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Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound
autoionizing states~AIS!. These states are almost chaotic superpositions of large numbers of many-electron
basis states built of single-electron orbitals. The mean level spacingD between such states is very small~e.g.,
D,0.01 eV for the numerical example ofJp542 states of Ce just above the ionization threshold!. The
autoionization widths of these states estimated by perturbations,g52puWu2, whereW is the Coulomb matrix
element coupling the AIS to the continuum, are also small, but comparable withD in magnitude:g;D. Hence
the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly
the widths of the autoionizing resonances (G.D2/3g!D), and leads to the emergence of a ‘‘collective’’
doorway state which accumulates a large share of the total width. This state is in essence a modified single-
particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a
common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-
state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion
scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also
shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close
to Gaussian.@S1050-2947~96!07208-3#

PACS number~s!: 32.80.Dz, 31.50.1w, 34.80.2i

I. INTRODUCTION

It is well known that simultaneous excitation of several
atomic electrons into discrete states can produce autoionizing
states~AIS’s! seen as narrow resonances in the continuous
spectrum of the system at energies above the ionization
threshold. In atoms with two valence electrons, such as he-
lium, or alkaline earths, the spectrum of such resonances
remains relatively simple. It essentially consists of Rydberg-
like series converging to excited states of the positive ion.
These states can be classified using single-electron or some
other quantum numbers. If the number of excited electrons is
greater than two, the number of many-electron states that can
be formed from them rapidly increases~exponentially, with
the number of excited electrons!, and the structure of such
states is of much greater complexity. This behavior follows
from simple combinatorial consideration, and is realized in
excited states of rare-earth atoms, where several open shells
exist in the immediate vicinity of the ground state.

Indeed, the extreme complexity of the rare-earth atoms
spectra at excitation energies of a few eV, well below the
ionization threshold, can be seen from the level tables@1#.
The complexity becomes even greater in the spectra of lan-
thanides and actinides just below the ionization threshold,
and the associated difficulties one encounters trying to iden-
tify Rydberg series of levels are very well known to experi-
mentalists~see, e.g.,@2# and @3#, where the first observation
of Rydberg series in any actinide was made for U!. Similar
states can be formed in other atoms with simpler electron
structure at higher excitation energies~see, e.g., the experi-
mental 4p-photoabsorption spectrum of Sr in@4#, and the
discussion and references therein!. In any case, the density of
such excited states is very large, and the mean level spacing
D is very small~by D we understand the mean spacing be-
tween the levels of the same symmetry, i.e., of the same total

angular momentum and parityJp). Clearly,D is energy de-
pendent: the higher the energyE, the larger the density of
statesr(E), and the smaller the value ofD5r21. For ex-
ample, in the independent-particle model one obtains
r(E)5r0exp(aAE) @5#, and the experimental spectra of
rare-earth atoms were shown to be in agreement with this
dependence@6#.

The small value ofD has immediate physical implications
for these many-electron states. Suppose that one uses a basis
of some single-electron orbitals to construct many-electron
basis statesuFk&. The statesuFk& can be taken as single-
determinant states corresponding to certain electron configu-
rations, or constructed from them through some coupling
scheme to have a definiteJ value. The true atomic eigen-
states

uA* i &5(
k
CikuFk& S (

k
Cik
2 51D ~1!

are obtained by diagonalizing the Hamiltonian matrix
Hik[^F i uHuFk&. The coefficientsCik describe mixing of
the basis states by the residual Coulomb interaction. The
number of basis statesuFk& formed by distributing several
electrons among a few open orbitals is large, and the mean
spacing between the basis-state energiesHkk ~this spacing is
;D, if the basis states with definiteJ are used! is smaller
than the typical valueV of the off-diagonal matrix element
Hik . In this situation the basis states are strongly mixed by
the perturbation. Apart from several lowest levels, which can
be described by a single dominant electron configuration,
each of the eigenstates is a superposition of a large number
of basis states. This strong mixing takes place within a cer-
tain energy rangeGspr called the spreading width since it
characterizes the spread of the eigenstates to which a given
basis state contributes noticeably~in simple models with
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constant off-diagonal matrix elements the spreading width is
obtained asGspr52pV2/D; see, e.g.,@5#!. By the same to-
ken, one can estimate the number of principal components,
i.e., those largely contributing to the sum~1!, as
N;Gspr/D. The coefficientsCik corresponding to the prin-
cipal components have typical valuesuCiku;1/AN. Their
statistics are close to those of independent random variables,
and become Gaussian when the mixing is complete. The no-
tion of electronic configuration becomes meaningless for
these eigenstates, since even the single-electron orbital occu-
pancies are very far from integer, and only the total angular
momentum and parity remain good quantum numbers. One
can view these features as signatures of quantum chaos in the
system.

Such a picture is commonly used to describe compound
resonances in nuclei. It has recently been shown to be appli-
cable to excited states of the rare-earth atom of Ce atE*2
eV @7#. The model configuration-interaction calculations per-
formed in @7# produced a value ofGspr;2 eV, and demon-
strated the existence of a dense spectrum of compound ‘‘cha-
otic’’ excited states withN*100 (D;0.01 eV!. In nuclei
compound states are usually observed as narrow resonances
in low-energy neutron scattering. The energy of the incident
neutron with respect to the ground state of the compound
nucleus~the neutron threshold, which is about 8 MeV! is
shared in these states by a large number of valence nucleons.
The number of these multiply excited states is enormous, and
the level spacingD can be as small as 1 eV, whereas the
typical nuclear energy scale is 1 MeV. The corresponding
number of principal components in nuclear compound states
can reachN;106. Our present study was initiated by the
following question: Can one observe analogous dense spec-
tra of compound excited states above the ionization threshold
in atoms?

In order to answer this question it is necessary to estimate
the widths of compound AIS’s and compare them with the
level spacingD. The width as given by perturbation theory is

g i52p z^A1« l uWuA* i & z2, ~2!

where we assume that the decay is dominated by a single
channel, andW is the Coulomb interaction between atomic
electrons. Contrary to the compound AISuA* i &, the final
state^A1« l u, which describes the ion in the ground state and
the continuum electron, is relatively simple; thus it has a
well-defined electron configuration. By analogy with esti-
mates of matrix elements involving nuclear compound states
@8#, we obtain

^A1« l uWuA* i &5(
k

^A1« l uWuFk&Cik;W0S qND 1/2, ~3!

whereW0 is a typical matrix element between ‘‘simple’’
many-electron states~essentially, a two-body Coulomb ma-
trix element!; q is the number of nonzero items in the sum,
given by suchk thatFk differs fromA1« l by no more than
two single-electron states, and the signs of the items are sup-
posed to be random due to randomness ofCik . Being the
sum of uncorrelated random variables, the matrix element~3!
should obey Gaussian statistics.

If the excited atomic state involves more than two valence
electrons, thenq!N, and the decay matrix element for the
compound AIS is suppressed with respect to that of a
‘‘simple’’ two-electron AIS. The estimate for the width~2!
then reads

g;2pW0
2 q

N
;
2pW0

2q

Gspr
D, ~4!

where 2pW0
2 can be considered as the width of a simple

low-lying two-electron AIS~for example, the 3d5p 1P1 state
of Ca, which lies 0.46 eV above the threshold and has a
width of about 0.07 eV; see, e.g.,@9#!. Estimate~4! shows
that the widths of compound AIS’s are proportional to the
level spacing. Combining the above quoted value of the
width for Ca with a plausible yet arbitraryq510 and
Gspr.2 eV, we obtaing;0.5D. If one takes into account
fluctuations of the widths and positions of the compound
AIS’s, this estimate would suggest a picture of a dense spec-
trum of overlapping resonances in the atomic continuum.

