistical properties of the Coulomb matrix elementsW coupling atomic
compound states to the continuum were studied for Ce. The probability density of these
matrix elements turned out to be almost Gaussian. This statistics corresponds to the Porter–
Thomas distribution of the widthsγ = 2π |W |2 of these states. The distribution of theE1
amplitudes involving the compound states was also close to a Gaussian. Earlier evidence
for this statistics can be found in the calculations of the dipole excitations in complex
atoms [9]. Therefore, it appears that compound atomic eigenstates do indeed have a chaotic
structure. This is the origin of the difficulties that one encounters in trying to calculate such
eigenstates precisely (it is manifested as an extremely strong sensitivity of the result to the
size of the configuration matrix, choice of single-electron orbitals, etc†). On the other hand,

† This sensitivity, or ‘enhancement of small perturbations’ in quantum chaotic systems can be viewed as an
analogue of the exponential divergence of trajectories in classical chaotic systems [10].
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the chaotic structure enables one to use statistical methods for estimating matrix elements
involving compound states. Hence, the problem of perturbation of the Rydberg series by
the compound states can be addressed in a general form.

Let us consider an atom with several electrons in the open valence shell(s) (e.g. a rare-
earth atom). Suppose that the Hamiltonian of the valence electrons in the field of the core
has been diagonalized separately within the subspaces of the valence states and Rydberg
states of the same symmetryJπ . As a result we have compound (valence) atomic eigenstates
|i〉 with energiesEi and Rydberg states|n〉 with energiesEn†. Now we will consider their
interaction. In the basis of|i〉 and |n〉 states the Hamiltonian matrix looks like

H =
(

Hii ′ Hin

Hni Hnn′

)
(2)

whereHii ′ = δii ′Ei andHnn′ = δnn′En are diagonal, andHin = 〈i|W |n〉 mixes the Rydberg
and compound states through the Coulomb interactionW between the valence electrons.
Due to the small radius of the compound statei the matrix element〈i|W |n〉 is determined
by the behaviour of the Rydberg state orbital at small distances,ϕn(r) ' n−3/2ϕ(r). Hence,
the following important scaling property:

〈n|W |i〉 ' n−3/2〈n0|W |i〉 (3)

wheren0 is the effective lowest member of the Rydberg series, a simple valence-like state.
Note that the true scaling factor isν−3/2, but we neglect any difference betweenn and
ν = n − µ hereafter.

The matrix element〈n0|W |i〉 can be estimated similarly to matrix elements involving
nuclear compound states [11],

〈n0|W |i〉 =
∑

j

〈n0|W |8j 〉Cj ∼
√

qM√
N

(4)

whereM is a typical two-body Coulomb matrix element between different valence orbitals,q

is the number of nonzero items in the sum, which depends on the number of valence orbitals
involved (say,q ∼ 10), and

√
q is a root-mean-square estimate due to the randomness of

Cj .
Let us now estimate the admixture of a compound state to a Rydberg state by

perturbations. Combining (3) and (4) one obtains

〈i|W |n〉
Ei − En

'
√

qM√
Nn3/2D

(5)

where we put|Ei − En| ∼ D as for the typical distance from the Rydberg state to a nearby
compound state, since, of course, mixing of closely spaced levels should be the strongest.
Using D ∼ 0spr/N andDn = n−3 we can rewrite (5) as

〈i|W |n〉
En − Ei

'
√

qM√
0spr

√
D

Dn

. (6)

In the same manner the estimate of the admixture of a nearby Rydberg state to the compound
state can be obtained:

〈n|W |i〉
Ei − En

∼
√

qM√
0spr

√
Dn

D
(7)

where|En − Ei | ∼ Dn has been used.

