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Narrow chaotic compound autoionizing states in atomic spectra
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Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound
autoionizing state$AlS). These states are almost chaotic superpositions of large numbers of many-electron
basis states built of single-electron orbitals. The mean level sp&ingtween such states is very smallg.,

D<0.01 eV for the numerical example df'=4" states of Ce just above the ionization thresholthe
autoionization widths of these states estimated by perturbaticagm|W|?, whereW is the Coulomb matrix
element coupling the AIS to the continuum, are also small, but comparabl®withmagnitude:y~D. Hence

the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly
the widths of the autoionizing resonancds=D?/3y<D), and leads to the emergence of a “collective”
doorway state which accumulates a large share of the total width. This state is in essence a modified single-
particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a
common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-
state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion
scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also
shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close
to Gaussian[S1050-294{@6)07208-3

PACS numbsg(s): 32.80.Dz, 31.56tw, 34.80—i

I. INTRODUCTION angular momentum and parify’). Clearly,D is energy de-
pendent: the higher the energy the larger the density of

It is well known that simultaneous excitation of several statesp(E), and the smaller the value @=p~1. For ex-
atomic electrons into discrete states can produce autoionizingmple, in the independent-particle model one obtains
states(AlS’s) seen as narrow resonances in the continuoup(E) = poexp@yE) [5], and the experimental spectra of
spectrum of the system at energies above the ionizatiorare-earth atoms were shown to be in agreement with this
threshold. In atoms with two valence electrons, such as hedependencgs].
lium, or alkaline earths, the spectrum of such resonances The small value oD has immediate physical implications
remains relatively simple. It essentially consists of Rydbergfor these many-electron states. Suppose that one uses a basis
like series converging to excited states of the positive ionof some single-electron orbitals to construct many-electron
These states can be classified using single-electron or sorbasis state$®,). The state§®,) can be taken as single-
other quantum numbers. If the number of excited electrons ideterminant states corresponding to certain electron configu-
greater than two, the number of many-electron states that caations, or constructed from them through some coupling
be formed from them rapidly increasésxponentially, with scheme to have a definite value. The true atomic eigen-
the number of excited electropnsand the structure of such states
states is of much greater complexity. This behavior follows
from simple combinatorial consideration, and is realized in i\ 2
excited s?ates of rare-earth atoms, where several open shells A I>_§k: Cikl P (2;:‘ Cik_l) @
exist in the immediate vicinity of the ground state.

Indeed, the extreme complexity of the rare-earth atomsire obtained by diagonalizing the Hamiltonian matrix
spectra at excitation energies of a few eV, well below theH;=(®;|H|®,). The coefficientsC;, describe mixing of
ionization threshold, can be seen from the level tablds the basis states by the residual Coulomb interaction. The
The complexity becomes even greater in the spectra of lamumber of basis statds,) formed by distributing several
thanides and actinides just below the ionization thresholdelectrons among a few open orbitals is large, and the mean
and the associated difficulties one encounters trying to idenspacing between the basis-state enerbiigs(this spacing is
tify Rydberg series of levels are very well known to experi- ~D, if the basis states with definit® are useflis smaller
mentalists(see, e.g.[2] and[3], where the first observation than the typical valu&/ of the off-diagonal matrix element
of Rydberg series in any actinide was made for 8imilar ~ H;, . In this situation the basis states are strongly mixed by
states can be formed in other atoms with simpler electroithe perturbation. Apart from several lowest levels, which can
structure at higher excitation energiese, e.g., the experi- be described by a single dominant electron configuration,
mental 4p-photoabsorption spectrum of Sr jd], and the each of the eigenstates is a superposition of a large number
discussion and references thejein any case, the density of of basis states. This strong mixing takes place within a cer-
such excited states is very large, and the mean level spacingin energy rangd’s, called the spreading width since it
D is very small(by D we understand the mean spacing be-characterizes the spread of the eigenstates to which a given
tween the levels of the same symmetry, i.e., of the same totdlasis state contributes noticeablyn simple models with
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constant off-diagonal matrix elements the spreading width is If the excited atomic state involves more than two valence
obtained asl“spr=27-rV2/D; see, e.g.[5]). By the same to- electrons, them<N, and the decay matrix element for the
ken, one can estimate the number of principal componentsompound AIS is suppressed with respect to that of a
i.e., those largely contributing to the sunil), as “simple” two-electron AIS. The estimate for the widtf2)
N~T,/D. The coefficientsC;, corresponding to the prin- then reads