However, in the situation when the widths are of the order
of the level spacing the perturbation estimate~2! becomes
invalid, and the interaction of the discrete states with each
other via the continuum should be taken into account in all
orders. The problem ofn discrete levels interacting with one
continuum has been known for a long time@10#. In the situ-
ation wheng i!D, a succession of asymmetric resonance
contours~Fano profiles! is observed, for instance, in the pho-
toabsorption cross section. The profiles are characterized by
the widthG i'g i and the asymmetry parameter

qi'
^A* i uQuA&

p^A1« l uQuA&^A* i uWuA1« l &
, ~5!

whereQ is the transition operator~the electric dipole!, uA& is
the initial state of the atom, and the admixture of the con-
tinuum states to the AIS has been neglected~otherwise the
numerator ofqi has to be modified!. The positions of the
resonances are slightly shifted with respect to the original
energies of the AIS. In the opposite situationg i@D one
observes a remarkable transformation of the spectrum@11–
16#. If the number of levels interacting with the continuum is
finite, a ‘‘collective’’ state is pushed away into the complex
energy plane, collecting most of the total widthG5( ig i .
Othern21 resonances are strongly shifted from their unper-
turbed positions, and their widths are greatly suppressed:
G i;D2/3g!D, whereg is the average value ofg i ~see be-
low!. The latter means thatn21 narrow resonances become
almost decoupled from the continuum.

One can obtain a simple physical picture of narrowing in
the following model. Suppose that there is adoorwaystate
uc& which is strongly coupled to the continuum, i.e., has a
large width Gc , and that the other discrete statesu i & are
coupled to the continuum via this state. Their widths calcu-
lated by perturbations are

G i5
Gc

~E2Ec!
21Gc

2/4
u^cuWu i &u2. ~6!

If the states in question are within the width of the doorway,
uE2Ecu,Gc , the widthsG i are inversely proportional to
Gc . Similarly, when a short-lived ‘‘collective’’ state is
formed in the spectrum, the capture from the continuum into
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other discrete states proceeds via this state. Thus the collec-
tive state is in fact just a modified single-particle continuum
~see Sec. II C!, or, in other words, a doorway state.

In nuclei at energies just above the neutron threshold, the
perturbative situation (g!D) is realized. Besides the statis-
tical suppression of the widths, expressed by~4!, they are
also suppressed by a kinematical factorkR ~for s-wave reso-
nances!. Herek is the wave vector of the neutron, andR is
the nuclear radius. With the excitation energy increasing, the
widths also increase, due to both the kinematical factor and
the contribution of other decay channels. So, by the time
when g;D, the single-decay-channel approximation is no
longer valid, and the interesting second regime of width sup-
pression is not observed.

In atoms, however, the outgoing electron is moving in the
Coulomb field of the ionic residue. Hence the kinematical
suppression factor does not work~although it should mani-
fest for autodetaching negative ion states!. Then, if the rela-
tion g*D takes place, either for dynamical reasons, or be-
cause of a local fluctuation, the second regime will take over.
The observed spectrum will depend on the physical process
involved. Thus in the photoabsorption measurement the nar-
row resonances will be the main feature of spectrum, since
the oscillator strength of the continuumlike broad collective
~doorway! resonance is roughly 1/n of the total oscillator
strength. However, in electron-ion scattering the doorway-
state resonance may become the dominant feature of the
cross section, because of its strong coupling to the con-
tinuum. At sufficient resolution, however, narrow resonances
will be observed as sharp cuts slicing the broad-scale back-
ground.

In Sec. II we give a theoretical description of the phenom-
enon, and derive some analytical results for model cases. In
Sec. III a more realistic model of compound AIS’s in atomic
Ce is considered numerically using the configuration-
interaction ~CI! method. This allows us to check that our
understanding of the effect is correct and gives an insight
into the role of fluctuations. Section IV summarizes the re-
sults and poses some general questions about the structure of
the atomic continuum.

II. THEORY

In this section we present a very compact derivation of the
formalism describing a set of levels embedded in and inter-
acting with a continuum, and survey the effects this interac-
tion produces on the widths of the resonances in the spec-
trum.

A. Basic equations

Let us consider a particular process where one can study
the interaction of AIS’s with the continuum, namely, photo-
ionization. Suppose the atomic system is initially in some
stateg. After the absorption of a photon the system can be
transferred either to the state« in the continuum, or to one of
the discrete statei , which will decay into the« state due to
the residual interactionW. In addition, the interaction with
the continuum can result in transitions between different dis-
crete states. The amplitude of the photoionization can be
presented graphically as a perturbation theory series:

~7!

where summation or integration over the intermediate states
( i ,«8) is assumed. Analytically, the contribution of diagrams
~7! can be written as follows:

^«ud̂ug&1(
i

^«uWu i &^ i ud̂ug&
E2Ei

1(
i
E ^«uWu i &^ i uWu«8&^«8ud̂ug&d«8

~E2«81 id!~E2Ei !
1•••, ~8!

where^«ud̂ug&[d and^ i ud̂ug&[Qi are the dipole amplitudes
of the electromagnetic transitions into the continuum and the
statei , respectively;Ei are the energies of the discrete states;
andE is the energy of the system (E5Eg1\v). Introducing
x i j5(E2Ei)

21d i j andWi5^ i uWu«&, we can write the ex-
pression for the amplitude using matrix notation:

A~E!5d1W†xQ1W†xQ̃1W†xSxQ1W†xSxQ̃1•••,
~9!

where

Q̃i5E ^ i uWu«8&^«8ud̂ug&
E2«81 id

d«8 ~10!

is the dipole amplitude of theg→ i excitation via the con-
tinuum, and the matrix

S i j5E ^ i uWu«8&^«8uWu j &
E2«81 id

d«8 ~11!

describes the interaction of the discrete states via the con-
tinuum. Summing the matrix geometric series in~9!, we ob-
tain
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A~E!5d1W†~D2S!21@Q1Q̃#, ~12!

whereD5x21, i.e., D i j5(E2Ei)d i j , and the second term
on the right-hand side corresponds to the excitations of the
AIS modified by the interaction with the continuum. This
amplitude is equivalent to the solution of the Fano problem
of n discrete levels interacting with a continuum@10#. There
are generalization of Fano’s theory to the many-continua
case@11#, which can also be done using the present formal-
ism ~see Appendix B!.

Poles of the amplitudeA(E) correspond to resonances in
the spectrum. The positions of the poles are determined by
(D2S)21→`, which is equivalent to det(D2S)50. The
values ofE which satisfy this equation are, in fact, eigenval-
ues of the matrixEid i j1S i j ,

EiCi1(
j

S i j Cj5ECi . ~13!

Using the relation (E2«1 id)215(E2«)212 ipd(«2E),
we can present~11! as

S i j5E ^ i uWu«8&^«8uWu j &
E2«8

d«82 ip^ i uWu«&^«uWu j &,

~14!

where the integral is understood in the principal value sense,
and the continuous spectrum stateu«& corresponds to the
energyE at whichS i j is calculated. The first term on the
right-hand side of~14! is Hermitian. It shifts the positions of
AIS’s along the real axis with respect to the unperturbed
energiesEi . The second, anti-Hermitian term shifts the ei-
genvalues of~13! into the complex plane, thus determining
the widths of the AIS’s. For example, in the perturbation
theory regime when the interaction with the continuum
is small, the width of the AIS i is given by
22 ImS i i52pu^ i uWu«&u2[g i .

