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Abstract. Two-photon detachment from the F− negative ion has been investigated within the
lowest-order perturbation theory. We show that in accordance with the adiabatic theory a proper
asymptotic behaviour of the 2p bound-state wavefunction is crucial for obtaining correct absolute
values of the multiphoton detachment cross sections. We find that the latter are substantially
higher than was believed previously.

In recent papers by Gribakin and Kuchiev (1997a, b) an adiabatic analytical theory of
multiphoton detachment from negative ions has been developed, based on the Keldysh
approach (Keldysh 1964). Simple analytical expressions obtained there for the differential
and totaln-photon detachment cross sections allow one to estimate them for any negative
ion. One of the important points of that work is that the electron escape from the atomic
system in a low-frequency laser field takes place at large distances,

r ∼ 1/
√
ω ∼
√

2n/κ � 1 (1)

whereω is the photon frequency,κ is related to the initial bound-state energy,E0 = −κ2/2,
andn is the number of quanta absorbed (atomic units are used throughout). Accordingly,
the multiphoton detachment rates are determined by the long-range asymptotic behaviour
of the bound-state wavefunction, namely by the asymptotic parametersA and κ of the
bound-state radial wavefunctionR(r) ' Ar−1e−κr . This result has been obtained using the
length form of the interaction with the laser field, which proved to be the most convenient
for multiphoton processes.

The analytical adiabatic approach is valid formultiphotondetachment processes, i.e.
strictly speaking, forn � 1. However, the calculations for H− and halogen negative ions
indicate (Gribakin and Kuchiev 1997a, Kuchiev and Ostrovsky 1998) that the analytical
formulae should give reasonable answers even forn = 2. The aim of the present work is
to verify these conclusions by performing direct numerical calculations of the two-photon
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detachment cross sections. In particular, we examine the sensitivity of the photodetachment
cross sections to the asymptotic behaviour of the ground-state wavefunction and show that
it is indeed very strong. Thus, a ‘small’ 20% error inκ present in the Hartree–Fock (HF)
wavefunction of the fluorine negative ion results in a factor of three underestimation of the
two-photon cross section. This emphasizes the need to use bound-state wavefunctions with
correct asymptotic behaviour in calculations of multiphoton processes.

In this letter we calculate the two-photon detachment amplitudes, cross sections and
photoelectron angular distribution using the lowest-order perturbation theory and compare
the results obtained with different ground-state wavefunctions. We present and analyse the
results for the F− negative ion, where the results of a few other theoretical calculations
(Robinson and Geltman 1967, Crance 1987a, b, Panet al 1990, Pan and Starace 1991, van
der Hart 1996) as well as experimental data (Kwonet al 1989, Blondelet al 1992, Blondel
and Delsart 1993) are known. Panet al and Pan and Starace calculated the two-photon
detachment cross section and photoelectron angular distribution in the HF approximation
(similar to that used by Crance) and taking account of first-order electron correlation effects.
Their results show that the correlation corrections are about 15% for the partial and total
cross sections and almost negligible for the angular distribution parameters, when the dipole
length form is used.

The total cross section of the two-photon detachment of an electron from an atomic
system by a linearly polarized light of frequencyω is

σ =
∑
lf L

σlf L =
16π3

c2
ω2
∑
lf L

∣∣Alf L(ω)∣∣2 (2)

where σlf L is the partial cross section for the detachment into the final state with the
photoelectron orbital momentumlf and the total orbital momentumL, and the continuous
spectrum wavefunction of the photoelectron is normalized to theδ-function of energy. For
the 2p electron detachment from F− 2p6 1S the final state can be either1S (L = 0, lf = 1) or
1D (L = 2, lf = 1, 3). The two-photon amplitudeAlf L(ω) is determined by the following
equations:

Alf L(ω) =
√

2L+ 1

(
1 1 L

0 0 0

)∑
l

(−1)l
{

1 1 L

lf l0 l

}
Mlf l(ω) (3)

