
THEORY OF POSITRON ANNIHILATION

ON MOLECULES

Gleb Gribakin
Department of Applied Mathematics and Theoretical Physics

Queen’s University, Belfast BT7 1NN, UK

g.gribakin@am.qub.ac.uk

Abstract Two basic mechanisms of positron annihilation in binary collisions with
molecules are considered – direct and resonant. The contribution of the
former is enhanced, together with the elastic scattering cross section, if
the positron has a low-lying virtual level or a weakly bound state with
the molecule. For room-temperature positrons it can give Zeff up to 103.
The latter mechanism is a two-stage process, whereby the positron is
first captured into a vibrationally excited state of the positron-molecule
complex, and then annihilates from this quasibound state. It operates
only for molecules with positive positron affinities. Its contribution is
proportional to the level density of the vibrational resonances, and may
give Zeff up to 108.

1. ANNIHILATION CROSS SECTIONS AND
RATES

The process of electron-positron annihilation is described by quantum
electrodynamics. In the non-relativistic Born approximation the anni-
hilation cross section averaged over the electron and positron spins is
given by [1]

σ2γ = πr2
0

c

v
, (1)

where v is the relative velocity, c is the speed of light, and r0 is the
classical electron radius defined by e2/r0 = mc2, e and m being the
electron charge and mass. The cross section (1) obeys a pure 1/v-law,
which characterises the near-threshold behaviour of inelastic processes
with fast particles in the final state. Note that “near-threshold” here
means E � mc2, which is always true in the non-relativistic limit.
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For small velocities v <
∼ e2/h̄ = 1 au1, the Born approximation is

invalid, and it is necessary to take into account the electron-positron
Coulomb interaction. The typical electron momenta in the annihilation
process are p ∼ mc. The corresponding distances r ∼ h̄/mc are much
smaller than those where the relative wavefunction ψ varies considerably,
r ∼ a0. Therefore, in the non-relativistic limit the annihilation takes
place when the electron and positron are found at the same point, and
the cross section (1) must be multiplied by the density at the origin [2]

|ψ(0)|2 =
2π

v(1− e−2π/v)
, (2)

where ψ is normalised to a plane wave ψ(r) ∼ eik·r at large distances.
Obviously, this leads to an increase of the annihilation cross section.

When positrons annihilate on many-electron targets, such as atoms
or molecules, the annihilation cross section is traditionally written as [3]

σa = σ2γZeff = πr2
0

c

v
Zeff , (3)

The dimensionless effective number of electrons Zeff allows for the fact
that the target contains more than one electron, and takes into account
the distortion of the positron wavefunction by the interaction with the
target electrons. If the Born approximation were applicable at large
positron velocities, Zeff would be equal to the total number of electrons
in the target Z.2

At small positron energies Zeff can be very different from Z. First,
there is a strong repulsion between the positron and the nucleus, which
prevents the positron from penetrating deep into the atom. As a re-
sult, most of the annihilation events involve electrons of the valence and
near-valence subshells, making Zeff smaller. On the other hand, outside
the target the positron motion is affected by an attractive long-range

polarisation potential −αd/2r
4, where αd is the dipole polarisability of

the target. This leads to an increase of the positron density near the tar-
get and enhances Zeff . There is also a short-range enhancement of Zeff

due to the Coulomb interaction which draws together the annihilating

1Atomic units m = |e| = h̄, where c = α−1 ≈ 137 and the Bohr radius a0 = h̄2/me2 = 1,
are used throughout the paper.
2Of course, at large velocities one must also consider other inelastic processes such as positro-
nium (Ps) formation which leads to positron annihilation. In fact Eq. (3) only makes sense
for targets with ionisation potentials I above the Ps ground-state binding energy |E1s| = 6.8
eV. For targets with I < 6.8 eV, the inelastic Ps-formation channel is open right from thresh-
old, and Ps formation followed by its annihilation is the dominant annihilation mechanism.
The latter is also true for targets with I > |E1s| at positron energies ε > I − |E1s|.
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electron and the positron. It has the same physical origin as Eq. (2),
although this equation is not directly applicable. For bound electrons
there is a whole distribution of relative velocities v ∼ 1 au, and the
electron-positron Coulomb attraction is screened when the positron is
outside the target. This short-range effect should be stronger for targets
with loosely bound electrons which have smaller momenta.

Mathematically all these effects are described by a formula which
follows from the definition (3) and discussion above Eq. (2):

Zeff(k) =

∫ Z
∑

i=1

δ(r − ri)|Ψk(r1, . . . , rZ , r)|
2dr1 . . . drZdr , (4)

where ri and r are the coordinates of the electrons and positron, respec-
tively, and Ψk(r1, . . . , rZ , r) is the total wavefunction of the system. It
describes scattering of the positron with initial momentum k from the
atomic or molecular target in the ground state Φ0, and is normalised at
large distances as

Ψk(r1, . . . , rZ , r) ' Φ0(r1, . . . , rZ)eikr. (5)

Equation (4) refers to annihilation in binary positron-molecule col-
lisions. This regime is realised in experiments performed at low gas
densities n, and the quantity measured is the annihilation rate

λ = σavn = πr2
0cZeffn. (6)

In experiments the positrons are usually not monoenergetic, but rather
characterised by a momentum distribution. For thermalised positrons
the latter is Maxwellian, and the experimental value of Zeff corresponds
to a Maxwellian average of Zeff(k). Equation (6) is also used to describe
experiments at large densities where Zeff becomes density dependent [4].