In the present work we are interested in the evolution of
the widths, and below we neglect the first term in~14!. This
approximation is quite reasonable if the matrix elements in
the integrand in Eq.~14! depend weakly on energy, making
the principal value of the integral close to zero@17#. If « is
the energy of the autoionizing electron moving in the field of
the ion, the matrix element̂«uWu i & is indeed constant at
small« due to the Coulomb asymptotic of the ionic potential
@18# @the continuous spectrum wave functions are normalized
to d(«2«8)#. On the other hand, one can always diagonalize
the Hermitian part of (Eid i j1S i j ) first, and then study the
widths of AIS in the new basis, in whichS i j is anti-
Hermitian. We must add that, strictly speaking, the matrix
S i j is energy dependent. Therefore, Eq.~13! is not a conven-
tional eigenvalue problem. However, the characteristic scale
of this energy dependence (DE;I for atoms! is much
greater than the mean level spacingD, and hence can be
neglected when studying the interaction of nearby levels.

B. Positions of resonances

The anti-Hermitian part ofS i j , Eq. ~14!, is separable
(S i j52 ipWiWj* ). It is well known@19# that for a separable
potential the eigenvalue problem~13! can be reduced to a
simple algebraic equation

11
i

2(i
g i

E2Ei
50 ~15!

whose roots are determined by the unperturbed energiesEi
and the diagonal matrix elementsS i i[2( i /2)g i . If we treat
E as a complex variable explicitly,E→E2 iG/2, Eq.~15! is
equivalent to the following two equations:

(
i

g i~E2Ei !

~E2Ei !
21G2/4

50, ~16a!

G

4(i
g i

~E2Ei !
21G2/4

51. ~16b!

It is easy to check that in the limitg i!D Eq. ~15! or Eqs.
~16! have a solutionE5Ei1O(g2/D), G i5g i1O(g3/D2)
~perturbation theory limit!. Of course, these equations cannot
be solved for arbitraryEi ,g i . There was quite a number of
papers which studied the properties of their solutions, both
analytically and numerically@13–16,20,21#. In what follows
we examine several model cases, and in Sec. III present the
results of a realistic calculation for the cerium atom.

1. The picket-fence model

Let us first consider the simplest case of an infinite equi-
distant spectrum,Ei112Ei5D5const, with identical cou-
pling to the continuum,g i5g ~see also@20#!. It is obvious
that in this case the first equation~16a! has a solution
E5Ei . The sum in the left-hand side of~16b! is then

(
k52`

`
g

~kD!21G2/4
5gS 4

G2 1
2

D2(
k51

`
1

k21~G/2D !2D .
Making use of the formula cothpx5(1/px)
1(2x/p)(k51

` 1/(x21k2) @22#, from Eq.~16b! we obtain:

G5
2D

p
tanh21

pg

2D
. ~17!

If g is small (g!D,tanh21z;z), Eq. ~17! yieldsG.g ~ this
is the perturbation theory limit!. It is clear that Eq.~17! has a
solution only forg,2D/p and forg52D/p the widthsG
becomes infinite. In the model with a finite number of levels
n this critical point corresponds to the emergence of a col-
lective state whose width tends to infinity atn→` ~see be-
low; also see Appendix A!.

However, in the equidistant model, Eq.~16a! has another
solution,E5Ei1D/2. In this case the left-hand side of~16b!
is transformed with the help of tanh(px/2)
5(4x/p)(k51

` 1/@(2k21)21x2# @22#, giving

G

4 (
k52`

`
g

~D/22kD!21G2/4
5

gp

2D
tanh

pG

2D
,

and Eq.~16b! yields

G5
2D

p
tanh21

2D

pg
. ~18!
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This solution is valid forg.2D/p. For g@D the width is
given by

G.
4D2

p2g
!D. ~19!

Thus in the case of strongly interacting resonances the
widths are suppressed, and the effect of narrowing takes
place.

2. Finite number of levels

If we consider a finite number of levelsn, then the total
width ( i51

n G i is given by 22 ImTr(S)5( i51
n g i . For

g i!D perturbation theory gives the same result,G i5g i , as
for the infinite number of levels. On the other hand, for
g i*D it is not possible to observe narrowing ofall reso-
nances, since this will contradict( iG i5( ig i . Nevertheless,
it is easy to see that in this regime all resonances are nar-
rowed, except one, which accumulates almost all width. Let
us calculate the width and the position of this collective state
for g i@D. From Eq.~16b! one can obtain

G5(
i

g i

11
4~E2Ei !

2

G2

5(
i

g i2(
i

4~E2Ei !
2g i

G2 1•••

.(
i

g i2

4(
i
~E2Ei !

2g i

~(
i
g i !

2 , ~20!

where we usedG2@(E2Ei)
2, and replacedG in the second

term by the leading contribution,( ig i ~note that the width of
the collective state can be calculated on a much weaker con-
dition G@D, Appendix A!. Indeed, in this regime the collec-
tive state width~20! is almost equal to the total width of all
resonances. The energyE of the collective state can be easily
obtained from~16a!:

E5(
i

g iEi

11
4~E2Ei !

2

G2
F(i g i

11
4~E2Ei !

2

G2
G21

.
(
i
Eig i

(
i
g i

.

~21!

This energy is the weighted average of the unperturbed en-
ergies. IfEi are uniformly distributed over some energy in-
terval and g i are random variables~e.g., with a Porter-
Thomas distribution!, thenE will be located roughly in the
middle of the interval. The total width of the restn21 reso-
nances is given by the second term in~20!; therefore, their
mean width is

Ḡk5
1

n21

4(
i
~E2Ei !

2g i

~(
i
g i !

2 . ~22!

Introducingḡ5(1/n)( ig i , and replacing the sum in the nu-
merator by the integral

(
i

~E2Ei !
2g i'E

E2nD/2

E1nD/2

ḡ ~E2Ei !
2
dEi
D

5
ḡn3D2

12
,

we obtain the estimate

Ḡk.
D2

3g
'0.33

D2

ḡ
. ~23!

Note that this result is rather close to the one of the picket-
fence model@Eq. ~19!#, G'0.40D2/g ~the difference be-
tween the two numerical factors is discussed below!.

3. Numerical example

Let us illustrate the effects considered above by solving
Eq. ~15! numerically for a finite number of equidistant levels
with identical coupling to the continuum. Figure 1 shows the
roots of Eq.~15! for n510 and 11, andD51, on the com-
plex plane for differentg: g50, 0.2, 0.4, 0.6, 0.8, and 1.
It be seen on the graph that for the lowest nonzero value
g50.2 the system is in the perturbation theory regime
[G.g,ImE52 (G/2).20.1#. For g50.4 the perturbation
theory is still valid for the levels in the middle of the spec-
trum, whereas it breaks down for the levels at the edges~see
Appendix A!. Forg50.6 the widths reach their maxima, and
beyond this value, forg50.8 and 1, the regime of narrowing
takes over. For these values ofg all resonances are getting
narrower except the collective state, which rapidly takes off
into the complex plane@G'nD/tan(D/g), Appendix A#. Let

FIG. 1. Behavior of the roots of 11( i /2)( ig i /(E2Ei)50 for
n511 ~upper graph! and n510 ~lower graph!, as a function of
g/D: g/D50, 0.2, 0.4, 0.6, 0.8, and 1. The cross mark in the
lower graph shows the position of the degenerate level at
g/D'0.718.
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us note that the value 0.6 is close to the critical value
2D/p.0.64 for an infinite number of levels.

For an odd number of levels the collective state originates
from the central state whose width increases dramatically for
g.0.6 ~see the upper graph!. For an even number of levels
the formation of the collective state proceeds differently. The
two resonances closest to the center move toward each other,
and forg.0.718 ~cross mark in Fig. 1! form a degenerate
state. For largerg one of the levels returns to the real axis
and the other one moves in the opposite direction.

