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This paper reviews the progress in our understanding of positron interaction with
atoms and molecules made over the past few years. The analysis is based on
atomic many-body theory which allows one to identify different contributions to
the positron-atom interaction. In particular, the role of virtual positronium for-
mation which increases the attraction between the positron and atomic system is
highlighted. Its contribution is additional to the the usual polarisation potential
which behaves as −αe2/2r4 at large distances and which affects both electron-
and positron-atom scattering. For heavier noble gas atoms this leads to positron
virtual s levels which enhance elastic scattering and positron-atom annihilation at
low energies. For species with larger dipole polarisabilities α and somewhat smaller
ionisation potentials, e.g. Mg, the strong attraction results in positron-atom bound

states. It turns out that such bound states can provide an explanation for huge and
chemically sensitive positron annihilation rates observed for polyatomic molecules,
in terms of positron-molecule vibrational Feshbach resonances.

1 Many-Body Theory Approach to the Positron-Atom Interaction

Many-body theory allows one to describe the interaction of a positron (or an electron) with
a many-electron atom in terms of a single-particle equation (see, e.g. 1,2)

H0ψε(r) +

∫

Σε(r, r
′)ψεdr

′ = εψε(r), (1)

where ψε is the so-called quasi-particle wavefunction with the energy ε relative to the
ground-state energy of the target, H0 is the single-particle Hamiltonian, usually chosen to
be the Hartree-Fock (HF) Hamiltonian of the target atom, and Σε is a nonlocal energy-
dependent correlation “potential”. It accounts for the interaction between the extra parti-
clea and the atom beyond the HF approximation.

The wavefunction ψε(r) is equal to the projection of the exact total N + 1-particle
wavefunction of the system onto the N -electron ground-state wavefunction of the target,

ψε(r) =

∫

Ψ∗

0(r1, . . . , rN )ΨE(r1, . . . , rN , r)dr1 . . . drN , (2)

where E = E0 + ε, and E0 is the target ground-state energy. Although ψε(r) is a much
simpler quantity than ΨE(r1, . . . , rN , r), it still contains a lot of information about the sys-
tem. For example, at energies E above E0 but below the excitation threshold of the target,
ΨE describes elastic scattering. At large positron-atom separations it has the following

aFor the sake of definiteness in what follows we talk of the positron. Of course, the general approach applies
to the electron-atom interaction as well. The only difference between the two cases is that for the electron,
both H0 and Σε must include exchange.
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asymptotic form

ΨE(r1, . . . , rN , r) ' Ψ0(r1, . . . , rN )

(

eik·r + fkk′

eikr

r

)

, (3)

where k is the initial positron momentum, ε = k2/2 (we use atomic units where h̄ =
me = |e| = 1), and fkk′ is the scattering amplitude, k′ being the final-state momentum. It
follows from Eq. (2) that ψ(r) has the same asymptotic behaviour as the term in brackets.
Hence, it “knows” everything about the scattering phaseshifts and allows one to calculate
the scattering cross section.

If a positron-atom bound state exists at E < E0, Eq. (1) has a negative eigenvalue ε0 =
E−E0, and the corresponding wavefunction ψ0(r) has the correct asymptotic behaviour of
a bound state, ψ0(r) ' Ar−1e−κr, where κ is determined by the binding energy, κ =

√−2ε0
(and s-wave binding is assumed). To see that the quasi-particle many-body description is
not just a single-particle approximation, consider the normalisation integral for ψ0(r). Using
the Cauchy-Schwartz inequality together with the fact that ΨE and Ψ0 are normalised to
unity, we have

∫

|ψ0(r)|2dr ≤ 1. This integral is the probability that in the positron-
atom bound state the atom remains in the ground state while the positron occupies a
particular single-particle orbital. Therefore, the formalism accounts for the atomic and
positron excitations which reduce the normalisation integral compared to unity.

Equation (1) effectively describes the motion of the positron in the field of a many-
electron target. The operator H0 describes the interaction of the positron with the nucleus
and the self-consistent mean field of the target electrons. Its eigenstates form a complete
basis of single-particle states. It serves as a starting (zeroth-order) approximation for the
description of the system. It can also be used to account for the interaction between the
particles beyond the mean-field approximation (i.e. correlations) by means of many-body
perturbation theory.