Mlf l(ω) =
∑
ν

〈εf lf ‖d̂‖νl〉〈νl‖d̂‖n0l0〉
E0+ ω − Eν + i0

(4)

whereνl is the intermediate electron state with the orbital momentuml after absorbing the
first photon (l = 0, 2 for F−), andn0l0 is the initial bound state. The reduced dipole matrix
elements are defined in the usual way, for example, in the length form

〈νl‖d̂‖n0l0〉 = (−1)l>
√
l>

∫
Pνl(r) Pn0l0(r)r dr (5)

wherel> = max{l, l0} andP are the radial wavefunctions.
The photoelectron angular distribution is described by the differential cross section

dσ

d�
= σ

4π

2∑
j=0

β2j (ω)P2j (cosθ) (6)

whereθ is measured with respect to the light polarization axis, and the asymmetry parameters
β2j are defined in terms of the two-photon transition amplitudesAlf L and scattering phases
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of the photoelectronδlf :

β2j = 16π3ω2

c2σ
(4j + 1)Re

[ ∑
l′f L′l

′′
f L
′′
(−1)l0+L

′+L′′(−i)l
′
f+l′′f exp

[
i(δl′f − δl′′f )

]√
[l′f ][L′][ l′′f ][L′′]

×
(
l′f 2j l′′f
0 0 0

)(
L′ 2j L′′

0 0 0

){
L′ L′′ 2j
l′′f l′f l0

}
Al′f L′A

∗
l′′f L′′

]
(7)

where [l] ≡ 2l + 1 and β0 = 1, so that the photoelectron angular distribution after a
two-photon detachment is characterized byβ2 andβ4.

The self-consistent HF calculation of the F− ground state yields the 2p-electron energy
EHF

2p = −0.362 Ryd, which is much lower than its true value equal to the negative of the
experimental electron affinity of F:Eexp

2p = −0.250 Ryd (Radtsig and Smirnov 1986). It is
often assumed that the HF radial wavefunction is still a good starting point for calculations
of multiphoton detachment, if the experimental binding energy is used in lieu of the HF
value (Crance 1987a, b, Panet al 1990). Panet al (1990) showed that the two-photon
detachment cross sections obtained with the dipole operator in the velocity form are very
sensitive to the 2p-electron energy, while the length form results change little when the
HF energy is replaced by the experimental one. However, one should use both the correct
energy and, which is much more important, the bound-state wavefunction with the correct
asymptotic behaviour†. The importance of large distances, where one can use the correct
asymptotic form of the bound-state wavefunction, speaks strongly in favour of using the
length form of the dipole operator (Gribakin and Kuchiev 1997a). To correct the 2p
wavefunction we solved the HF equations for the F− ground state with an additional small
repulsive potentialV (r) = α/[2(r2 + a2)2]. We choseα = 1 anda = 0.61 au to ensure
that the 2p energy was equal to the experimental value. The HF and corrected 2p radial
wavefunctionsP(r) = R(r)/r are presented in figure 1(a). The difference between them
appears to be small—it does not exceed 10% near the maximum. Their asymptotic behaviour
P(r) ' A exp(−κr) corresponds toA = 0.94 and 0.86, andκ = 0.6 and 0.5, respectively.
The difference inκ means that the two wavefunctions are, in fact, quite different at large
distances.

The wavefunctions of the intermediate (νl) and final (εf lf ) states of the photoelectron
are calculated in the HF field of the frozen neutral 2p5 core. The photoelectron is coupled to
the core to form the total spinS = 0 and angular momentumL: L = 1 for the intermediate
l = 0, 2 states,L = 0, 2 for lf = 1, andL = 2 for lf = 3 final states. The intermediate
states continua are discretized and represented by a 70-state momentum grid with constant
spacing1p.