Figure 1 shows that forg.0.6 the energies of resonances
around the middle of the spectrum move toward the centers
of intervals between unperturbed levels. This behavior is in
agreement with the results of the infinite picket-fence model
in the regime of narrowing@see above Eq.~18!#. Thus
n;10 is large enough for the picket-fence model to be valid
in the central part of the spectrum. The widths of these levels
are larger than those of the levels at the edges. Therefore, the
mean value of the width is smaller than the widths of the
central levels for which the picket-fence estimate~19! is
valid. This explains the difference between the numerical
factors in Eqs.~19! and ~23!.

C. Nature of the collective„doorway… state and narrowing

In order to obtain a better understanding of the nature of
the collective state, let us calculate the corresponding eigen-
vector. Inserting the anti-Hermitian separableS i j ~as in Sec.
II B ! into Eq. ~13!, one obtains

Ci52
ipqWi

E2Ei
, q5(

j
Wj*Cj . ~24!

If we consider the collective state which emerges in the non-
perturbative regime,E5Ec2( i /2)Gc ,

Ec5

(
i
Eig i

(
i
g i

, Gc5(
i

g i , ~25!

the energy differenceEc2Ei can be neglected in the de-
nominator of Eq.~24!, and the corresponding eigenvector is

uCc&5(
i
Ci u i &'

2pq

Gc
(
i

u i &^ i uWu«&. ~26!

In applications the continuous spectrum statesu«& usually
refer to the electron~nucleon! moving in the field of the
atomic~nuclear! residue; i.e., they are single-particle excita-
tions. From this point of view~26! is just a projection of the
modified continuous spectrum stateWu«& onto the subspace
of discrete excitations. Thereby, the ‘‘collective’’ state is es-
sentially a single-particle doorway-state resonance decoupled
from the rest of the quasidiscrete spectrum of multiparticle
excitations due to the large value of its width, which couples
it strongly to the unperturbed continuum~see Sec. I!.

The emergence of the collective state atg i.D is accom-
panied by a narrowing of the other resonances seen in the
spectrum. This resulting picture looks similar to that of the
perturbation theory regime of isolated resonances (g i!D).
Apart from studying the positions of eigenvalues in the com-
plex plane, one can examine the behavior of the additional

phase shiftDd produced in the continuous spectrum due to
its interaction with the discrete states. This would enable us
to see clearly how the transition from one regime to the other
happens. The expression forDd can be written in the follow-
ing form ~analogous to one obtained in@10#!:

tan~Dd!52p(
i

^«uWu i &Ci~E!, ~27!

where the continuous spectrum states are normalized as
^«8u«&5d(«2«8), and the coefficientsCi(E) give the ad-
mixture of the discrete statesu i & in the total wave function at
energyE ~the stateu«& corresponds to this energy!. They
satisfy the equation

Ci~E!5
^ i uWu«&
E2Ei

1
1

E2Ei
(
j
Cj~E!

3E ^ i uWu«8&^«8uWu j &
E2«8

d«8, ~28!

where the integral in the right-hand side is the Hermitian part
of S i j ~14!. As we discussed at the end of Sec. II A, the latter
shifts the positions of the resonances states along the real
axis, and as such does not influence their widths. Thus the
first term on the right-hand side of Eq.~28! can be intro-
duced into~27!, which yields

tan~Dd!52p(
i

^«uWu i &^ i uWu«&
E2Ei

or

tan~Dd!52(
i

g i

2~E2Ei !
.

~29!

This answer holds if the Hermitian part ofS i j is taken into
account as well, withEi (u i &) replaced by the eigenvalues
~eigenstates! of the matrixEid i j1

1
2(S i j1S j i* ) @10#. It is now

most straightforward to see how the narrowing occurs.
Let us assume that the number of terms in the sum on the

right-hand side of Eq.~29! is finite, n. In the regime of iso-
lated resonances,g i!D, the value of this sum is small com-
pared to unity, except whenE is close to one of the reso-
nances, uE2Ei u&g i . Therefore, tan(Dd) is mainly
stationary, withDd'mp (m being an integer!, and it under-
goes rapid rises byp when the energyE passes through each
of the resonances. When the perturbation-theory widths are
large,g i@D, the absolute value of the sum in Eq.~29! is
almost everywhere large compared to unity, except for the
values ofE where

(
i

g i

E2Ei
50. ~30!

Clearly, this equation hasn21 roots Ẽk , one in every
(Ei ,Ei11) interval. Between these roots the phase shift is

stationary,Dd'(m1 1
2 )p (utan(Dd)u@1), and in the vicin-

ity of each of themDd makes a sudden jump to the next
(m1 1

2)p value, thus signaling a resonance. The larger the
ratio g/D, the more abrupt are these jumps. The extra phase
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shift of p/2 is due to the broad~doorway! resonance which
forms the background for narrow resonances~see below!.
For this reason, if the potential scattering is neglected, the
cross section has maxima between the resonances, and nar-
row minima at the energies of the levelsẼk , where the phase
shift ismp. Note that the positions of the nodes of Eq.~30!
coincide with the roots of Eq.~15! for large g i , when the
unity on the left-hand side can be neglected. Note also that
the ‘‘stationary’’ smooth part ofDd( modp) can be de-
scribed by

tan~Dd!'2
( ig i

2~E2Ec!
52

Gc

2~E2Ec!
,

which is the background phase shift provided by the wide
collective resonance.

It is easy to check, for the finite number of resonances
n, that Eq. ~27! can be rewritten in the following form
@11,23#:

cot~Dd!52
2~E2Ec!

Gc
1(

k

Gk

2~E2Ẽk!
, ~31!

whereEc andGc are given by~25!, Ẽk are the solutions of
Eq. ~30!, and the corresponding widthsGk are

Gk5F(
i

g i

4~Ẽk2Ei !
2G21

. ~32!

In this form the behavior of the phase shift in theg i@D case
(Gk!D) looks especially clear.

III. MODEL CALCULATIONS FOR CERIUM

In this section we would like to examine the widths of
compound AIS’s in a real system. As an example of such a
system we take the Ce atom.

A. Spectrum of Ce

In our earlier work this atom was studied as a realistic
model of a quantum chaotic system@7#. In that work
the spectrum and eigenstates of the Ce atom withJp542,
and 41 were calculated using the relativistic configura-
tion-interaction~CI! code@24#. For the odd states the basis
of many-electron states included 53 configurations corre-
sponding to the seven nonrelativistic configura-
tions 4f6s25d, 4f6s5d2, 4f 26s6p, 4f6s6p2, 4f5d3,
4 f5d6p2, and 4f 25d6p, which produced 260 states with
Jp542. In spite of the moderate number of configurations
the calculation produced a very dense spectrum of levels. For
example, for states ofJp542 symmetry, which includes the
atomic ground state, the level densityr.44.5 eV21 was
obtained for energies near the ionization threshold (E.5
eV!.

In the present work the basis set has been expanded to
obtain a more realistic value of the spectral density at this
energy. In particular, we have added configurations con-
structed from the original 53 configurations by transferring
one of electrons into the next orbital, which makes a total of
121 relativistic configurations. In our calculation the spec-

trum of Jp542 states becomes denser (r'125 eV21 at
E'5 eV!. Figure 2 compares the spectra obtained in the two
calculations. It can be seen that the level structure in the
lower part of the spectrum is almost unchanged, whereas at
E.4 eV, and above the ionization threshold, the spectral
density in the second calculation is indeed much higher.

Also shown in Fig. 2 is the spectrum of the lower odd
levels of Ce1 ~including the Ce1Jp57/22 ground state!.
These states have been obtained on the small basis which
includes 4f6s2, 4f5d2, and 4f6s5d configurations. This
calculation adequately describes the sequence of lower levels
of Ce1 and intervals between them. Thus the calculated
spacing between the ground state (J57/22) and the first
excited state (J59/22), D50.137 eV, is close to the experi-
mental value,D50.122 eV@25#. The calculated value of the
ionization potentialI54.75 eV is smaller than the experi-
mental valueI55.539 eV. We should mention that the elec-
tron orbitals have not been optimized to obtain the best en-
ergies of the ground states of Ce and Ce1; neither have the
correlations between the valence and core electrons been
taken into account in our calculation. However, this discrep-
ancy is not very important for the model calculations we
perform, since the level density of Ce does not change too
much over this energy interval. Note that infinite series of
Rydberg levels converging to the excited states of Ce1 have
not been included in the calculations, and they are not
present in Fig. 2.