cipal components have typical valuég;|~1/J/N. Their q 2mWZq
statistics are close to those of independent random variables, y~2mW3 = ~ ~_%p, (4)
and become Gaussian when the mixing is complete. The no- N Cpr

tion of_electronic cpnfiguration be_comes meaningl_ess folyhere 27W2 can be considered as the width of a simple
thesg eigenstates, since even the single-electron orbital OC%'W-Iying two-electron AlS(for example, the 85p 1P, state
pancies are very far from integer, and only the total angulag Ca, which lies 0.46 eV above the threshold and has a
momentum and parity remain good quantum numbers. Ongjigth of about 0.07 eV; see, e.d9]). Estimate(4) shows
can view these features as signatures of quantum chaos in theat the widths of compound AlS’s are proportional to the
system. level spacing. Combining the above quoted value of the
Such a picture is commonly used to describe compoungyidth for Ca with a plausible yet arbitrarg=10 and
resonances in nuclei. It has recently been shown to be appll“—sprzz eV, we obtainy~0.5D. If one takes into account
cable to excited states of the rare-earth atom of Cé=aR  fluctuations of the widths and positions of the compound
eV [7]. The model configuration-interaction calculations per-AlS’s, this estimate would suggest a picture of a dense spec-
formed in[7] produced a value oF s,~2 eV, and demon- trum of overlapping resonances in the atomic continuum.
strated the existence of a dense spectrum of compound “cha- However, in the situation when the widths are of the order
otic” excited states withN=100 (D~0.01 eV\). In nuclei  of the level spacing the perturbation estim&2 becomes
compound states are usually observed as narrow resonandesalid, and the interaction of the discrete states with each
in low-energy neutron scattering. The energy of the incidenpther via the continuum should be taken into account in all
neutron with respect to the ground state of the compoune@rders. The problem af discrete levels interacting with one
nucleus(the neutron threshold, which is about 8 Mel¢  continuum has been known for a long tif0]. In the situ-
shared in these states by a large number of valence nucleor@ion wheny;<D, a succession of asymmetric resonance
The number of these multiply excited states is enormous, andontours(Fano profilegis observed, for instance, in the pho-
the level spacind can be as small as 1 eV, whereas thetoabsorption cross section. The profiles are characterized by
typical nuclear energy scale is 1 MeV. The correspondinghe widthI';=~y; and the asymmetry parameter
number of principal components in nuclear compound states .
can reachN~1CP. Our present study was initiated by the qi~ (ATI[Q[A)
following question: Can one observe analogous dense spec- bom(ATel|QIAY(A*I|WIATel)”
;[rr]aatzgglosrgpound excited states above the ionization threShOI\(/jvhereQ is the transition operatdthe electric dipoli |A) is

In order to answer this question it is necessary to estimatthe initial state of the atom, and the admixture of the con-
9 y finuum states to the AIS has been negledettherwise the

the widths of compound AIS’s and compare them with the fa: h b dified Th " ¢ th
level spacind>. The width as given by perturbation theory is numerator ofg as to be moai 'e).d e positions o t'e.
' resonances are slightly shifted with respect to the original