† For simplicity we consider a single Rydberg series.
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The mixing between the Rydberg and compound states is strong when the right-hand
sides of (7) and (6) are comparable to unity. Our numerical calculations for Ce [8] suggest
that

M
√

q/
√

0spr ∼ 1 (8)

corresponds to the ‘physical’ strength of the residual interaction. This relation can be
considered as a manifestation of the ‘golden rule’0spr ∼ 2π |M|2ρ, whereρ ∼ 1 is the
single-particle valence level density. Thus, estimates (6) and (7) depend on

√
Dn/D only.

It follows from (6) that forD < Dn (n < D−1/3) the Rydberg states are strongly perturbed,
whereas forDn < D (n > D−1/3) the admixture of the compound states to the Rydberg
states becomes small, and the Rydberg series is weakly perturbed. It should bevice versa
for the compound states.

If, for some reason, the residual interaction between the Rydberg and compound states
is smaller than what we infer from the calculations for Ce, the weakly perturbed Rydberg
series can be seen for lower values ofn. What happens in the opposite case of a stronger
residual interaction? Can it substantially perturb the Rydberg states for arbitrarily largen?

To answer this question we note that the interaction between the Rydberg and compound
states (3) is separable, i.e.Hin = λWiBn, whereλWi = 〈i|W |n0〉 andBn = √

Dn, and we
introduced the parameterλ to characterize the strength of the compound Rydberg mixing.
For this Hamiltonian one can explicitly calculate the eigenvector|E〉 = ∑

i Ci |i〉+
∑

n Cn|n〉,

Ci = λWiF

E − Ei

Cn = BnG

E − En

(9)

whereF = ∑
m BmCm, andG = λ

∑
i WiCi . G andF satisfy the equations

G = λ2F
∑

i

W 2
i

E − Ei

F = G
∑

n

B2
n

E − En

(10)

which yield the equation for the energyE,

λ2
∑

i

W 2
i

E − Ei

∑
n

Dn

E − En

= 1 . (11)

If the strength of the residual interaction increases (λ → ∞), this equation becomes∑
i

W 2
i

E − Ei

∑
n

Dn

E − En

= 0 . (12)

In this case
∑

i W
2
i /(E − Ei) = 0 (Cn = 0) determines the new positions of the compound

states and
∑

n Dn/(E − En) = 0 (Ci = 0) yields the new energies of the Rydberg levels.
Thus, for the strong residual interaction there is no mixing between the compound and
Rydberg states†. Since there is no mixing for both weak (λ → 0) and strong (λ → ∞)
residual interactions, a critical valueλc corresponding to the strongest mixing can be found.

To defineλ properly let us use the fact that the matrix elements〈i|W |n0〉 = λWi have
Gaussian statistics. Then one can considerWi for different compound statesi as normally
distributed independent Gaussian random variables,Wi = 0, W 2

i = 1. Consider the most
interesting energy region where the two level manifolds have similar densities,Dn ≈ D.
The perturbative admixture is given by〈i|W |n〉/(Ei − En) ∼ n−3/2〈i|W |n0〉/(D/2), where

† A similar cross-over between the two regimes was recently discussed in relation to the problem of crossing of
two bands of potential curves [12], when the interaction matrix was chosen in a separable form.
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D/2 is the average level spacing in this part of the spectrum. Comparing this admixture
with unity we obtain

λc ≈ 0.5
√

D . (13)

It is interesting that the real ‘physical’ strength of the residual interactionλphys ∼ √
qM/

√
N

(equations (4) and (8)) corresponds toλphys ∼ λc.
To illustrate the dependence of the Rydberg compound mixing on the residual interaction

strength, model calculations have been carried out. We consider a series ofNR = 50 Rydberg
states,En = −1/2n2, interacting withNC = 400 compound states. The Hamiltonian matrix
H has the form (2). To generate a realistic fluctuating spectrum of the compound states
we usedHii ′ = Eiδii ′ + Vii ′ , whereEi are equally spaced between−0.08 and 0.02 au
with D = 2.5 × 10−4 au, andVii ′ is the Gaussian orthogonal random matrix. The matrix
elementsVii ′ = Vi ′i are chosen as independent Gaussian random numbers with zero mean
andV 2

ii ′ = 4D2 (|Vii ′ | > D ensures strong mixing of the basis states within the compound
state subspace). The matrix elementsHin which mix the compound and Rydberg states
are taken asHni = Hin = λWin