Of course, the true level density is even higher due to the
presence of Rydberg series. Let us consider, for instance,

FIG. 2. Energy levels of the Ce atom withJp542 obtained in
the two calculations which include 53 and 121 configurations, re-
spectively. The third column shows the levels of the Ce1 positive
ion. Infinite Rydberg series are not presented in the graph.
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such series converging to the first excited state of Ce1. The
energy of thenth Rydberg state with respect to the corre-
sponding threshold isEn.21/2n2, and the spacing between
the Rydberg levels isDn.]En /]n51/n3. Then for the den-
sity r (1) of the Rydberg series of levels converging to the
first excited state of Ce1 near the ground state of Ce1, one
obtainsr (1)51/Dn51/(2D)3/2, whereD is the distance be-
tween the two lowest levels of Ce1. The densityr (k) of the
Rydberg series converging to thekth excited state of Ce is
given by r (k).1/(2kD)3/2, where we assume thatD can
characterize the mean spacing between lower levels of
Ce1. To calculate the total density of the Rydberg states
rRyd, one has to sum up allr (k):

rRyd5 (
k51

`

r~k!5 (
k51

`
1

~2kD!3/2
5

z~3/2!

~2D!3/2
'

2.61

~2D!3/2
'

1

D3/2.

~33!

In order to estimaterRyd let us use the experimental value
D.0.1 eV, which givesrRyd.150 eV21. Therefore, com-
paring this value with 125 eV21 obtained in the present
calculations one can see that the density of the real spectrum
is at least two times higher than in our model due to the
series of Rydberg states. Moreover, if we take into account
the Rydberg series with differentl converging to the excited
states of Ce1, which can be coupled into the same totalJp,
the density of the atomic AIS may become even higher~of
the order of 103 eV21; this number is consistent with the
experimental density of ‘‘valence states’’ near the ionization
limit in U, that can be estimated from Fig. 3 of@3#!.

The spectrum of Ce, or any other complex atom, consists
of the two manifolds: compound AIS’s and Rydberg AIS’s,
whose interaction with each other can be very weak. The
Coulomb matrix element coupling a compound state to a
Rydberg state with the principal quantum numbern is re-
duced by the factor of 1/AN, whereN is the number of
principal components of the compound state@see Eq.~3!#,

and by another factor ofn23/2, due to the behavior of the
Rydberg electron wave function at small distances. The com-
pound AIS’s are very different from the Rydberg states. The
former are built of orbitals with small principal quantum
numbers~such states are also called ‘‘valence states’’@3#!.
Due to this fact they are relatively compact~their radius is
several Bohr radiia0), whereas the Rydberg states have
large radii (r;n2a0). This difference has been used by ex-
perimentalists to observe Rydberg series in lanthanides and
actinides spectra@2,3#. The density of compound states is a
smooth function of energy, whereas that of the Rydberg
states peaks at every positive-ion threshold.

B. Decay and electromagnetic amplitudes
involving compound AIS’s

In what follows, AIS’s lying just above the ionization
threshold are examined. To restrict our consideration to one-
channel decay, we study only the levels between the ground
state and the first excited state of Ce1. There are many 42

levels of the atom lying in this energy interval~7 and 18,
respectively, in the two calculations shown in Fig. 2!. The
AIS’s we study haveJp542 symmetry, and the ground state
of Ce1 hasJp57/22. Therefore, the AIS’s can decay via the
emission of an electron withl50,2,4, . . . . However, the
contribution of thes wave dominates. This is suggested, for
example, by the behavior of the radial wave function in the
Coulomb field~ @18#!,

Rkl~r !}
~2r ! l11/2

~2l11!!
. ~34!

The magnitude ofRkl at r;1 is suppressed forl52,4, . . . .
Therefore, calculating the decay of the low-lying AIS’s we
can consider only one continuum, Ce1«s, and the theoretical
considerations of Sec. II are applicable. Of course, one can
use the same formalism and take into account other decay
channels as well~Appendix B!.

The perturbation width of thei th AIS uCe* i & is given by

g i52p z^Ce1« l uWuCe* i & z2.

In order to calculate it one should know the wave functions
of Ce in the continuum. To avoid calculating them explicitly
and make do with the present CI code we use the following
procedure. For low energies« the wave function of the au-
toionizing electron at small distancesr;a0 is proportional to
the wave function of a highly excited Rydberg state,
c« l(r ).Ancnl(r ). If c« l(r ) is normalized to thed function
of the energy, the coefficient is given byAn5n3/2, where
n5n2m is the effective principal quantum number, andm is
the quantum defect~see, e.g.,@26#!. Then we can use the
substitution

uCe1« l &→AnuCe1nl&, ~35!

which yields

g i'2pn3z^Ce1nluWuCe* i & z2 ~n@1!. ~36!

Practically, to calculateg i from Eq. ~36! we consider the
ns series withn5 8–11~the states withn57 are included in
the 121 configurations describinguCe* i & states!. The states

FIG. 3. Coulomb matrix elementsn3/2^Ce1nsuWuCe* i &; solid
triangles,n58; solid squares,n59; solid hexagons,n510; and
open stars,n511. Thick short lines show the positions of the
ground state and the first excited state of Ce1.
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uCe* i & are obtained by diagonalization of the Hamiltonian
matrix in the basis of 121 configurations which produce 862
states withJp542. The uCe1ns& states are eigenstates of
the Hamiltonian matrix in the basis constructed by adding
the Rydberg statesns to the configurations of Ce1 men-
tioned above. Therefore, the lower Rydberg series Ce1ns
converge to the ground state of Ce1 shown in Fig. 2. This
series is described byEns5ECe121/2(n2m)2 with
m'4.1. The corresponding wave functions are used to cal-
culate the decay matrix elementŝCe1«suWuCe* i & as
n3/2^Ce1nsuWuCe* i &. Note that the ‘‘continuum’’ and dis-
crete states in this matrix element are orthogonal.

Figure 3 presents the Coulomb matrix elements
n3/2^Ce1nsuWuCe* i & calculated for differentns (n5 8–11!.
One can see that the matrix elements for differentn are very
close to each other. Therefore, Eq.~36! is valid, and in the
further calculations we simply use the matrix elements ob-
tained forn510.

To obtain a better understanding of the structure of the
compound states in question, it is instructive to look at the
statistics of their matrix elements~Fig. 4!. In this figure we
have plotted the probability distribution for 60 Coulomb ma-
trix elementŝ Ce1«suWuCe* i & calculated for the 42 levels
121–180~the AIS’s between the two lowest Ce1 states are
137–154!. The histogram in Fig. 4 is compared with the
Gaussian distribution with varianceW2. The agreement ob-
served may not be perfect; however, it supports the theoreti-
cal reasoning that the matrix element is the sum of uncorre-
lated random variables and thus, obeys Gaussian statistics
@Sec. I, Eq.~3! and below#. The Gaussian statistics of the
matrix elements corresponds to the Porter-Thomas distribu-
tion of the widths g52pW2, f (g)5exp(2g/2ḡ)/
A2pḡg @27#. As is known the widths of nuclear compound
states are distributed according to the Porter-Thomas law@5#.
The present calculation suggests that atomic compound reso-
nances are in this respect very similar to the nuclear ones.
This could be expected because the origin of the Porter-
Thomas distribution is ‘‘quantum chaos.’’ Therefore, the sta-

tistics observed indicates that the compound atomic eigen-
states are to a large extent chaotic, as we pointed out in@7#.