2. Zeff FOR ATOMS AND MOLECULES

The most accurate Zeff values have been obtained in calculations for
simple systems like H and He [5, 6], and in experiments for He [7]. For
other systems experimental values are more reliable, although there is
a good theoretical understanding of Zeff for noble-gas atoms [8, 9], and
there have been several calculations for simple molecules [10, 11, 12].

A collection of Zeff for the hydrogen and noble-gas atoms, simple
inorganic molecules and alkanes and their perhalogenated substitutes is
presented in Tables 1, 2 and 3. Earlier experimental data were obtained
by observing annihilation of positrons from a radioactive source in dense
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gases. However, most of the information on Zeff , especially for large
organic molecules, comes from measurements in a positron trap [13, 14].
This set-up ensures that the positrons are fully thermalised, and the
annihilation takes place in binary collisions, since the tested species are
introduced at very low pressures.

Table 1. Hydrogen and noble gases.

Atom Zeff Comment

H 8a Calc.

He 3.94b Exp.

Ne 5.99b Exp.
Ar 26.7b, 33.8c Exp.

Kr 65.7d, 90.1c Exp.

Xe 320d, 401c Exp.

a At thermal k = 0.05, Ref. [5].
b Measured in a gas [7].
c Measured in the positron trap [14].
d Measured in a gas [15].

Table 2. Simple molecules.

Molecule Zeff Dipole moment
(Debye)

H2 14.6a −

N2 30.5b −
O2 36.7c −
CO 38.5b 0.112

CO2 54.7d −

N2O 78b 0.17
SF6 86.2c −
H2O 319c 1.85

NO2 1090b 0.32

NH3 1600b 1.47

a Ref. [16], b Ref. [17], c Ref. [14], d Ref.
[15]

It is obvious from Table 1 that even for atoms Zeff considerably ex-
ceeds the number of the valence electrons. A simple possibility for en-
hanced annihilation was pointed out in [18]. It is realised when the
positron forms a low-lying virtual level or a weakly bound state with
the target, at the energy ε0 = ±κ2/2. In both cases Zeff ∝ 1/|ε0|, and
the magnitude of low-energy elastic scattering cross section is similarly
enhanced: σel ' 4π/κ2 (see Sec. 3). The noble-gas atom sequence il-
lustrates this effect nicely. The increase of the dipole polarisability and
the decrease of the ionisation potential leads to stronger positron-atom
attraction, lowering of the virtual states (smaller κ), and rapid growth
of Zeff [9, 19].

However, this type of enhancement is limited by finite positron mo-
menta, as the growth of both σel and Zeff saturates for κ < k [20]. For
room-temperature positrons k ∼ 0.05 au, values of Zeff much greater
than that of Xe (|κ| ∼ 102) cannot be obtained.

Turning to molecules now, we see that enhanced direct annihilation
may account for Zeff for most simple inorganic molecules, as well as
CH4, C2H6 and fluoroalkanes, Tables 2 and 3. However, Zeff for NO2

and NH3 are already at its limit, and those of heavier alkanes and chloro-
and bromoalkanes are way beyond it. The record Zeff values found are
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Table 3. Alkanes and perhalogenated alkanes CnX2n+2.

Zeff

Molecule X = H X = F X = Cl X = Br

CX4 142a 54.4 9 530 39 800

C2X6 660b 152 68 600 −

C3X8 3 500b 317 − −
C4X10 11 300 − − −
C5X12 37 800 − − −
C6X14 120 000 630 − −
C7X16 242 000 − − −
C8X18 585 000 1 064 − −
C9X20 643 000 − − −
C10X22 728 000 − − −
C12X26 1 780 000 − − −
C16X34 2 230 000 − − −

a Ref. [15], b Ref. [17]; the rest are measurements in the positron trap [14].

4.3×106 for antracene C14H10 [21] and 7.5×106 for sebacic acid dimethyl
ester C12H22O4 [22]. In fact, the first observations of high annihilation
rates for alkanes with n = 1–4 and CCl4 were made in 1960’s [23].

What makes the Zeff data remarkable is not just their magnitude, but
the very rapid dependence on the size of the molecule, e.g. Zeff ∝ N6

for alkanes, where N is the number of atoms. There is also a striking
contrast between the alkanes and their fluorinated counterparts. In spite
of a much greater number of valence electrons in the latter, their Zeff in-
crease almost linearly with the size of the molecule. This is an example of
a strong chemical sensitivity illustrated further in Table 4, which shows
that replacing one hydrogen atom by another atom or a small group leads
to huge changes in Zeff . As a result of high annihilation rates, many large
organic molecules display large ionization-fragmentation cross sections
by positrons at sub-Ps-threshold energies [24]. Clearly, these phenomena
cannot be explained by a simple picture of direct “in-flight” annihilation
of the positron.