All the dynamics of the many-body problem is hidden in Σε(r, r
′). In some sense, its

calculation is equivalent to solving the full N + 1-particle Schrödinger equation. From a
formal point of view, Σε is equal to the self-energy operator of the single-particle Green’s
function.3 This allows one to present it as an infinite perturbation series in powers of the
electron-positron and electron-electron interaction (see below).

For small projectile energies |ε| � I, where I is the ionisation potential of the atom, the
correlation potential has a well-known long-range asymptotic behaviour

Σε(r, r
′) ' − α

2r4
δ(r − r′) , (4)

where α is the target dipole polarisability. This relation illustrates the simplest correlation
effect, when a charged particle induces a dipole moment on the target, which then acts back
on the projectile, hence the name polarisation potential given to −α/2r4.

The perturbation series for Σε is shown most conveniently by means of diagrams which
represent the matrix element 〈f |Σε|i〉 between some single-particle positron states i and f ,
figure 1. The diagrams allow one to visualise and classify the processes which contribute
to the positron-atom interaction. On the other hand, each diagram corresponds to a well
defined analytical expression. This opens the door for the use of one’s physical intuition,
without compromising the fully quantum-mechanical description of the problem.

In figure 1, the upper line with indices i and f at the ends corresponds to the positron,
the wavy lines are the Coulomb interactions between the positron and atomic electrons or
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Figure 1. Many-body perturbation expansion of the correlation potential Σε.

between the electrons. The other lines refer to the atom: those with arrows to the right are
excited electronic states (i.e. states lying above the Fermi level), and those with arrows to
the left are hole states corresponding to the orbitals occupied in the atomic ground state (at
or below the Fermi level). Summation over all intermediate states is implied. For example,
in diagram (a), µ is the intermediate positron state, ν is the excited electron state and n is
the hole state,b and the corresponding analytical expression is

〈f |Σε|i〉 =
∑

µ,ν,n

〈fn|V |νµ〉〈µν|V |ni〉
ε− εµ − εν + εn + i0

, (5)

where εµ, εν , and εn are the single-particle energies, and V is the Coulomb interaction.
Simple diagrammatic rules allow one to write a similar expression for any of the diagrams.
Of course, it is impossible to include all of them in any calculation. However, one can
identify the most important diagrams or classes of diagrams, which can be summed to all
orders, and thus obtain an accurate approximation for Σε. This is the main idea behind all
many-body theory calculations.

Note that the perturbation theory expansion in figure 1 starts with the 2nd-order dia-
gram. The first-order diagram which describes the positron interaction with the ground-
state electron density (figure 2) and similar elements within the higher-order diagrams are
already included within the HF single-particle states. The diagrams are easy to interpret.

n

fi

Figure 2. Positron interaction with the electron density, given analytically as
∑

n
〈fn|V |ni〉.

Thus, diagram (a) in figure 1 describes an excitation of the atom by the positron followed
by the return of the electron back into its orbital. This diagram gives rise to the long-range
polarisation potential (4), which is probably the most important correlation effect in low-
energy scattering. However, its asymptotic behaviour corresponds to the HF polarisability,
αHF = 2

3

∑

n,ν |〈ν|r|n〉|2/(εν − εn). To obtain a better approximation one can include
higher-order corrections of the types (b) and (c) in figure 1. They describe the electron-hole

bAll these are eigenstates of the HF Hamiltonian H0, with the exchange interaction omitted for the positron.
In the electron-atom problem the diagrammatic expansion for 〈f |Σε|i〉 contains more diagrams, because the
extra electron may exchange with the atomic electrons. As a result, there are, for example, four 2nd-order
diagrams.
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interaction and screening of the Coulomb interaction inside the atom, and give a substantial

improvement on the simple 2nd-order diagram.c Let us denote this approximation Σ
(pol)
ε ,

since it accounts for the polarisation of the target by the charged projectile.