energies of the AIS. In the opposite situatiggs>D one
observes a remarkable transformation of the specfriin
16]. If the number of levels interacting with the continuum is
where we assume that the decay is dominated by a singknite, a “collective” state is pushed away into the complex
channel, andV is the Coulomb interaction between atomic energy plane, collecting most of the total widkh=3;7; .
electrons. Contrary to the compound A|8*i), the final  Othern— 1 resonances are strongly shifted from their unper-
state(A " ¢l|, which describes the ion in the ground state andiurbed positions, and their widths are greatly suppressed:
the continuum electron, is relatively simple; thus it has aI’,~D?/3y<D, wherey is the average value of; (see be-
well-defined electron configuration. By analogy with esti- |ow). The latter means that— 1 narrow resonances become
mates of matrix elements involving nuclear compound stategimost decoupled from the continuum.
[8], we obtain One can obtain a simple physical picture of narrowing in
the following model. Suppose that there islaorway state
. .. . q\Y? |c) which is strongly coupled to the continuum, i.e., has a
(ATel|WIA '>:; (A" el |[W[Py) Cik~ W N/ () large widthT,, and that the other discrete staties are
coupled to the continuum via this state. Their widths calcu-
lated by perturbations are

©)

¥i=2m(A" el |WA*), 2

where W, is a typical matrix element between “simple”
many-electron state@ssentially, a two-body Coulomb ma- I'; 1

trix elemeny; g is the number of nonzero items in the sum, Fi:(E_E)—erFz/4|<C|W|'>| : (6)
given by suchk that @, differs fromA* ¢l by no more than ¢ ¢

two single-electron states, and the signs of the items are sujf-the states in question are within the width of the doorway,
posed to be random due to randomnes<Cgf. Being the |E—E.|<TI., the widthsT; are inversely proportional to
sum of uncorrelated random variables, the matrix elert@nt I'.. Similarly, when a short-lived “collective” state is
should obey Gaussian statistics. formed in the spectrum, the capture from the continuum into
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other discrete states proceeds via this state. Thus the collec- In Sec. Il we give a theoretical description of the phenom-

tive state is in fact just a modified single-particle continuumenon, and derive some analytical results for model cases. In

(see Sec. Il ¢ or, in other words, a doorway state. Sec. Il a more realistic model of compound AIS’s in atomic
In nuclei at energies just above the neutron threshold, th€e is considered numerically using the configuration-

perturbative situation¥<D) is realized. Besides the statis- interaction(Cl) method. This allows us to check that our

tical suppression of the widths, expressed 8y, they are understanding of the effect is correct and gives an insight

also suppressed by a kinematical fadt®& (for s-wave reso- into the role of fluctuations. Section IV summarizes the re-

nances Herek is the wave vector of the neutron, aRdis  sults and poses some general questions about the structure of

the nuclear radius. With the excitation energy increasing, théhe atomic continuum.

widths also increase, due to both the kinematical factor and

the contribution of other decay channels. So, by the time

when y~D, the single-decay-channel approximation is no Il. THEORY

longer valid, and the interesting second regime of width sup- hi _ derivati f1h
pression is not observed. In this section we present a very compact derivation of the

In atoms, however, the outgoing electron is moving in the formalism describing a set of levels embedded in and inter-

|act|ng with a continuum, and survey the effects this interac-
tion produces on the widths of the resonances in the spec-
trum.

Coulomb field of the ionic residue. Hence the kinematica
suppression factor does not wof&ithough it should mani-
fest for autodetaching negative ion statéghen, if the rela-
tion y=D takes place, either for dynamical reasons, or be-
cause of a local fluctuation, the second regime will take over.
The observed spectrum will depend on the physical process
involved. Thus in the photoabsorption measurement the nar- Let us consider a particular process where one can study
row resonances will be the main feature of spectrum, sinc#he interaction of AIS’s with the continuum, namely, photo-
the oscillator strength of the continuumlike broad collectiveionization. Suppose the atomic system is initially in some
(doorway resonance is roughly i/of the total oscillator stateg. After the absorption of a photon the system can be
strength. However, in electron-ion scattering the doorwaytransferred either to the statein the continuum, or to one of
state resonance may become the dominant feature of thibe discrete statg which will decay into thes state due to
cross section, because of its strong coupling to the corthe residual interactioWV. In addition, the interaction with
tinuum. At sufficient resolution, however, narrow resonanceghe continuum can result in transitions between different dis-
will be observed as sharp cuts slicing the broad-scale baclcrete states. The amplitude of the photoionization can be