The mean width of the 18 AIS’s between the two lowest
states of Ce1 is ḡ52pW254.331023 eV. This value must
be compared with the mean level spacingD'0.008 eV. The
relation ḡ'0.5D is in agreement with the estimate made in
Sec. I. As discussed earlier, the density of states in our model
calculation is underestimated~mainly due to the absence of
Rydberg series!. The following question is very important: if
a better calculation~or experimental data! produce a smaller
value ofD, how would it change the value ofḡ? Estimate
~4! suggests that the decrease ofD should cause a decrease
of g, as long as the residual Coulomb interaction is strong
enough to mix basis components within theGspr energy
range. On the other hand, when many-electron states include
electron orbitals with larger principal quantum numbers, the
radius of these states increases, and the residual interaction
goes down. This ultimately leads to the emergence of the two
weakly interacting components in the spectrum~the com-
pound ‘‘valence’’ states, and the Rydberg states!. This trans-
formation of the spectrum is an interesting question in its
own right, deserving special investigation.

The mean widthḡ'0.5D is close to the critical value
g52D/p, beyond which the regime of narrowing of reso-
nances occurs. Therefore, the interaction of the AIS’s via the
continuum is important. To obtain a physical picture of how
this interaction influences the shape of the resonances, we
consider a process of photoionization of the lowest even state
of Ce (Jp541) in the 41→42 channel. The even state of
Ce has been calculated using the basis of 50 configurations
in the same way as in@7#. To find the photoionization cross
section we need the dipole amplitudes coupling the lowest
Jp541 state to the compound states,^Ce* i uE1uCe41&, as
well as the dipole amplitude of the transition from the even
state into the continuum,^Ce1«suE1uCe41&. The latter was
calculated asn3/2^Ce1nsuE1uCe41&, which gave a numeri-
cal value of 0.375.

FIG. 5. Probability density of the 80 dipole matrix elements
^Ce* i uE1uCe41& for the AIS near the ionization threshold of
Ce1. Solid line shows the Gaussian distribution with

(Q2̇)1/250.139. Thex2 criterion calculated for the nine central bins
of the histogram isx2(8)57.44.

FIG. 4. Probability density of the Coulomb matrix elements
^Ce1«suWuCe* i & for the 121–180Jp542 states of Ce. The solid
curve is a Gaussian distribution (2pW2)21/2exp(2W2/2W2) with
W251.7731025 a.u. Thex2 test for the seven central bins yields
x2(6)55.0.
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The calculated dipole amplitudes give us another possibil-
ity to analyze the statistical properties of the compound
states. In Fig. 5 we present the distribution of theE1 ampli-
tudes^Ce* i uE1uCe41&[Qi for 80 compound states near the
ionization threshold. The root-mean-square value of these

matrix elements isAQi
2 50.178. The histogram in Fig. 5 is

in reasonable agreement with the Gaussian fit drawn to mini-
mize x2. Thus the line strengthsQi

2 involving compound
states should have a Porter-Thomas distribution. Earlier evi-
dence of this effect and the results of calculations of dipole
excitations in complex atoms can be found in@28#. At a
closer inspection one may notice some similarities in the
deviations of the histograms from the Gaussians in Figs. 4
and 5, particularly an abundance of small matrix elements.
We believe that this can be explained~as in @7#, Fig. 17! as
traces of broken symmetries~the total spin and the total or-
bital angular momentum!, not completely removed by the
spin-orbit interaction. Another reason for the Gaussian sta-
tistics to be distorted can be the presence of states with very
different mean radii whose mixing by the residual interaction
is not complete. This effect becomes dominating when
higher Rydberg states are considered together with the com-
pound valence states.

Estimating the dipole amplitude in the spirit of Eq.~4!, we
obtain

^Ce* i uE1uCe41&;Q0S q8

N D 1/2, ~37!

whereq8 is the number of single-particle transitions which
contribute to the many-particle matrix element, andQ0 is a
typical single-particle dipole matrix element between va-
lence and nearby excited orbitals (Q0;1). Since we con-
sider the lowest even state of Ce~with the dominant configu-
ration 4f 26s2), there are few such transitions, e.g.,
4 f→5d,6s→6p, which gives, say,q8;5. Therefore, for
N;G spr/D;200, estimate~37! gives Qi;0.1, in accord
with the root-mean-squared value 0.178. Estimate~37!
shows also that the oscillator strengthsf i}Qi

2 are inversely
proportional toN. This fact is a manifestation of the dipole
sum rule,( i f i'ne (ne is the number of active electrons!, as
the number of transitions from a given state into the com-
pound spectrum of states is proportional toN. More precise
estimates of the mean-square amplitudes involving com-
pound states can be obtained using statistical theory@7#.

C. Interaction of compound AIS’s via the continuum

To elucidate the effects produced by the interaction of
AIS’s via the continuum we, first, calculate the photoabsorp-
tion spectrum as a sum of Lorentzian profiles,

(
i

g i

2p

Qi
2

~E2Ei !
21g i

2/4
, ~38!

i.e., neglecting the interaction of the AIS’s@29#. Figure 6~a!
presents the result of this calculation. Due to fluctuations of
level positions and widths a picture of isolated resonances is
observed on the left-hand side of the energy scale, where the

resonance widths are smaller than the level spacings. Con-
versely, there are wide overlapping resonances on the right-
hand side of Fig. 6~a!.

The photoabsorption amplitude which takes into account
the interaction of AIS’s is given by Eq.~12!. In our calcula-
tions we have neglected the real part ofS, Eq. ~14!, because
the principal value of the integral is quite small due to a very
weak dependence of the matrix elements^ i uWu«8& on «8
~this can be seen from Fig. 3!. The photoabsorption cross
section uA(E)u2 @29# is presented in Fig. 6~b!. It is quite
natural that the left-hand part of the spectrum is almost un-
changed in comparison with Fig. 6~a!. Due to the narrowness
of the resonances in this part of the spectra their interaction
via the continuum do not change their widths. Conversely,
on the right-hand side of the picture dramatic changes are
obvious. The local mean perturbation width here turns out to
be greater than the local mean level spacing. As a result, very
sharp resonances become the main feature of the spectrum.
Their total width is apparently smaller than that of the broad
feature in Fig. 6~a!. This is a manifestation of the regime of
narrowing described in Sec. II B.

If the narrowing takes place then one should expect a
wide collective~doorway! state to emerge. However, such a
resonance is not visible in the spectrum. The point is that,
while acquiring width, the doorway state does not obtain a
larger share of the oscillator strength~unless theE1 and

FIG. 6. ~a! Photoabsorption spectrum obtained as
( i(g i /2p) f i /@(v2Ei)

21g i
2/4#, where f i is the oscillator strength.

~b! Photoabsorption spectrum calculated with AIS interaction via
the continuum included.~c! Electron-Ce1 scattering~resonance ap-
proximation!. The energy is given with respect to the Ce ground
state. Thick lines indicate the positions of the two lowest states of
Ce1.
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decay amplitudes are correlated in some way, which may
produce a ‘‘giant resonance’’@5,14#!. In other words, it does
not work as the doorway for the absorption of the photon.
However, the doorway state has the strongest coupling to the
continuum. Thus it becomes the main feature of the electron-
ion scattering cross section in the given continuous channel.
Using the notation of Eq.~12! we can write the resonant part
of the electron-ion scattering amplitude as

T~E!5W1~D2S!21W. ~39!