Table 4. Benzene and substituted benzenes.

Molecule C6H6 C6H5D C6H5F C6H5Cl C6H5Br C6H5(CH3) C6H5(NO2)

Zeff
a 15 000 36 900 34 000 72 300 172 000 190 000 430 000

a Experimental data from Ref. [14].
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The estimates of Zeff made above ignore the possibility of positron
capture by an atom or molecule, which would be possible if the positron
had a bound state with the target. In fact, high Zeff values have always
been interpreted as an indirect evidence of the existence of such states
[13, 17, 23].

The only way for a free positron to shed excess energy and become
truly bound in a binary collision is via radiative recombination. The
corresponding rate λrad ∝ c−3 [25], has the same magnitude in powers
of c as direct annihilation (6), and its contribution to annihilation is
small, ∆Zeff

<
∼ 1.

For a positron colliding with a molecule the energy can be absorbed
by molecular vibrations3. Since the spectrum of molecular vibrations
is discrete, this may only take place at specific positron energies ε =
Ev+ε0, where ε0 is the energy of the positron-molecule bound state, and
Ev is the energy of the vibrational excitation. These energies correspond
to the positions of positron-molecule resonances, or quasi-bound states.
The resonances have finite energy widths Γ = h̄/τ , where τ is their
lifetimes. The latter are determined by the positron annihilation rate
in the (quasi)bound state, as well as the rate of positron emission back
into the continuum4.

Such resonances, often called vibrational Feshbach resonances, are
well known in electron-molecule scattering [27]. For positrons, the con-
tribution of a single resonance to the annihilation rate was considered
theoretically in [28, 29]. The resonances were also thought to be behind
the large annihilation rates and strong dependence on the molecular
size for alkanes [13], and in Ref. [30] they were mentioned in relation
to the problem of fragmentation of molecules by positron annihilation.
However, only in a recent paper [20] the contribution of resonant anni-
hilation to Zeff has been properly related to the widths and density of
the resonances and their symmetry (see Sec. 4). Most importantly, the
analysis shows that the resonant mechanism fully accounts for most of
the observed effects.

A necessary condition for the resonant annihilation is the existence of
the positron-molecule bound state. Untill recently very little was known

3Electronic excitations have to be ruled out. For most of the molecules they lie above a few
eV and are inaccessible for thermal positrons. On the other hand, molecular rotations have
very small level spacings. However, at low energies the positron wavefunction is dominated
by the s wave, and exchange of angular momentum between the positron and the molecule
is suppressed, at least for non-polar molecules.
4If the quasibound positron-molecule complex undergoes collisions with other molecules, it
can be stabilised against positron emission. This effect will result in density dependent Zeff

[26], and should not be considered in the binary-collision regime.
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for certain about the possibility of positron binding to neutral atoms
or molecules. This situation has changed dramatically now, at least in
regards to positron-atom bound states [31, 32]. At present there are
about ten atoms for which binding has been either proved or established
beyond resonable doubt in theoretical calculations. This development
was not entirely unexpected [33]. Even the information inferred from
Zeff about the virtual states for positrons on noble gas atoms suggests
that neutral species with dipole polarisabilities greater, and ionization
potentials smaller than those of Xe, are likely to form such bound states.
However, obtaining accurate binding energies is a difficult problem [31].
It requires the use of sophisticated computational tools to account for
strong electron-positron correlations.

Much less is known about positron binding with molecules. It has
been demonstrated in calculations for a few strongly polar diatomic
molecules [32], e.g. LiH, BeO and LiF. Unlike atoms, these molecules
bind positrons even in the static Hartree-Fock approximation, although
correlations are very important in determining the actual value of the
binding energy [34, 35, 36, 37].

Annihilation data do not show much correlation between Zeff and the
size of the molecular dipole moments [14]. For non-polar molecules large
Zeff which cannot be accounted for by the direct annihilation mechanism,
present the strongest evidence for the existence of positron-molecule
bound states and vibrational resonances (Sec. 4).

3. DIRECT ANNIHILATION

Let us first assume that the electron-positron degrees of freedom are
completely decoupled from the nuclear motion, e.g. if the nuclei are fixed
at their equilibrium positions. The scattering wavefunction is then de-
termined by the positron interaction with the charge distribution of the
ground-state target and electron-positron correlation interaction (polar-
isation of the target, virtual Ps formation, etc.). The corresponding
wavefunction Ψk satifies the Schrodinger equation

(T + U −E0)Ψk = εΨk, (7)

where T is the kinetic energy operator, U is the sum of all Coulomb
interactions between the particles, E0 is the target ground-state energy
and ε = k2/2 is the positron energy.

Consider annihilation at positron energies well below the Ps-formation
threshold. Although the positron pulls the target electrons towards it5,

5A simple way to estimate this effect is to consider the formation of virtual Ps. The energy
of its centre-of-mass motion is negative, ε − I − E1s ≡ EPs < 0, and the Ps atom cannot
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the annihilation takes place within the range of the ground-state electron
cloud [38]. In other words, the positron annihilates when it is at the tar-
get, and the distances which contribute to the Zeff integral (4) are small.
At such distances the interaction between the particles, represented by
U on the left-hand side of (7), is much greater than the positron en-
ergy. Therefore, the εΨk term can be neglected and the solution of the
equation Ψk at small distances does not depend on the positron energy,
except through a normalisation factor.