A. Basic equations

ground. presented graphically as a perturbation theory series:
N N N
N \\ N
g € * g i £ * g ¢ 1 € o (7

where summation or integration over the intermediate statesy(g) = d+WTXQ+WTXQ+WTX2XQ+WTXEXQ+
(i,e") is assumed. Analytically, the contribution of diagrams (9)

(7) can be written as follows:
where

5 (e|W]i)(i|d|g) _
(eldlg)+ > ————" ~  [(ilW]e') (e’ |d|g>
! E-E, Qi= E—e'+id

(10

-, (8 s the dipole amplitude of thg—i excitation via the con-
tinuum, and the matrix

(e|WIi)(i|W]e')e'|d|g)de’
2 f (E—&'+i8)(E—E;)

where(e|d|g)=d and(i|d|g)=Q; are the dipole amplitudes [ (iWle") (e W)

) . ) : S — de (11
of the electromagnetic transitions into the continuum and the E—g'+ié
statei, respectivelyE; are the energies of the discrete states;
andE is the energy of the systenE & Ey+7 w). Introducing  describes the interaction of the discrete states via the con-
xij=(E—E)~'8; andW,= (||W|s> we can write the ex- tinuum. Summing the matrix geometric serieg®), we ob-
pression for the amplitude using matrix notation: tain
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A(E)=d+W'A-3)"Q+0Q], (12) l+i_2 _

whereA=y"1, ie,, Ajj=(E—E)) g, and the second term
on the right-hand side corresponds to the excitations of th
AIS modified by the interaction with the continuum. This
amplitude is equivalent to the solution of the Fano proble
of n discrete levels interacting with a continudd0]. There
are generalization of Fano's theory to the many-continua

(15

fihose roots are determined by the unperturbed enekjies
and the diagonal matrix elemerls=—(i/2)y; . If we treat
" asa complex variable explicithE —E—iI'/2, Eq.(15) is
equivalent to the following two equations:

case[11], which can also be done using the present formal- Yi(E—E))

ism (see Appendix B > =0, (163
Poles of the amplitud&(E) correspond to resonances in T (E-E)*+T774

the spectrum. The positions of the poles are determined by

(A—3) 1o, which is equivalent to def—3)=0. The Fz 1 160

values ofE which satisfy this equation are, in fact, eigenval- 44 (E—FE; )2+ 24 = (16b)

ues of the matridE; 5 +3; ,
It is easy to check that in the limi; <D Eg. (15) or Egs.
ECi+> 3;C=EC. (13 (16 have a solutiorE=E;+O(y%/D), I'i=1;+O(»*/D?)
i (perturbation theory limjt Of course, these equations cannot
be solved for arbitrang; , ;. There was quite a number of

Using the relation E—&+i9) '=(E—e) '~im8(e~E),  papers which studied the properties of their solutions, both

we can presentll) as analytically and numericallj13—16,20,2] In what follows
W W we examine several model cases, and in Sec. Il present the
s (iIWe ><8 | “) results of a realistic calculation for the cerium atom
ij= <||W|8><8|W|]> )

(14 1. The picket-fence model

where the integral is understood in the principal value sense, Let us first consider the simplest case of an infinite equi-
and the continuous spectrum state corresponds to the distant spectrumE;, ;—E;=D=const, with identical cou-
energyE at whichX; is calculated. The first term on the pling to the continuumy;=y (see alsd20]). It is obvious
right-hand side of14) is Hermitian. It shifts the positions of that in this case the first equatiofi6a has a solution
AlIS’s along the real axis with respect to the unperturbedE=E;. The sum in the left-hand side ¢i6b) is then
energiesk; . The second, anti-Hermitian term shifts the ei-

genvalues of13) into the complex plane, thus determining - y 4 22 1

the WIdthS'Of the AlS’s. Fgr example, in the pertur_batlon :E_w m—?’ F+ ykgl m

theory regime when the interaction with the continuum

is small, the width of the AISi is given by Making use of the formula  cottx=(1/mx)