There are two ways of calculating the two-photon amplitudesMlf l of equation (4).
The first is by direct summation over the intermediate states. It involves a non-trivial
evaluation of the free–free dipole matrix elements together with the accurate treatment of
pole- andδ-type singularities (Korol 1994, 1997). Another way of calculating such sums
is by solving an inhomogeneous Schrödinger-type equation for the effective radial function
of the intermediate state

Pω(r) =
∑
ν

Pνl(r)〈νl‖d̂‖n0l0〉
E0+ ω − Eν + i0

(8)

† The need for an asymptotically correct wavefunction is clearly illustrated by the adiabatic hyperspherical
calculation of multiphoton detachment from H− by Liu et al (1992), where a 3.4% change ofκ results in a
25% change of the two-photon cross section.
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Figure 1. Wavefunctions of the F− ground state, effective intermediate state and final state of the
photoelectron. (a) Radial wavefunction of the 2p subshell of F− in the HF approximation (——,
EHF

2p = −0.362 Ryd), and that with a model potential added to reproduce the experimental energy
(— · —, E2p = −0.250 Ryd). The inset shows the same wavefunctions on the logarithmic
scale, together with the radial Roothaan-HF 2p radial wavefunction of F− from Clementi
and Roetti (1974),- - - -. (b) ——, HF 2p wavefunction; — — —, effective wavefunction
Pω(r), equation (8), of the intermediate d state atω = 0.226 Ryd; —· —, final state p (1D)
wavefunction,ε = 0.09 Ryd; - - - -, integrand of equation (9) for the two-photon amplitude
Mpd.

(Sternheimer 1951, Dalgarno and Lewis 1955). This wavefunction describes the amplitude
of finding the electron at different distances from the atom after absorption of the first
quantum. After calculation ofPω(r) the amplitude is obtained from the radial integral as

Mlf l(ω) = (−1)l>
√
l>

∫
Pεf lf (r) Pω(r) r dr

(
l> = max{lf , l}

)
. (9)

In the present work we calculate the two-photon amplitudes using both techniques. The
second one is especially simple below the single-photon detachment threshold,ω < |E0|,
wherePω(r) drops exponentially at large distances:Pω(r) ∝ exp(−Kωr), whereKω =
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[2(|E0|−ω)]1/2. At finite distancesr < 1/1p it can be computed easily by direct numerical
summation in equation (8).

It is instructive to look at the shape of the effective wavefunctionPω(r). As an example,
figure 1(b) shows this function calculated for the intermediate d electron atω = 0.226 Ryd
for the HF ground state. The maximum ofPω(r) is shifted towards large radii, compared
to the maximum of the ground-state wavefunction. Also shown in figure 1(b) are the
radial wavefunction of the final p-wave electron (εf = 2ω + EHF

2p = 0.09 Ryd) and the
integrandPεf lf (r) Pω(r) r of equation (9). These plots illustrate the point that the two-
photon amplitudeMlf ln (ω) is indeed determined by large electron–atom separations (1).
Accordingly, the correct asymptotic behaviour of the ground-state wavefunction is crucial.

In this work we compare the cross sections and angular asymmetry parameters calculated
in different approximations with both the HF and corrected 2p wavefunctions (figure 1(a)).
Let us first discuss the results obtained with the HF energy of the 2p electron. It
corresponds to the two-photon thresholdω = 0.181 Ryd. The cross section calculated
from equations (2)–(4) using the HF functions of the initial, intermediate and final states are
shown in figure 2 by a short-broken curve. It is very similar to the dipole length lowest-order
HF results of Panet al (1990), although the latter are about 10% lower than ours. What
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6

Figure 2. Two-photon detachment cross sections. Present calculations:- - - -, HF
wavefunctions of the 2p, intermediate and final states; ——, same with the corrected 2p
wavefunction; —· —, using plane waves in the intermediate and final state; — — —, HF
wavefunctions combined with the experimental 2p energy;•, adiabatic theory (equation (5) of
Gribakin and Kuchiev 1997b). Other results:� and◦, calculations by Panet al (1990) with
the HF and experimental binding energies, respectively;�, experiment (Kwonet al 1989).
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is the source of this discrepancy? Panet al used the Roothaan-HF expansion of the bound
state. This form of the bound-state wavefunction has an incorrect asymptotic behaviour at
r > 7, see figure 1(a), inset. Because of the importance of large electron–atom separations
in the multiphoton processes even a small error in the wavefunction could lead to some
inaccuracies in the two-photon detachment amplitudes. In the work of Panet al electron
correlation effects were calculated. It was shown that they suppress the cross section in F−

by about 20% at the maximum. These results shown in figure 2 by open squares are still
close to the HF curve.