The many-body polarisation potential Σ
(pol)
ε yields good results in problems involv-

ing electrons (when the exchange diagrams are also included), such as electron-atom
scattering,4,5,6 negative ions,7,8,9 or spectra and transition amplitudes in heavy atoms with
a single valence electron.10,11 For example, figure 3(a) shows that this approach reproduces
the accurate variational phaseshifts for electron-hydrogen triplet scattering.
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Figure 3. s-wave phaseshifts for triplet electron (a) and positron (b) scattering from hydrogen. Broken

curve is the static approximation, solid curve is the many-body theory calculation with Σ
(pol)
ε , chain curve

is the positron calculation with Σ
(pol)
ε + Σ

(Ps)
ε , and solid circles (connected by a dotted curve) are the

accurate variational results for the electron 12 and positron.13

Scattering from the hydrogen atom is not exactly the type of problem which requires
the use of many-body theory. However, it can be used to highlight the differences be-
tween electron and positron interactions with atoms. Figure 3(b) shows that in the static
(“Hartree-Fock”) approximation the s-wave positron-hydrogen phaseshift is negative. This
is a consequence of the repulsive nature of the static positron-atom interaction which is
dominated by the positron repulsion from the nucleus. The inclusion of the attractive

polarisation potential Σ
(pol)
ε changes the sign of the phaseshift at small positron energies.

Therefore, effects of correlations can overcome the static positron-atom repulsion. However,
as seen in figure 3(b), this approximation (which worked well for the electron) strongly un-
derestimates the positron phaseshift. It means that in the positron-atom problem there is

some additional attraction not accounted for by Σ
(pol)
ε .

One of the simplest diagrams not included in Σ
(pol)
ε is figure 1(d). In the electron-atom

problem this and similar higher-order diagrams, where the two particles in the intermediate
state are connected by two, three and more Coulomb lines, form a sign-alternating series.

The net result is only a small correction to Σ
(pol)
ε , which can often be neglected.d In the

cIn fact, a large subset of these corrections can be incorporated within the 2nd-order diagram (a), figure 1,
by simply calculating the excited electron wavefunction ν in the field of the hole n.2
dUnless someone is concerned with near-threshold double-electron ionisation (Wannier problem), where the
interaction of the two slow electrons must be included to all orders.
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case of positrons all contributions of this type, figure 4, have the same sign, and the total
is not small. Physically, such diagrams account for the possibility of the positron forming
a bound state (positronium, Ps) with one of the target electrons.

+

i f i f

+ =...

fi

n n n

Ps

Figure 4. Ladder-diagram contributions to Σε which represent virtual Ps formation.

Ps is a light analogue of the hydrogen atom, whose radius is two times greater, and
energy two times smaller (i.e., E1s ≈ −6.8 eV) than the corresponding values for hydrogen.
For atoms with I > |E1s|, at positron energies below the Ps formation threshold, ε <
εthr ≡ I − |E1s|, Ps can only be formed virtually. Nevertheless, this effect gives a sizeable
contribution to the positron-atom attraction.14,15 Qualitatively, this additional short-range
attraction is analogous to covalent molecular bonding, with the electron moving between
the parent atom and the positron.

In close-coupling calculations the effect of Ps formation is included explicitly by adding
several Ps states to the expansion of the wavefunction (see, e.g., 16,17,18,19). This method
works well for hydrogen and alkali metal atoms with only one active valence electron. From
a many-body theory point of view, Ps formation is taken into account by summing an
infinite series of ladder-type diagrams,e i.e., by calculating the vertex function, figure 5.

= + + ...+

e

e
−

+

Figure 5. Electron-positron vertex function. The upper line describes the positron (e+), and the lower line
corresponds to the electron (e−).

The vertex function (usually denoted Γ) is the central part of the Ps-formation contribu-

tion to the self-energy, Σ
(Ps)
ε , figure 4. It can be found from a linear equation Γ = V +V GΓ,

where G is the Green’s function of the noninteracting electron-positron pair. This is not a
trivial problem, as one has to find a way of dealing with singular Coulomb integrals between
continuous spectrum states, as well as a slow convergence with respect to the orbital angular

momenta of the states included.20 In Ref. 21 we suggested an approximation for Σ
(Ps)
ε ,