—21m3; =27i|W|e)|*=y;. % 2., 1,2 .
In the present work we are interested in the evolution of+(2X/7T)2k:11/(X +k%) [22], from Eq(16b) we obtain:

the widths, and below we neglect the first term(1d). This 2D

approximation is quite reasonable if the matrix elements in = —tanh 1Y (17)

the integrand in Eq(14) depend weakly on energy, making 2D

the principal value of the integral close to zg¢dY]. If ¢ is

the energy of the autoionizing electron moving in the field of!f ¥ is small (y<D,tanh 'z~2), Eq.(17) yieldsI'=y ( this

the ion, the matrix elements|W|i) is indeed constant at IS the perturbation theory limitit is clear that Eq(17) has a
smalle due to the Coulomb asymptotic of the ionic potential solution only fory<2D/# and for y=2D/m the widthsT’

[18] [the continuous spectrum wave functions are norma“ze@eComeS infinite. In the model with a finite number of levels
to 5(¢ —&')]. On the other hand, one can always diagonalize this critical point corresponds to the emergence of a col-
the Hermitian part of ;8 +3;;) first, and then study the lective state whose width tends to infinity mt>c (see be-
widths of AIS in the new basis, in whicft; is anti- low; also see Appendix A

Hermitian. We must add that, strictly speaking, the matrix However, in the equidistant model, E4.6a has another
3i; is energy dependent. Therefore, Etf) is not a conven- solution,E=E; + D/2. In this case the left-hand side df6b)
tional eigenvalue problem. However, the characteristic scaléé ~ transformed  with  the help of tani/2)

of this energy dependenceAE~I| for atomg is much = (4x/7)=;_;1[(2k—1)2+x?] [22], giving

greater than the mean level spacibg and hence can be
neglected when studying the interaction of nearby levels.

i 0% B ’}/7Tt 7T
4,2, (DI2—kD?+T2%4_ 202"%p"
B. Positions of resonances

The anti-Hermitian part off;;, Eq. (14), is separable and Eq.(16b) yields
(Zij=—1i TrWiVVJ*). It is well known[19] that for a separable
potential the eigenvalue problefi3) can be reduced to a r 2D n 2D (18)
simple algebraic equation ’
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This solution is valid fory>2D/#. For y>D the width is

. Im E

given by 4 -2 2 4
2 PR S SR SR T 1T 14
I'=——<D. (29 e e4 e, et e 3 W Re E
Ty *® . . e

Thus in the case of strongly interacting resonances the
widths are suppressed, and the effect of narrowing takes

lace. ar
p

2. Finite number of levels
If we consider a finite number of levets then the total

width =_,T'; is given by —2ImTr(2)==(_,y;. For
v;<D perturbation theory gives the same reslilt=y;, as
for the infinite number of levels. On the other hand, for Im E
vi=D it is not possible to observe narrowing afl reso- -4 2 2 4

nances, since this will contradie,I";=X;vy; . Nevertheless, , | | : | | : |
it is easy to see that in this regime all resonances are nar- =~ ¢ 5, %, . L | ' ) & ¥ ReE
rowed, except one, which accumulates almost all width. Let * e W

us calculate the width and the position of this collective state T
for y;>D. From Eq.(16b) one can obtain
B Yi B 4(E—E)*y T
=2 —Egp 272 1
5 43 (E-E)?y
= =, 20
i Yi (EI ,yi)Z ( )