In accord with Eq. (5), the wavefunction Ψk when the positron is
just outside the target contains a linear combination of the incident and
scattered positron waves

Ψk(r1, . . . , rZ , r) = Φ0(r1, . . . , rZ)

[

eikr + fkk
′

eikr

r

]

, (8)

where fkk
′ is the scattering amplitude. Taken at the target boundary r =

R, this function determines the normalisation of Ψk inside the target,
where the annihilation takes place. For low positron momenta kR� 1,
the scattering is dominated by the s wave and fkk

′ can be replaced by
the s-wave amplitude f0. As a result, the integrand in Zeff of Eq. (4) is
proportional to

∣

∣

∣

∣

1 +
f0

R

∣

∣

∣

∣

2

, (9)

and one obtains the following estimate [20]

Z
(dir)
eff ' 4πρeδR

(

R2 + 2RRef0 +
σel

4π

)

, (10)

where ρe is the electron density in the annihilation range (possibly be
enhanced due to short-range electron-positron correlations), δR is the
range of distances where the positron annihilates, and σel is the elastic
cross section, which is dominated by the s-wave contribution, σel '
σ0 = 4π|f0|

2, at low positron momenta [42]. In the zero-energy limit
it is determined by the scattering length a, σel = 4πa2, since f0 = −a
for k = 0. Note that if the target has a permanent dipole moment, the
long-range 1/r2 dipole potential dominates the low-energy scattering
and makes the derivation of Eq. (10) invalid. In particular, it makes σel

infinite [2], while Zeff remains finite.

move far away from the parent target. Its wavefunction behaves as exp[−(4|EPs|)
1/2R], and

RPs ∼ (4|EPs|)
−1/2 estimates how far the virtual Ps can be from the target. For small ε this

distance remains small, e.g. for I = 10 eV, RPs ∼ 1.5 au.
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Equation (10) allows one to analyse the typical features of Zeff due
to direct annihilation. The factor 4πρeδR ≡ F in (10) can be estimated
using the electron density at the origin of Ps(1s), ρe ∼ ρPs = 1/8π, and
δR ∼ 1, which yields F ∼ 0.5. Therefore, unless σel is much greater than
the geometrical size of the target, direct annihilation gives Zeff ∼ 1–10.

When the scattering cross section is large the annihilation rate is
greatly enhanced. Indeed, if the positron has a virtual or bound state
with the energy close to zero, ε0 = ±κ2/2, |κ| � R−1, the s-wave
scattering amplitude is given by [2]

f0 = −
1

κ+ ik
, (11)

and the cross section peaks strongly at small momenta, σel ' 4π/(κ2 +
k2), its magnitude being much greater than the geometrical size of the
target6. In this case the last term in brackets in Eq. (10) dominates,

and Z
(dir)
eff shows a similar peak [18, 19, 43],

Z
(dir)
eff ' F

1

κ2 + k2
. (12)

At zero positron energy both σel and Z
(dir)
eff can be made arbitrar-

ily large by choosing ever smaller κ. However, for finite momenta the

maximal possible values of Z
(dir)
eff are limited, e.g. for room temperature

positrons, k ∼ 0.05,

Z
(dir)
eff

<
∼ 103. (13)

This means that relatively large values of Zeff can still be understood in
terms of the direct annihilation mechanism enhanced by the presence of
a low-lying virtual or weakly-bound positron-target state. On the other
hand, observations of Zeff > 103 with room-temperature positrons most
certainly require a different mechanism.

Figure 1 illustrates a strong correlation between the elastic scattering

and Z
(dir)
eff suggested by Eq. (10). It presents a selection of Zeff values

for a number atoms and small molecules, as a function of σel. For atoms
the data are taken from the theoretical calculations of Ref. [44] for
hydrogen, and Ref. [8] for He, Ne, Ar, Kr and Xe. Since Eq. (10) is
valid for low positron momenta, only a few data points with k ≤ 0.2 are
used for each atom. Plotted for molecules are the experimental Zeff from

6It must be mentioned that the long-range −αd/2r
4 polarisation potential modifies this

functional form, and in particular leads to a more rapid k-dependence of σel and Z
(dir)
eff

, see

Ref. [20], Eqs. (22) and (23). However, this does not affect the present estimates of Z
(dir)
eff

.
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Figure 1. Relation between the elastic scattering cross section σel and Zeff for
atoms (•) and simple molecules (◦). A strong correlation between the two expressed
by Eq. (10) is characteristic of the direct annihilation mechanism.

Refs. [14, 17], against the momentum-transfer cross sections σm from
Ref. [45], obtained with room-temperature positrons7. As seen from the
figure, within a factor of 2 or 3, the relation between Zeff and σel holds
over a very large range of their values.