〈f |Σ(Ps)
ε |i〉 =

∑

n

∫ 〈fn|V |Ψ̃1s,K〉〈Ψ̃1s,K|V |ni〉
ε+ εn − E1s −K2/4 + iδ

d3K

(2π)3
, (6)

where Ψ1s,K = ϕ1s(r − r1)e
iK·R is the wave function of the ground-state Ps atom with

momentum K and energy E1s +K2/4, R = (r+r1)/2 is the Ps centre of mass, and n is the

eIt is not possible to include only a finite number of terms, because the formation of a (Ps) bound state is
a nonperturbative problem.
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hole, figure 4.f The tilde above Ψ1s,K indicates that this wave function is orthogonalised to

the occupied electron orbitals, |Ψ̃1s,K〉 = (1 − ∑

n |n〉〈n|) |Ψ1s,K〉. Equation (6) describes
the propagation of (virtual) Ps shown by the shaded block in figure 4. At ε > −εn + E1s,

the integral in Eq. (6) acquires an imaginary part, and the self-energy Σε = Σ
(pol)
ε + Σ

(Ps)
ε

becomes complex. This signifies the opening of the Ps formation channel.
The inclusion of the virtual Ps contribution in Σε increases the positron-hydrogen s-

wave phaseshift, and makes it close to the best variational results,13 figure 3 (the agreement
being even better for the p and d waves 21).

2 Positron-atom scattering and bound states

Virtual Ps formation has an even more pronounced effect on positron interaction with heav-
ier noble-gas atoms.22 As an example, figure 6 shows the differential cross sections (DCS)
for argon at three energies below the Ps formation threshold. It is somewhat surprising

Figure 6. Differential cross sections for positron scattering from Ar. Broken curve is the many-body calcu-

lation with Σ
(pol)
ε , solid curve is that with Σ

(pol)
ε + Σ

(Ps)
ε (Ref. 23). Chain curve is the PO calculation.24

that our Σ
(pol)
ε +Σ

(Ps)
ε calculation gives results similar to those of an earlier polarised-orbital

(PO) calculation,24 where the effect of Ps formation was completely neglected. This PO ap-
proximation calculates the positron-atom polarisation interaction for a stationary positron
(i.e., assuming that it is infinitely heavy). In terms of many-body theory, this corresponds to
a neglect of positron energy in the denominators of the diagrams [e.g., ε and εµ in Eq. (5)],
and to overestimation of their magnitude at low positron energies.22 As a result, at ε ∼ 1 eV
DCS from both theories are in good agreement with experiment.25

Figure 7 shows that at larger positron energies the result of a many-body theory calcu-
lation which accounts for both polarisation and Ps formation, is completely different from a
PO calculation. The opening of the Ps formation channel at εthr ≈ 9 eV is manifested by a
large onset in the total cross section σtot shown by both theory and experiment. As we saw
in figure 6, the DCS are strongly forward peaked. This causes a problem with experimental
determination of σtot due to a loss of forward elastically scattered particles at θ < θR.30 We

fPs formation in the 1s state dominates for atoms with larger ionisation potentials and smaller radii,19,21

which justifies the neglect of excited Ps states by approximation (6).
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Figure 7. Positron scattering from argon. (a) shows the total scattering cross section: broken curve is ob-

tained with Σ
(pol)
ε , solid curve is that with Σ

(pol)
ε +Σ

(Ps)
ε (Ref. 23), and chain curve is the PO calculation.24

Experiment: open squares Ref. 26; solid squares, the same corrected for forward-angle scattering; open cir-

cles, Ref. 27. (b) shows the total inelastic scattering cross section obtained with Σ
(pol)
ε + Σ

(Ps)
ε (thick solid

curve), and its break-up into different positron partial waves (thin solid curve, s; broken curve, p; chain
curve, d, etc.). Solid circles are the Ps-formation cross section of Ref. 28, and solid squares that of Ref. 29.

correct this by using the theoretical elastic scattering contribution,19

σ
(ex−corr)
tot = σ

(ex)
tot + 2π

∫ θR

0

σ
(th)
el sin θdθ. (7)

The size of the onset in σtot roughly matches that of the the Ps-formation cross section
σPs,

g which is in good agreement with experiment, figure 7 (b).