The asymptotic parameters of the HF 2p wavefunction areκ = 0.6016 andA = 0.94.
We use them in the adiabatic theory formula (equation (5) of Gribakin and Kuchiev 1997b)
and obtain the cross section shown in figure 2 by full circles. It reproduces the energy
dependence of the HF cross section well, though overestimates its magnitude by a factor of
two. This is a reasonable result, since the adiabatic theory should only be valid forn� 1.
The calculations of Gribakin and Kuchiev (1997a) showed that for H− and n = 3 the
analytical adiabatic results are already 20% accurate. There are two approximations made
in the adiabatic theory: (i) the use of the Volkov wavefunction to describe the photoelectron
and (ii) the saddle-point calculation of the integral over time, which enables one to express
the amplitude in terms of the asymptotic parameters of the bound state. In the weak-
field regime the use of the Volkov function is equivalent to the so-called ‘free-electron’
approximation (examined earlier by Crance). In this approximation the wavefunctions of
the photoelectron in the intermediate and final states are described by plane waves. When
we perform such a calculation for F− (chain curve in figure 2) the results turn out to be
very close to those of the adiabatic theory. This means that the approximation (ii) of the
adiabatic theory is, in fact, quite good even atn = 2.

When we use the experimental energy of the 2p electron together with the HF
wavefunctions, the magnitude of the two-photon cross section changes very little (broken
curve in figure 2), as seen earlier by Panet al (1990) for both HF and correlated results
(open circles). The HF results of Crance (1987a) are close to the above, and the cross section
of van der Hart (1996) is also similar, with a maximum of 1.27 au atω = 0.166 Ryd.

However, when we use the corrected 2p wavefunction, the photodetachment cross
section increases more than three times. It is shown by the full curve in figure 2, and we
consider this to be the best evaluation of the cross section for F−. The cusp on the curve
corresponds to the single-photon threshold†. The same increase is also demonstrated by the
adiabatic theory (with modified asymptotic parametersκ = 0.4998 andA = 0.86) and the
plane-wave results. As we explained earlier, this ‘surprising’ sensitivity of the multiphoton
detachment probabilities to the asymptotic form of the bound-state wavefunction is a
direct consequence of the dominant role of large electron–atom separations in this problem
(Gribakin and Kuchiev 1997a).

The error induced by the use of an asymptotically incorrect wavefunction can be
estimated within the adiabatic approach. It turns out that if one uses the experimental
binding energyE0 = −κ2/2 together with an incorrect bound stateP(r) ∝ exp(−κ ′r), the
n-photon cross section acquires an error factor(

1−
√
π

2

1κ√
ω

)2

(10)

where1κ = κ ′ −κ. This equation implies that the relative error in the amplitude is∼1κR,
whereR = 1/

√
ω is the large radius from equation (1). Forκ ′ > κ the error factor is

† This feature is a consequence of the Wigner threshold dependenceσ ∝ √ω − E0 of the s-wave single-photon
detachment from F−.
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smaller than unity. Thus, using a stronger bound wavefunction leads to an underestimation
of the cross section. For F− the factor (10) calculated for1κ = 0.1 andω = 0.085 au near
the cross section maximum, yields 0.33. This value agrees with the difference between the
cross sections observed in figure 2. The only other work that used an asymptotically correct
2p wavefunction was the model potential calculation of Robinson and Geltman (1967),
which produced a cross section twice as large as those of Crance, Panet al and van der
Hart.