In the case when the positron forms a weakly bound state with the
atomic system (with I > 6.8 eV), one can also relate Zeff at zero energy
to the spin-averaged positron annihilation rate in the bound state [46].
Neglecting 3γ annihilation, the latter is given by

Γa = πr2
0c

∫ Z
∑

i=1

δ(r− ri)|Ψ0(r1, . . . , rZ , r)|
2dr1 . . . drZdr , (14)

where Ψ0 is the wavefunction of the bound state. When the positron is
outside the atomic system, i.e. at r > R, we have

Ψ0(r1, . . . , rZ , r) ' Φ0(r1, . . . , rZ)
A

r
e−κr, (15)

where A is the asymptotic normalisation constant. For a weakly bound
state (κ� R−1) the positron exponent in (15) is very diffuse. The main

7At low projectile energies s-wave scattering dominates and σel ≈ σm.
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contribution to the normalisation integral
∫

|Ψ0(r1, . . . , rZ , r)|
2dr1 . . . drZdr = 1, (16)

comes from large positron distances, and after substituting (15) we ob-
tain A =

√

κ/2π. At zero positron energy we can use the amplitude
f0 = −1/κ in Eq. (8), and neglect the incident plane wave in compari-
son with f0/r, since f0 is anomalously large. In this case a comparison
of Eqs. (4) and (8) with (14) and (15), immediately yields

Zeff(0) =
Γa
πr20c

∣

∣

∣

∣

f0

A

∣

∣

∣

∣

2

=
Γa
πr20c

2π

κ3
. (17)

In Table 5 we have applied this formula to estimate Zeff(0) for a number
of atoms and LiH molecule where bound positron states were obtained
in large-scale stochastic variational calculations [31]. It is obvious that
larger Zeff are found for those atoms which have smaller κ, i.e. where
the enhancement due to a weakly-bound state is stronger.

Table 5. Estimates of Zeff for atomic systems which form bound states with
positrons.

Atom or |ε0|
a Γa

a κb Zeff
c

molecule (au) (109 s−1)

Be 0.002775 0.397 0.0745 120
Mg 0.013906 0.838 0.1668 22.5
Zn 0.001425 0.248 0.0534 203
Cu 0.005518 0.576 0.1051 62
Ag 0.005512 0.598 0.1050 64

LiH 0.033418 1.643 0.2585 12d

a Binding energies and spin-averaged annihilation rates from Ref. [37, 47].
b Calculated values κ = (2|ε0|)1/2.
c Estimates of Zeff at zero positron energy, Eq. (17). The latter is written in atomic units,
and a simple conversion formula can be used: (109 s−1)/(πr20c) = 0.0198 au.
dFor LiH this value is the contribution of direct annihilation alone (see end of Sec. 3). Note
also that LiH is a strongly polar molecule, which may affect the validity of Eq. (17).

Let us now follow the same line of argument which lead from Eq. (4)

via Eq. (8) to the estimate of Z
(dir)
eff by Eq. (10). Starting from Γa (14)

and using Eq. (15) we obtain

Γa ' πr2
0c 4πρeδR|A|

2 = πr2
0c 4πρeδR

κ

2π
. (18)

This formula shows that Γa is proportional to κ, i.e. positron states
with smaller binding energies have lower annihilation rates. This is a
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simple manifestation of the normalisation of the positron wavefunction.
A smaller κ corresponds to a more diffuse positron cloud, hence, a smaller
probability to find the positron in the vicinity of the atom, where the
annihilation takes place. This result is also discussed in Ref. [43].

0 0.1 0.2 0.3
κ

0

0.5

1

1.5

Γ 
(1

09  s
−

1 )

Zn

Be

Cu

Ag

Mg

LiH

Figure 2. Dependence of the annihilation rate of positronic compounds on the
bound-state parameter κ. The dashed line is a fit Γa = 5.3κ 109 s−1.

The plot of Γa vs κ based on the data from Table 5 supports the
validity of Eq. (18). Even the datum for the LiH molecule, in spite of
its large dipole moment (5.884 Debye [48]) and relatively large κ, follows
the trend. The slope of the straight-line fit can be used to estimate the
factor F = 4πρeδR. This gives F ≈ 0.66, remarkably close to our earlier
crude estimate.

The value of Zeff for LiH given in Table 5 represents only the contri-
bution of direct annihilation. For this molecule the positron binding en-
ergy |ε0| = 0.909 eV is greater than its vibrational frequency ω = 0.1743
eV [49]. As a result, the e+LiH compound should possess a series of
vibrationally excited bound states [50]. Such states could manifest as
resonances in the positron-molecule continuum8, and give an additional
contribution to Zeff . Let us analyse this possibility in detail.

4. RESONANT ANNIHILATION

The annihilation mechanism discussed in this section operates for
molecules which have bound states with the positron. Assuming that
the coupling V between the electron-positron and nuclear degrees of

8For positrons scattered from LiH the lowest inelastic threshold open at all positron positron
energies, is dissociation into Li+ and PsH. Formation of PsH followed by positron annihilation
within it will probably be the main annihilation channel for this particular molecule.
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freedom is small, we can represent the total scattering wavefunction for
such targets as

|Ψk〉+
∑

ν

|Ψν〉〈Ψν |V |Ψk〉

E −Eν + i
2Γν

. (19)

Here Ψk describes direct, or potential [2] scattering of the positron by the
ground-state molecule, which we examined in Sec. 3. The second term
has the appearance of a standard perturbation-theory formula. It de-
scribes positron capture into vibrationally excited (quasibound) states
Ψν of the positron-molecule compound9. Their energies are complex,
Eν −

i
2Γν , because these states are unstable against positron annihila-

tion and positron re-emission back into the continuum. The width Γν is
the sum of the annihilation and emission widths: Γν = Γνa + Γνe . This
formula implies that at low positron energies the only open inelastic
channel is annihilation. For positron energies above the molecular exci-
tation threshold the width will also contain a contribution from positron
emission accompanied by excitation of the target.