−3/2, whereWi are normal Gaussian random variables.
Diagonalizing the Hamiltonian we obtain the eigenvaluesE(k) and eigenvectors(C(k)

i , C(k)
n )

of the problem.
To see the extent of mixing of the Rydberg and compound states we calculate the

mean radius〈r〉 of the eigenstates. This physical characteristic is used in experiments to
distinguish the Rydberg states from the valence states. In the unperturbed basis the operator
r is defined by its matrix elements,rii = 1, rnn = n2, rii ′ = rnn′ = rin = 0. Thus, for the
pure compound valence state the radius is unity, and for thenth unperturbed Rydberg state
it is n2. Figure 1 shows the dependence of the mean radii of the eigenstates

〈r〉k =
∑

i

rii |C(k)
i |2 +

∑
n

rnn|C(k)
n |2 (14)

on their binding energies|E(k)| for several values ofλ.
For the given value ofD we expect the maximal mixing to occur atλ ∼ λc ≈ 0.008.

At this λ the Rydberg states must be strongly perturbed forn < D−1/3 ≈ 16. For both
smaller and larger values ofλ the mixing between the Rydberg and compound states is
weaker. Figure 1(a)–(c) correspond to the under-critical, critical and over-critical values
of λ = 0.0001, 0.008 and 0.1, respectively. The dependence of mixing on the strength of
the residual interactionλ is in good agreement with what we expected from the estimates
made above. For both small and largeλ the Rydberg series is almost unperturbed. Few
compound states display sizeable admixtures of the Rydberg states. This happens due
to approximate sporadic degeneracy resulting in small energy denominators. For the
critical strength we do indeed observe strong mixing of almost all Rydberg states up to
n = 16.

We have considered the perturbation of a Rydberg series by the compound valence
atomic states in a complex open-shell atom. The chaotic structure of the compound states
enables one to make statistical estimates of the matrix elements. It has been shown both
analytically and numerically that the Rydberg series is strongly perturbed forn < D−1/3

for the ‘physical’ values of the residual interaction between the Rydberg and compound
states. Curiously enough, the ‘physical’ strength of the interaction gives rise to the strongest
possible level mixing in this system. For larger values ofn the mixing is weak for any
value of the interaction strength. This property, as well as the existence of maximal mixing,
is a consequence of the separable form of the interaction between the diffuse Rydberg and
compact compound states. Our results can be used as a criterion for observing Rydberg
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Figure 1. Dependence of the mean radius〈r〉 of the eigenstates on the binding energy (• ).
The eigenstates of the model Hamiltonian are mixtures of the Rydberg and compound states.
The magnitude of the mixing interaction is characterized byλ. Positions of unperturbed levels
(λ = 0) are shown by crosses. (a) Weak, λ = 0.0001. (b) Critical, λ = 0.008. (c) Strong,
λ = 0.1.

states. They also suggest an interpretation of the experimental results of [1, 2]. For example,
the fact that only Rydberg states withn > 36 have been observed in U means that the level
spacing between the compound (valence) states in this atom isD ∼ n−3 ∼ 5 cm−1 near the
ionization threshold.

Estimates similar to (4) can be used to compare radiative lifetimes of the Rydberg and
compound states. These lifetimes are important when a delayed ionization pulse technique
is used to identify Rydberg states. The rough estimatesτn ∝ n3, τcomp ∝ N ∼ 0spr/D

can be expected for the Rydberg and compound states, respectively. Hence,τn > τcomp is
achieved forn3 > 1/D. This inequality coincides with the condition of weak perturbation
of the Rydberg states.

We wish to thank V V Flambaum, M G Kozlov, M Yu Kuchiev and O P Sushkov for useful
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