Thus, we see that a many-body theory which uses Σ
(pol)
ε +Σ

(Ps)
ε is capable of describing

positron-atom interaction both at low energy and throughout the Ps formation threshold
region. It predicts even more dramatic effects in positron-Mg scattering.31 Magnesium has
a much larger dipole polarisability and a lower ionisation threshold, and its σPs is an order
of magnitude greater than that in Ar.32

In the noble-gas atom sequence, the positron scattering cross sections increase sub-
stantially from He and Ne to Xe, which correlates with the increase of the atomic dipole
polarisability. At low energies this is shown by the s-wave scattering lengths a, table 1. A
large negative a corresponds to a positron-atom virtual level at ε = κ2/2, where κ = 1/a.34

Looking at Kr and Xe makes it obvious that any further increase in the strength of positron-
atom attraction will cause the virtual level to become a bound state. This happens when κ
crosses zero and becomes positive, giving a bound state at ε0 = −κ2/2.

In Ref. 35 we used this understanding to predict positron binding to four closed-shell
atoms with I > 6.8 eV, see table 2. With the exception of mercury, the size of the binding

gOur theory provides the total inelastic cross section σin. It is equal to σPs between the Ps-formation and
next inelastic threshold. However, Ps formation dominates σin in a wider energy range above threshold. At
higher energies σin is dominated by the positron ionisation cross section, but its onset is rather gradual.
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Table 1. Positron scattering lengths for noble-gas atoms.

Quantity He Ne Ar Kr Xe
a (a.u., Ref. 22) − −0.43 −3.9 −9.1 −100
a (a.u., PO 24) −0.53 −0.55 −5.30 −10.4 −45.3
α (a.u., Ref. 33) 1.38 2.68 11.08 16.74 27.06

energy was considered as a safeguard against the uncertainty associated with the approx-

imate treatment of Σ
(Ps)
ε . We also made a survey of the periodic table to estimate the

strength of positron-atom attraction in terms of α and I, and found that many atoms are
very likely to bind positrons. Following 35 and the first proof of positron-atom binding in a
variational calculation for Li,36 a large number of sophisticated calculations of positron-atom
bound states have been performed. Some results obtained using a fixed-core stochastic vari-
ational method (FCSVM), and combinations of configuration interaction (CI) with model
core polarisation potentials (CP) or many-body (MB) approaches, are shown in table 2. At
present there are about ten atoms and a number of simple molecules where theory predicts
positron binding.37

Table 2. Positron binding to atoms with I > 6.8 eV.

Binding energies (eV)
Method Be Mg Cu Zn Ag Cd Hg
Ref. 35 − 0.87 − 0.23 − 0.35 0.05
FCSVM 38 0.086 0.425 0.152 0.039 0.159 − −
CI+CP 39 0.084 − 0.122 0.102 − 0.166 −
CI+MB 40 − − 0.170 − 0.123 − −
α (a.u., Ref. 33) 38 72 40 50 67 60 34

3 Positron annihilation on atoms

Positron annihilation with electrons, with its characteristic signature of two or three γ
quanta carrying away 2mc2 of energy, makes this particle a unique probe. Positrons send
us signals from the outer space where they occur naturally. They are routinely used in the
laboratory to study condensed phase systems, applied in industry to control the structure of
materials, and are vital for high-resolution computer tomography in medicine. Underlying
all these applications is the process of positron annihilation with atomic electrons.

The annihilation of positrons in binary collisions with atoms or molecules is usually
studied in a gas, where the annihilation rate is expressed in terms of the effective number of
electrons (Zeff), as λ = πr20cZeffn.41 Here n is the gas density, r0 = e2/mc2 is the classical
electron radius, and c is the speed of light. This equation defines Zeff as the ratio of the
positron annihilation rate in a gas of atoms to the positron annihilation rate in a gas of
uncorrelated electrons with density n. Since annihilation takes place at very small (“zero”,
i.e. ∼ h̄/mc ∼ 10−2 a.u.) electron-positron separations, Zeff is given by 41

Zeff =

∫ N
∑

i=1

δ(ri − r)|ΨE(r1, . . . , rN , r)|2dr1 . . . drNdr, (8)
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where ΨE(r1, . . . , rN , r) is normalised to the positron plane wave, Eq. (3).
Although Zeff is basically the cross section, Eq. (8) has the appearance of a transition

amplitude, δ(ri − r) being the “annihilation operator”. This allows one to develop formally
a many-body diagrammatic expansion for Zeff .15,22

n n n

= +effZ + + + ...
k k k k k k k k

(d)(c)(b)(a)
n

Figure 8. Diagrammatic expansion of Zeff . Solid circle is the annihilation vertex δ(ri − r).