If the contribution of potential scattering is neglected, the
cross section is simply proportional touT(E)u2. This quantity
is plotted in Fig. 6~c!. The contribution of each of the reso-
nances is now determined only by its coupling to the con-
tinuum. Therefore, we observe narrower and weaker, or
wider and stronger features. The doorway state reveals itself
as a broad structure on the right-hand side of Fig. 6~c!.
Within its range the narrow resonances appear as sharp dips
on the broad-scale background. This picture is in a striking
contrast with the photoabsorption cross section, where direct
photoabsorption into the continuum is simply too small to
give a noticeable background.

Of course, the calculations presented in this section are
not realistic in the sense that they can reproduce some par-
ticular features of the real photoabsorption spectrum of Ce.
However, they use the decay andE1 amplitudes from the
realistic CI calculations, which are in agreement with theo-
retical estimates~3! and~37!. Most importantly, the calcula-
tions indicate that the perturbation widths of the AIS’s are
comparable to their level spacing. This, on one hand, makes
atomic compound states observable, and, on the other hand,
brings about the interesting regime of narrowing. It is quite
important that if more than one continuum is taken into ac-
count, the role of the interaction of AIS’s via the continuum
is still determined by the magnitude of thepartial width in
comparison withD ~Appendix B!. Therefore, such an inter-
action and the effects it produces~narrowing and ‘‘collectiv-
ization,’’ or, formation of doorway states! are likely to be
important in the many-channel case as well.

IV. CONCLUSIONS

The prime motivation of the present work is to study the
spectrum of complex open-shell atoms above the ionization
threshold, and to find out whether it is possible to observe
compound atomic resonances in this region. We have shown
that simultaneous excitation of several valence electrons in
atoms produces a dense spectrum of compound AIS’s. The
statistics of matrix elements involving compound states are
close to Gaussian. The root-mean-square estimates of the
matrix elements can be made in terms of the number of prin-
cipal components of the compound states.

We have demonstrated, both analytically and numerically,
that the interaction of compound states via the continuum
results in the overall narrowing of the resonances, accompa-
nied by the formation of broad collective resonant states
~doorway states!. The narrow resonances are probably best
observed in photoabsorption and photoionization experi-
ments, whereas the doorway states should feature in
electron-ion scattering. We believe that the effects discussed
in the present paper can be found in almost any atom at

energies sufficient for excitation of several electrons above
the ground state. High-resolution atomic photoionization
measurements provide growing experimental evidence for
this ~see, e.g.,@30#!.

The effects produced by the interaction of compound
AIS’s via the continuum can also be important for the prob-
lem of dielectronic recombination, which is believed to play
an essential role in high-temperature plasmas~see, e.g., re-
view @31#!. Such effects can be driven by an external electric
field. Even if the direct field ionization does not take place,
mixing of different state manifolds varies the level spacings
and the AIS decay amplitudes@32#. The effect of narrowing
may influence the 1/n4 scaling of the widths of autoionizing
Rydberg states observed in strong electric fields@33#. One
can only imagine what kind of reach physics will be in-
volved if an external electric or magnetic field is applied to
such systems~dynamical enhancement of perturbations in
weak fields, transition from regular states to chaos and ‘‘col-
lectivization’’ in stronger fields, etc.!.

There is also another question we have merely touched
upon in this work. It concerns the interaction of compound
‘‘valence’’ states with Rydberg level series in complex open-
shell atoms. So far there is no criteria or condition which
would tell at whatn the perturbation of the Rydberg series
becomes weak.

Finally, the existence and manifestations of quantum
chaos in many-electron atoms remains largely an unexplored
field. Apart from its fundamental importance, such a point of
view may prove to be useful for studying complex atoms
where accurate calculations employing even the most sophis-
ticated numerical methods will remain for a while a formi-
dable task.

ACKNOWLEDGMENTS

The authors would like to thank O. P. Sushkov, M. Yu.
Kuchiev, and M. G. Kozlov for useful discussions, and grate-
fully acknowledge the support of the Australian Research
Council.

APPENDIX A: PERTURBATION THEORY AND
EMERGENCE OF THE COLLECTIVE STATE

To obtain a better understanding of the model withn
equally spaced levelsEi and constant coupling to the con-
tinuum,S i j52 ig/2, studied in Sec. II B, it is instructive to
apply perturbation theory to find the positions and widths of
the resonances. Since the potentialS in this model is purely
imaginary, the odd-order perturbation terms contribute to the
width, whereas the even ones shift the resonance along the
real axis. The three lowest-order corrections to the energy of
the kth resonance are

DEk
~1!52 i

g

2
, DEk

~2!52
g2

4 ( 8
l

1

Ek2El
, ~A1!

DEk
~3!5 i

g3
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~Ek2El !
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where in the primed sumsl ,mÞk. If the number of levels is
large (n@1) the sums in Eqs.~A1! and ~A2! can be esti-
mated as follows:

( 8
l

1

Ek2El
.

1

D
lnS n

2
1k

n

2
2k
D ,

( 8
l

1

~Ek2El !
2 .

2

D2 z~2!5
p2

3D2 ,

where we assumed that the levels are distributed symmetri-
cally with respect toE50, 2n/2,k,n/2, i.e.,k50 corre-
sponds to the center of the spectrum. Thus the resonance is
shifted with respect toEk by

DEk.2
g2

4
lnS n

2
1k

n

2
2k
D , ~A3!

and its width is

Gk.g2
g3

4D2 H F lnS n

2
1k

n

2
2k
D G 2

22z~2!J . ~A4!

For resonances in the middle of the spectrum,uku!n/2,
hence ln( )!1, the shiftDEk is very small, and the widths are
larger than the first-order estimateg, due to the third-order
correction in brackets. Note that the perturbation theory pa-
rameter for these states isg/D. Near the edges of the spec-
trum, u(n/2)2ku! n/2, or u(n/2)1ku!n/2, the logarithm
becomes large,u ln( )u.lnn@1, and the third-order term
makes the widths smaller thang. The perturbation-theory
parameter for these states isg lnn/D, and the perturbation
series expansion breaks down at much smallerg/D. More-
over, even for arbitrary smallg/D one can findn for which
the perturbation theory fails near the edges of the spectrum
~although suchn will have to be exponentially large!. The
results obtained in the numerical example, Fig. 1, clearly
illustrate all these effects.

For g/D*1 the perturbation theory becomes invalid ev-
erywhere. This corresponds to the regime of narrowing of
resonances, and to the emergence of the collective state
which absorbs most of the total width. It is interesting that
the width of the collective state can be calculated on weaker
assumptions than those used to derive the result of Eq.~20!.
Consider Eq.~16b!, and assume thatG is greater thanD. The
expression under the sum is then a smooth function ofEi ,
and can be replaced by the integral

(
i

g i

~E2Ei !
21G2/4

.
g

DE2nD/2

nD/2 dEi
~E2Ei !

21G2/4

5
4g

GD
tan21

nD

G
, ~A5!

where we putE50 in the last expression, since the collec-
tive state emerges from the middle of the spectrum. Introduc-
ing ~A5! into Eq. ~16b!, we obtain the expression for the
width of the collective state valid forG@D @15#:

G5nD cot~D/g!. ~A6!

Note that the above derivation is still valid forg iÞconst, and
fluctuating level positions. In this caseg in Eq. ~A6! should
be replaced withḡ, and D with the mean level spacing.
Equation~A6! shows that forn@1 the transformation of the
spectrum happens quite rapidly, which prompted the authors
of @15# to call it a ‘‘phase transition.’’ It is also interesting to
observe that formally the collective state width~A6! turns
into zero atD/g5p/2, which coincides with the critical con-
dition for the picket-fence model, Sec. II B.