The capture into the state ν is maximal when the energy of the system
E = E0 + ε (E0 is the target ground-state energy) is close to Eν , i.e.
the resonances are observed at positron energies εν = Eν − E0. The
contribution of a resonance ν to the annihilation cross section is given
by the standard Breit-Wigner formula [2]:

σ(ν)
a =

π

k2

ΓνaΓ
ν
e

(ε− εν)2 + 1
4Γ2

ν

, (20)

where we assume that the positron is in the s wave10. In terms of Zeff

defined by Eq. (3), this means

Z
(ν)
eff =

π

k

Γνa
πr20c

Γνe
(ε− εν)2 + 1

4Γ2
ν

. (21)

The annihilation width Γνa is given by a formula similar to Eq. (14), and
the ratio Γνa/πr

2
0c is the average electron density at the positron ρep. The

index ν has been dropped because this density is practically the same
for different nuclear vibrational states (as is Γνa). A simple estimate of
ρep is provided by Eq. (18),

ρep ' 4πρeδR
κ

2π
≡ F

κ

2π
. (22)

9In the first approximation they can be written as Ψν = Ψ0ψν , where Ψ0 is the electron-
positron bound state wavefunction, and φν are the wavefunctions of the nuclear motion.
10Contributions of the higher partial waves contain an additional factor 2l + 1.
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Using F = 0.66 obtained from Figure 2 we find that for a state bound
by 1 eV (κ = 0.27) this density is about 70% that of Ps, ρPs = (8π)−1,
and ρep ∼ ρPs can be used for rough estimates. This corresponds to the
annihilation width Γa = πr2

0c/8π = 5× 10−8 au ∼ 1 µeV.
The spectrum of vibrational excitations in large molecules can be very

dense. Hence, contributions of many resonances must be included:

Z
(res)
eff =

π

k
ρep

∑

ν

Γνe
(ε− εν)2 + 1

4Γ2
ν

. (23)

For non-monochromatic positrons the individual resonances cannot be
resolved, and the observed rate corresponds to an average

1

∆

∫

Z
(res)
eff dε (24)

over an energy interval ∆ which contains many resonances. The contri-
bution of any given resonance drops rapidly for |ε − εν | > Γν , and the
integration can be taken formally from −∞ to +∞. This gives

Z
(res)
eff =

2π2

k

ρep
D

〈

Γνe
Γν

〉

, (25)

where D is the mean energy spacing between the resonances, and 〈. . .〉
denotes the average value11.

At this point the origin and size of enhancement of Zeff due to the
positron-molecule resonances become clear [20]. If the positron emission
width of the resonances is not too small, Γνe > Γνa ∼ 1 µeV, we have
Γν = Γνe + Γνa ≈ Γνe , and

Z
(res)
eff '

2π2

k

ρep
D
. (26)

This result means that Z
(res)
eff is simply proportional to the energy density

of vibrational resonances D−1. In heavier and larger molecules vibra-
tional level spacings D become small, which means that very large Zeff

can be obtained.
Take for example a simple Cl2 molecule [51]. It has a single vibrational

mode ω = 560 cm−1 = 2.55 × 10−3 au [48]. Assuming that a weakly
bound positron makes little change in the vibrational frequency, D ≈ ω,

11A similar estimate of the resonant contribution to the elastic scattering, σ
(res)
el

=

2π2/k2〈(Γν
e )2/DΓν〉, shows that it is not enhanced compared with the potential scattering.

On the contrary, it is probably quite small.
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and using ρep = ρPs, we obtain Z
(res)
eff = 6× 103 at k = 0.05. This value

is much greater than the maximal Z
(dir)
eff . In fact, it is also greater than

the experimental Zeff = 1600 [52]. This apparent discrepancy is easy
to account for. Firstly, for a weakly bound state with a small κ, ρep
is smaller than ρPs, see Eq. (22). Secondly, the vibrational spacing for
Cl2 is greater than the thermal energy kBT = 204 cm−1 (at T = 293
K). Therefore, there is at most one resonance within the positron energy
range and instead of using Eq. (26) a proper Maxwellian average should
be taken (see below).

The vibrational spectrum density increases rapidly with the size of
the molecule. This would explain the experimental results for alkanes,
Table 3. Perfluorinated alkanes have smaller vibrational spacings. The
only way to understand their small Zeff is to conclude that resonant
annihilation is simply switched off for them, because the positrons do
not bind to these molecules12, as well as to SF6 [53]. Indeed, Zeff for
perfluoroalkanes are within reach of the direct mechanism, their increase
with the size of the molecule caused by lowering of the virtual state.
On the other hand, replacing hydrogen atoms with Cl or Br lowers the
vibrational frequencies and retains (or even strengthens) the positron
binding, and makes resonant annihilation stronger.