Diagram (a) is the simplest uncorrelated contribution of positron annihilation on the
ground-state electron density,

Z
(a)
eff =

∑

n

∫

|ψk(r)|2|φn(r)|2dr, (9)

and diagrams (b), (c), (d), etc. are the correlation corrections. Physically, they describe the
enhancement of the contact electron-positron density due to their Coulomb attraction. In a
binary electron-positron collision this increase is described by the so-called Gamow factor,

S(k) = |ψk(0)|2/|ψk(∞)|2 = (2π/k)(1 − e−2π/k)−1. (10)

Numerical calculations for noble gas atoms show 22 that the perturbation series for Zeff

converges slowly.42 In the simplest static (HF) approximation, Z
(a)
eff is one to two orders

of magnitude smaller than the experimental values, figure 9. Even when the positron

wavefunction is found from Eq. (2) with Σ
(pol)
ε + Σ

(Ps)
ε , diagram (a) alone accounts for

25% of Zeff only. Besides a direct numerical calculation, we found an approximate way to
include vertex corrections, based on the Gamow factor (10),

Zeff ≈ Z
(a)
eff

∫

|φ̃n(k)|2SR(k)d3k/(2π)3, (11)

where the modified Gamow factor SR(k) = 2π(k2 + 2/R)−1/2 is averaged over the density
of the valence electron wavefunction in momentum space φ̃n(k), and R = e2/I is the
atomic radius. This factor gives the largest enhancement in atoms with lower I and low
characteristic electron momenta (H, Xe), and the smallest effect in the opposite case (Ne).
It also provides good agreement with experimental Zeff , figure 9. Note that the positron
annihilation rate at low energy correlates with the magnitude of the scattering length (for
hydrogen a = −2.1 a.u. 13). This enhancement is proportional to |a|2, and is due to the
existence of a virtual (or weakly-bound) positron s level. It was first predicted in Ref. 45,
rediscovered in Ref. 15 and analysed in detail in Ref. 46. In particular, Ref. 46 shows that
for room temperature positrons this mechanism can give Zeff up to 103.

4 Positron annihilation on molecules

It has been known for about 40 years 47,48,49 that many molecules have large Zeff at room
temperatures, e.g., Zeff = 3 500 for C3H8 (propane), and Zeff = 9 530 for CCl4. When
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Figure 9. Zeff for hydrogen and noble-gas atoms. Calculation (Ref. 22): crosses, static HF values; triangles,
HF+Σ(pol); open squares, HF+Σ(pol) + Σ(Ps) [all using Eq. (9)]; open circles, same as squares, including
vertex corrections, Eq. (11) (phenomenological “Gamow factor”). Solid circles show an accurate calculated
value for hydrogen at k = 0.05,43 and experimental room temperature values for the noble-gas atoms.44

studied systematically for alkanes, the experiment revealed 50 that Zeff increases much faster
than the number of electrons or atoms in the molecule, reaching 106 for decane. Experiments
also showed a strong chemical sensitivity of Zeff . Possible mechanisms involving resonances,
positron bound states, threshold effects, etc., were discussed.49,51 Nevertheless, the situation
largely remained a puzzle.

The discovery of positron binding to neutral atoms has reinforced the idea that many
molecules should be capable of forming bound states with the positron. Positron capture
into such bound states by emission of a photon is an unlikely process. On the other hand,
the incident positron energy can be transferred into vibrations. Since vibrational motion
is quantised, this will only take place at specific positron energies, corresponding to the
vibrationally excited states of the positron-molecule complex. They will manifest themselves
in the positron continuum as vibrational Feshbach resonances (VFR).

A true theory of positron annihilation on molecules is only emerging now.46,52 It distin-
guishes two annihilation mechanisms, direct and resonant. The former operates for atoms
and molecules not capable of binding positrons, and gives Zeff < 103. The latter involves
positron capture in VFR. Within this mechanism the energy-averaged resonant contribu-
tion to Zeff is proportional to the resonance level density, which would explain the rapid
increase of Zeff with molecular size and chemical sensitivity. Finally, the role of vibrations
in high molecular Zeff has been demonstrated directly in a state-of-the-art experiment with
a trap-based low-energy monoenergetic (∆ε ∼ 20 meV) positron beam.53
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