APPENDIX B: MANY-CHANNEL PROBLEM

It is very straightforward to generalize the formalism of
Sec. II A to the case ofn discrete states coupled toK differ-
ent continua. Letu«k& be the state of the system in thekth
continuum (k51, . . . ,K). The discrete statei is coupled to
the kth continuum by the matrix elementWik5^ i uWu«k&, so
Wik is now a n3K matrix. If we are concerned with the
photoabsorption from theug& state, we should introduceK
electromagnetic amplitudesdk5^«kud̂ug&. Now the vector
A(E) of photoabsorption amplitudesAk(E) in the kth chan-
nel can be presented in complete analogy with Eq.~9! by the
perturbation series expansion

A~E!5d1W†xQ1W†xQ̃1W†xSxQ1W†xSxQ̃1•••,
~B1!

where the definitions of then-component vectorQ̃i and
n3n matrix S i j are modified with respect to Eqs.~10! and
~11! by the extra summation over the channels,

Q̃i5(
k
E ^ i uWu«k8&^«k8ud̂ug&

E2«k81 id
d«k8, ~B2!

S i j5(
k
E ^ i uWu«k8&^«k8uWu j &

E2«k81 id
d«k8. ~B3!

The resulting photoabsorption amplitude is given in the
closed form identical to Eq.~12!,

A~E!5d1W†~D2S!21@Q1Q̃#, ~B4!

and the total photoabsorption cross section is proportional to
A†(E)A(E)5(kuAk(E)u2.

The poles of the amplitude~B4! are determined by the
eigenvalues of Eq.~13!, and widths of the resonances corre-
sponding to these poles are due to the presence of an imagi-
nary part in the matrixS i j ,

S i j5(
k
E ^ i uWu«k8&^«k8uWu j &

E2«k8
d«k8

2 ip(
k

^ i uWu«k&^«kuWu j &, ~B5!
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where, as in Eq.~14!, the integrals are calculated in the prin-
cipal value sense. If perturbation theory is applicable, then
g i
k52puWiku2 is the partial width of thei th resonance asso-

ciated with thekth channel, and the total perturbation width
of this AIS is given by the sumg i5(kg i

k If the partial
widths for different channels are of the same order of mag-
nitude, the condition for nonoverlapping resonances is
now ḡpartK!D, where ḡpart is the average partial width of
the AIS.

The imaginary part ofS i j is now the sum of separable
terms. It is easy to show that if we neglect its real part~or, if
we diagonalize it prior to the inclusion of the imaginary part,
and thus incorporate the corresponding energy shifts in the
‘‘unperturbed’’ energiesEi), the poles of the amplitude in
the complex energy plane will be solutions of the algebraic
equation. Indeed, let us introduceS i j52 ip(kWikWkj into
Eq. ~13!:

~E2Ei !Ci1 ip(
k
Wik(

j
Wk jCj50. ~B6!

Denoting( jWk jCj[Fk , one can easily obtain an equation
for Fk ,

Fl1 ip(
k

F(
i

WliWik

E2Ei
GFk50. ~B7!

The solvability condition for this homogeneous equation is

detS dkm1 ip(
i

WkiWim

E2Ei
D 50, ~B8!

where the rank of the matrix in brackets isK. This equation
generalizes the single-channel equation~15!. It gives the po-
sitions of poles of theS matrix in the complex plane@11#,
and its alternative derivations can be found in@13,14,16#.

Generally, in theK-channel case there areK collective
short-lived states~doorways! that emerge in the regime of
strongly interacting resonances, whereas the widths of the
rest ofn2K states are suppressed@12–14,16,20#. In the ex-
treme case when the collective state widths are much greater
than the energy spanned byEi on the real axis (ḡpart@D),
the widths of the collective states are found from the char-
acteristic equation

detS Gdkm22p(
i
WkiWimD 50, ~B9!

which follows from Eq.~B8! if we replaceE→E2 iG/2, and
neglectuE2Ei u as small compared toG. There are exactly
K short-lived doorway states if allK rows of the matrix
Wki are linearly independent, in other words, if theK vectors
Wk5(Wk1 , . . . ,Wkn) in n-dimensional space form a
K-dimensional subspace. Otherwise, Eq.~B9! has solutions
G50, and the number of doorway states is less thanK. It is
equal to the number of linearly independentWk . The con-
figuration ofK vectorsWk in space, and hence the behavior

of the system in the strongly interacting resonance regime,
can be characterized by theK(K21)/2 independent ele-
ments of the ‘‘overlap matrix’’@11#

Okm52p(
i
WkiWim /Agk

~c!gm
~c!, ~B10!

wheregk
(c)52p( i uWkiu2 is the total width associated with

thekth channel. The matrix elements~B10! are in fact equal
to cosQkm, whereQkm is the angle betweenWk andWm
~these parameters were used in@13,14#!.

Let us considern@1 compoundAIS’s embedded inK
continua. Due to the chaotic nature of the compound states,
the decay amplitudesWki for them are uncorrelated Gaussian
variables~this assumption was used when studying the dis-
tribution of widths in matrix models@20,21#!. The root-
mean-square estimate of the sum in Eq.~B10! then yields
Okm;1/An (kÞm). This means that the off-diagonal matrix
elements are small, and the vectorsWk are almost orthogonal
to each other. In this case there is a doorway state in each of
theK channels~for ḡpart@D), and the channels become ef-
fectively decoupled from each other. To show this formally,
let us introduce the complex energyE2 iG/2 into Eq. ~B8!
explicitly, and expand the corresponding matrix in inverse
powers ofG,

dkm1 ip(
i
WkiWim~E2 iG/22Ei !

21

5dkm2
2p

G (
i
WkiWim1

4p i

G2 (
i
WkiWim~E2Ei !

1
8p

G3(
i
WkiWim~E2Ei !

21•••.

As explained above, the off-diagonal matrix elements are
suppressed, and hence can be neglected. Retaining all terms
up toG23 we obtain, instead of Eq.~B8!;

)
k51

K F12
1

G(
i

g i
k1

2i

G2(
i

g i
k~E2Ei !1

4

G3(
i

g i
k~E2Ei !

2G
50. ~B11!

Thus we immediately obtain the positions and widths of the
K doorway states:

Ek
~c!5

( ig i
kEi

( ig i
k , ~B12!

Gk
~c!.gk

~c!2
4

@gk
~c!#2

(
i

g i
k~Ek

~c!2Ei !
2, ~B13!

in direct analogy with Eqs.~20! and ~21!. Each of the door-
way states accumulates almost all width in the corresponding
channel (Gk

(c)'nḡpart). The second term on the right-hand
side of Eq.~B13! enables one to estimate the average widths
of then2K narrow resonances@see Eqs.~22! and ~23!#:
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Ḡnarrow5
1

n2K(
k

4

@gk
~c!#2

(
i

g i
k~Ek

~c!2Ei !
2.

KD2

3ḡpart
.

~B14!

Note that the condition for the emergence of the doorway
states in the many-channel case isḡpart@D.

Therefore, in theK-channel case one should distinguish
the following four regimes:~i! ḡpart,D/K, a perturbation-
theory regime, yielding a spectrum of isolated resonances
with widths G i5(kg i

k . ~ii ! D/K,ḡpart,D, a perturbation-
theory regime, yielding a picture of overlapping noninteract-
ing or weakly interacting resonances in the spectrum.~iii !

D,ḡpart,KD, a nonperturbative regime~formation of col-
lective states, or doorways, and narrowing! takes over; how-
ever, the widths of the narrow resonances~B14! are still
greater than the mean level spacing.~iv! ḡpart.KD, the re-
gime of extreme narrowing; isolated narrow resonances
again become the main feature of the spectrum. This picture
and estimates~B13! and ~B14! are in agreement with the
results of numerical modeling@20#. Note that regimes~ii !
and ~iii ! leave enough room for the existence of Ericson’s
fluctuations, which take place in spectra when the state
widths are uncorrelated and greater than the level spacing
@34# ~see also@15#!.
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