The maximal value of Z
(res)
eff is obtained for the smallest spacing D ∼

Γν when Γνe = Γνa. For room temperature positrons this means

Z
(res)
eff < 5× 107, (27)

which corresponds to the unitarity limit of the s-wave annihilation cross
section: σa ≤ π/k2.

Equation (25) also shows that a common notion that larger resonance
lifetimes τν = 1/Γν mean greater annihilation rates, is incorrect. This
notion originates in a classical picture which tells that the probability of
positron annihilation is proportional to the time it spends near the tar-
get. The classical picture itself is in fact correct, but one must remember
that the classical period of motion corresponds to h̄/(Eν+1−Eν), where
Eν+1−Eν is the difference between two consecutive eigenstates [2]. This
period appears in Eqs. (25) and (26) as the 1/D factor.

The lifetimes of the resonances are limited by annihilation: τν < 1/Γνa.
Maximal lifetimes are achieved for Γνe � Γνa. However, very small emis-
sion widths mean that the resonances become almost decoupled from
the positron-molecule continuum. In this case the resonant annihilation

12Fluorine atoms, similarly to Ne, appear to be fairly “unattractive” to positrons [20, 41],
because of their small αd and large ionization potential.
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falls below that of Eq. (26), because the positrons do not get into the
resonant states.

The positron-molecule resonance density D−1 in Eqs. (25) and (26)
depends on the excitation energy available, as defined by the positron ki-
netic energy and positron affinity, ε+|ε0|, and also on the structure of the
molecular vibrational spectrum. Suppose that the molecule possesses a
particular symmetry. Its electronic ground-state wavefunction is usually
nondegenerate and invariant under all symmetry transformations. Let
us call this symmetry type A. Depending on the actual symmetry of
the molecule this can be A1, Ag, or A1g. If the positron forms a bound
state with the molecule, the electron-positron part of the wavefunction
of the positron-molecule complex will also be fully symmetric, i.e., of the
A symmetry type.

Consider now capture of a continuous spectrum positron into the
bound positron-molecule state. At low energies the incident positron s
wave dominates. As a result, the electron-positron part of the wavefunc-
tion of the initial (molecule and the s-wave positron) and final (bound
positron-molecule complex) states of the capture process are character-
ized by the same full molecular symmetry A. This imposes a constraint
on the nuclear vibrations excited during the capture process. They must
also belong to the A symmetry type.

This selection rule limits the spectrum of possible vibrationally excited
resonances. It allows arbitrary excitations and combinations of the A
modes. It also allows overtones and combinations of other symmetry
types, provided such excitations contain the A symmetry type, i.e., the
(symmetric) product of the symmetry types involved contains A among
its irreducible representations [2]. This does not mean that all such
vibrations will contribute to the density factor D−1 in Eq. (26). Some of
them may have extremely weak coupling to the electron-positron degrees
of freedom (Γνe � 1 µeV). In this case they will be effectively decoupled
from the positron capture channel, and hence, will not contribute to Zeff .

The role played by symmetry of the nuclear vibrational resonances
results in a strong chemical sensitivity of Zeff . For example, replacing
a single hydrogen atom in benzene by deuterium changes the molecu-
lar symmetry and increases the number of fully symmetric vibrational
modes, which is matched by an increase of Zeff in Table 313.

13Experiments show that for methane and heavy alkanes full deuteration results in a relatively
minor change of Zeff [41], in spite of the obvious reduction of the vibrational frequencies.
However, deuteration has a smaller effect on the low-frequency backbone C−C modes, which
probably play the main part in positron capture.
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To calculate Z
(res)
eff for a molecule one must first determine the binding

energy |ε0| and annihilation density ρep. After that one should identify
the vibrational excitations which can contribute to the resonant annihi-
lation, and find D−1, taking into account the symmetry of the molecule.
It is also necessary to make sure that these vibrational excitations have
enough coupling with the positron motion (Γνe > 1 µeV); otherwise they
will not contribute much to Zeff .

Intuition tells us that the positron motion can be coupled stronger
to some simple vibrations which we shall call doorways. Excitation of
more complicated modes or combination vibrations could then proceed
through the doorways by means of anharmonic terms. As a result, the
coupling strength of the doorway will be re-distributed between many
complicated vibrations. In the spirit of sum rules, this means that the
original emission width Γde of the doorway resonance will be shared by
many narrow resonances with much smaller Γνe . On the other hand, their
level density D−1 is much greater than that of the doorway resonances
d−1, so that Γνe ∼ Γde(D/d). Therefore, the ratio Γνe/D in molecules
with complex spectra remains approximately the same as that in simple
molecules. However, as long as Γνe > Γνa, the smallness of Γνe is not
limiting the Zeff ∝ D−1 growth, Eq. (26). Eventually, for even more
complicated molecules the regime Γνe

<
∼ Γνa takes over and the rapid

increase of Zeff saturates. Experimentally, saturation of Zeff has been
observed in alkanes with n ≥ 8.