To estimate the size of possible errors introduced by our way of correcting the 2p
wavefunction we have examined the dependence of our cross section on the choice ofα

anda in the repulsive potential. We find that as long as the asymptotic behaviour of the 2p
state remains correct, the two-photon cross sections are always proportional to that shown
by the full curve in figure 2. Different pairs ofα and a result in the variation ofA, and
the magnitude of the cross section is simply proportional toA2. Our value ofA = 0.86 is
close toA = 0.84 from Radtsig and Smirnov (1986) and we are sure that our results are
basically correct. Even a large 10% uncertainty in the value ofA would mean a maximal
20% error in the cross section. In any case the cross section will be much larger than those
obtained with the HF 2p ground state.

The difference between experimental and HF values of the 2p energy is a manifestation
of electron correlations. It influences the result via the asymptotic behaviour of the ground-
state wavefunction. This is by far the most important correlation effect in multiphoton
detachment. The use of the asymptotically correct 2p wavefunction changes the cross
section by a factor of three, which is much greater than other correlation effects (Panet al
1990). This fact distinguishes this problem from the single-photon processes, where other
correlation effects are essential.

The angular asymmetry parametersβ2 and β4 calculated using the experimental 2p
energy are shown in figure 3, together with the correlated length results of Pan and Starace
(1991) and experimental points of Blondel and Delsart (1993) atω = 0.171 Ryd. The
asymmetry parameters (7) are relative quantities, and the results of different calculations are
much closer for them than for the absolute values of the photodetachment cross sections. The
adiabatic theory is again in good agreement with the plane-wave approximation, especially
in β4. It appears that this parameter is on the whole less sensitive to the details of the
calculation, because it is simply proportional to the amplitude of f-wave emission, and
there is no interference in the sum in equation (7) forβ4. The experimental values ofβ
for F− obtained in the earlier work of Blondelet al (1992) are close to those of Blondel
and Delsart (1993). This is why F− serves as a good benchmark for angular asymmetry
calculations. The perfect agreement between adiabatic theory and the experiment is probably
fortuitous. Figure 3 indicates that for the experiment to be able to distinguish between
various theoretical data one would wish to make measurements at higher photon energies,
where the results of different approximations diverge.

From the theoretical point of view it seems that the total cross sections and the angular
asymmetry parameters are determined by different physical features of the problem. The
absolute size of the cross sections is very sensitive to the asymptotic behaviour of the bound-
state wavefunction. This sensitivityincreasesfor large-n processes, whenω become smaller,
as suggested by estimate (10). The cross sections also depend on the atomic potential which
acts on the photoelectron, hence the difference between the results obtained with the HF
and plane waves. This latter effect issuppressedfor largern, since this re-scattering of the
photoelectron is inversely proportional to some power of largeR. The angular asymmetry
parameters are affected by the electron–atom potential via the scattering phaseshiftsδlf .
However, for largen and small photoelectron energyE ∼ ω the phaseshifts should be close
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Figure 3. Photoelectron angular distribution parameters. Present calculation: — — —, HF
wavefunctions of the initial, intermediate and final states, experimental 2p energy; ——,
corrected 2p wavefunction, HF intermediate and final states; —· —, same with the plane
wave in the intermediate and final states;•, β parameters obtained from the adiabatic theory
(equations (3) and (4) of Gribakin and Kuchiev (1997b)). Other results:◦, correlated length
results by Pan and Starace (1991);�, experiment (Blondel and Delsart 1993).
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to integer multiples ofπ . Also, contributions of higher partial waves become dominant.
They are almost unaffected by the atomic potential and the adiabatic theory should become
very accurate.

In summary, we have shown by direct numerical calculations that in agreement with
the adiabatic theory, the multiphoton detachment rates are very sensitive to the asymptotic
behaviour of the bound-state wavefunction. For fluorine this means that the true two-
photon detachment cross sections are substantially higher than was believed previously.
The discrepancy revealed is much greater than other electron correlation effects.
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