FIG. 1. Behavior of the roots of £(i/2)Z;v,/(E—E;)=0 for
_ n=11 (upper graph and n=10 (lower graph, as a function of
where we used?>(E—E;)?, and replaced’ in the second y/D: y/D=0, 0.2, 0.4, 0.6, 0.8, and 1. The cross mark in the

term by the leading contributioi;; y; (note that the width of lower graph shows the position of the degenerate level at
the collective state can be calculated on a much weaker con/D~0.718.

dition I'>D, Appendix A). Indeed, in this regime the collec-

tive state width(20) is almost equal to the total width of all we obtain the estimate

resonances. The enerfyof the collective state can be easily

obtained from(16a: _ D2 D2
I'i=5—=~0.33—. 23
E. . -1 2By “ 3y Y 23
YiEi Yi I
E=2 —E-Er| 2 T aE-Er| ~sa . . .
1+ ——— 1+ ——— ' Note that this result is rather close to the one of the picket-

I? I? 2 ;
fence model[Eg. (19)], I'~0.4D¢/y (the difference be-

(21) tween the two numerical factors is discussed beglow

This energy is the weighted average of the unperturbed en-
ergies. IfE; are uniformly distributed over some energy in-
terval and y; are random variablege.g., with a Porter- Let us illustrate the effects considered above by solving
Thomas distributiop thenE will be located roughly in the Eq. (15 numerically for a finite number of equidistant levels
middle of the interval. The total width of the rast-1 reso-  with identical coupling to the continuum. Figure 1 shows the
nances is given by the second term(20); therefore, their roots of Eq.(15) for n=10 and 11, and> =1, on the com-
mean width is plex plane for differenty: y=0, 0.2, 0.4, 0.6, 0.8, and 1.
It be seen on the graph that for the lowest nonzero value
1 4Z(E-E)?y y=0.2 the system is in the perturbation theory regime
I'= Y SR (22)  [I'=y,ImE=— (I'/2)=—0.1]. For y=0.4 the perturbation
i 7 theory is still valid for the levels in the middle of the spec-
_ trum, whereas it breaks down for the levels at the edges
Introducingy=(1/n)Z;v;, and replacing the sum in the nu- Appendix A). For y=0.6 the widths reach their maxima, and

3. Numerical example

merator by the integral beyond this value, foy=0.8 and 1, the regime of narrowing
— takes over. For these values pfall resonances are getting
E+nD/2 dE: n3p2 - . .
S (E- E_)zy_%J FE—E)2— = Y narrower except the collective state, which rapidly takes off
i Y Je—nore "D 12 into the complex plangl’~nD/tan(D/y), Appendix Al. Let
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us note that the value 0.6 is close to the critical valuephase shiftA § produced in the continuous spectrum due to

2D/7=0.64 for an infinite number of levels. its interaction with the discrete states. This would enable us
For an odd number of levels the collective state originateso see clearly how the transition from one regime to the other

from the central state whose width increases dramatically fohappens. The expression #hé can be written in the follow-

v>0.6 (see the upper graphFor an even number of levels ing form (analogous to one obtained [ih0]):

the formation of the collective state proceeds differently. The

two resonances closest to the center move toward each other, _ :

and for y=0.718 (cross mark in Fig. Lform a degenerate tan(A5)= WZ (WD Ci(E), @7

state. For largety one of the levels returns to the real axis

and the other one moves in the opposite direction. where the continuous spectrum states are normalized as
Figure 1 shows that foy>0.6 the energies of resonances (¢'|e)=38(e—¢'), and the coefficient€;(E) give the ad-

around the middle of the spectrum move toward the center8lixture of the discrete stat¢ in the total wave function at

of intervals between unperturbed levels. This behavior is irenergyE (the state|s) corresponds to this energyThey

agreement with the results of the infinite picket-fence modepatisfy the equation

in the regime of narrowingsee above Eq(18)]. Thus

n~ 10 is large enough for the picket-fence model to be valid C.(E)= (i[Wle) + 1 E C.(E