Obviously, ab initio calculation of Zeff for a large molecule is an ex-

tremely difficult problem. However, it is easy to estimate Z
(res)
eff for

simple molecules with one dominant vibrational mode. Here we can ap-
proximate the positions of the vibrational resonances by εν = νω − ε0
(ν = 1, 2, . . .), where ω is the vibrational frequency of the symmetric
mode of the positron-molecule compound. To find the thermally aver-
aged Zeff we calculate

Z
(res)
eff (T ) =

∫ ∞

0

e−k
2/2kBT

(2πkBT )3/2
Z

(res)
eff 4πk2dk, (28)

where Z
(res)
eff is given by Eq. (23). Assuming that the resonances are

narrow, yet Γνe � Γνa, we obtain14

Z
(res)
eff (T ) =

∑

εν>0

8π3ρepe
−εν/kBT

(2πkBT )3/2
=

8π3ρep
(2πkBT )3/2

e−ε
′

0/kBT

eω/kBT − 1
, (29)

14The contribution of the νth resonance is equivalent to (2π2/k)ρep(Γν
e/Γν)δ(ε − εν).
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where ε′0 < 0 is the energy of the highest vibrationally-excited state
lying below threshold (for ω > |ε0|, ε

′
0 = ε0). Note that in the high-

temperature limit kBT � ω, this formula turns into

Z
(res)
eff (T ) =

2π2ρep
ω

(

2

πkBT

)1/2

, (30)

which could also be obtained from Eq. (26) by Maxwellian averaging of
1/k and putting D = ω.
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Figure 3. Dependence of Z
(res)
eff (T ), Eq. (29), for Cl2 at T = 293 K on the bound-

state parameter κ. Solid line corresponds to ω = 560 cm−1, whereas dashed lines are
for ω = 500 cm−1 (upper) and ω = 620 cm−1 (lower). The solid circle marks the
experimental value Zeff = 1600 [52] and implies κ = 0.0595.

In Figure 3 we have applied Eq. (29) to investigate the dependence
of resonant Zeff for Cl2 on the energy of the hypothetical e+Cl2 bound

state. The bound-state parameter affects Z
(res)
eff (T ) through the exponent

eκ
2/2kBT , and through ρep, via Eq. (22) with F = 0.66. Three curves

correspond to different vibrational frequencies of e+Cl2: less, equal, and
greater than that of Cl2. Comparison with experiment suggests that
e+Cl2 is bound by κ2/2 ≈ 50 meV. For such κ the direct annihilation
rate should be somewhere between those of Be and Zn (Table 5), hence

Z
(dir)
eff would not exceed 200.
Equation (29) also enables one to evaluate the dependence of the

resonant annihilation rates on ω. For small positron binding energies
|ε0| < kBT , and “large” ω > kBT , only one lowest resonance contributes

noticeably to the sum, and Z
(res)
eff (T ) depends on ω exponentially. To

emphasize this strong dependence in Figure 4, other parameters in Eq.
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Figure 4. Zeff of simple molecules as a function of the lowest vibrational frequency
ω of the fully symmetric mode (A1, Ag) [49, 54]. The molecules included, in the
order of decreasing ω, are H2O, O2, CO2, N2O, CH3F, CH3OH, NH3, CF4, NO2,

CH3Cl, Cl2, CCl4, CBr4, and CI4. Solid curve is Z
(res)
eff (T ) of Eq. (29), obtained

using ρep = ρPs and |ε0| � kBT .

(29) are kept constant: ρep = ρPs and |ε0| � kBT . Apart from the
points for CF4 and H2O, the rest of the data seem to correlate well
with the slope of the curve. For molecules on the high-frequency side
of the graph, the contribution of resonant annihilation is small. In fact
they probably do not bind positrons, and their Zeff can be explained in
terms of direct annihilation. It is conceivable that resonant annihilation
contributes to Zeff in H2O, if a stronger positron binding lowers the
resonance towards thermal positron energies. The datum for CF4 again
points out that resonant annihilation does not contribute to Zeff , for
want of positron binding. For all other molecules with ω < 1000 cm−1

the observed annihilation rates are probably sums of Z
(dir)
eff and Z

(res)
eff ,

the latter becoming increasingly important as ω becomes smaller.

5. SUMMARY AND OUTLOOK

Ideas outlined in this paper provide a solid framework for the descrip-
tion and understanding of positron annihilation on molecules. The two
basic annihilation mechanisms, direct and resonant, should be capable
of describing the whole variety of phenomena associated with this pro-
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cess, such as large values of Zeff , their rapid increase with the size of
the molecule, and strong chemical sensitivity. Complete understanding
of resonant annihilation will require solving several difficult problems,
namely those of positron binding to molecules, energy transfer between
the positron and vibrational degrees of freedom, and formation of com-
plex molecular vibrational resonances.

Resonant annihilation has much in common with the formation of
long-lived negative ions and dissociative attachment in low-energy elec-
tron collisions with molecules. These processes are believed to be me-
diated by vibrational Feshbach resonances, but they are also far from
being completely understood. From this point of view, enhanced an-
nihilation in positron-molecule collisions is a unique signature of the
resonant nature of the process.
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