. . |( ) _E. _E.4«~ J( )

in the central part of the spectrum. The widths of these levels E-E E-EF

are larger than those of the levels at the edges. Therefore, the , N

mean value of the width is smaller than the widths of the Xf (iWle")(e |W|J>ds’ 29
central levels for which the picket-fence estimdf) is E-¢’ ’

valid. This explains the difference between the numerical ) . . L .
factors in Eqs(19) and (23). where the integral in the right-hand side is the Hermitian part

of %j; (14). As we discussed at the end of Sec. Il A, the latter

shifts the positions of the resonances states along the real

axis, and as such does not influence their widths. Thus the
In order to obtain a better understanding of the nature ofirst term on the right-hand side of E8) can be intro-

the collective state, let us calculate the corresponding eigertuced into(27), which yields

vector. Inserting the anti-Hermitian separablg (as in Sec.

C. Nature of the collective (doorway) state and narrowing

i i e|WIi){i|W|e
Il B) into Eq.(13), one obtains an(As) = — 73 (el ||5>—<E| &)
C.= LmqW =D WC 24 | |
~mEge 972 WG (24 (29
If we consider the collective state which emerges in the non- N Yi
perturbative regimeE=E_.— (i/2)I',, tanad)=—- ~ 2(E-E))°

ZEii This answer holds if the Hermitian part &f; is taken into
E.= R FCZZ Yis (25) account as well, withE; (|i)) replaced by the eigenvalues

P (eigenstatesof the matrixE; §j; + 3(2; + %) [10]. It is now

most straightforward to see how the narrowing occurs.
Let us assume that the number of terms in the sum on the
right-hand side of Eq(29) is finite, n. In the regime of iso-
27q lated resonances; <D, the value of this sum is small com-
|‘PC)=Z Ci|i>%r—2 [i)(i|W]e). (26)  pared to unity, except whek is close to one of the reso-

: ¢! nances, |E—E;|<v;. Therefore, tan{s) is mainly
stationary, withA §~mar (m being an integegr and it under-
goes rapid rises by when the energi passes through each
of the resonances. When the perturbation-theory widths are
large, y;>D, the absolute value of the sum in EQ9) is
almost everywhere large compared to unity, except for the
values ofE where

the energy differencé&.—E; can be neglected in the de-
nominator of Eq(24), and the corresponding eigenvector is

In applications the continuous spectrum states usually
refer to the electrorinucleon moving in the field of the
atomic (nucleaj residue; i.e., they are single-particle excita-
tions. From this point of view?26) is just a projection of the
modified continuous spectrum statde) onto the subspace
of discrete excitations. Thereby, the “collective” state is es-
sentially a single-particle doorway-state resonance decoupled _
from the rest of the quasidiscrete spectrum of multiparticle > L=0. (30
excitations due to the large value of its width, which couples T E-E
it strongly to the unperturbed continuufsee Sec.)l ) ) ~ )
The emergence of the collective stateyat-D is accom- ~ Clearly, this equation has—1 roots E, one in every
panied by a narrowing of the other resonances seen in tH&i Ei+1) interval. Between these roots the phase shift is
spectrum. This resulting picture looks similar to that of thestationary, A §~(m+3) (|tan(A §)|>1), and in the vicin-
perturbation theory regime of isolated resonancgs<Q). ity of each of themA makes a sudden jump to the next
Apart from studying the positions of eigenvalues in the com{m+ 3) 7 value, thus signaling a resonance. The larger the
plex plane, one can examine the behavior of the additionaiatio y/D, the more abrupt are these jumps. The extra phase
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shift of /2 is due to the broaddoorway resonance which
forms the background for narrow resonancese below.
For this reason, if the potential scattering is neglected, the 5
cross section has maxima between the resonances, and nar- i
row minima at the energies of the levélg, where the phase
shift is mar. Note that the positions of the nodes of Eg0) .
coincide with the roots of Eq(15) for large y;, when the 4
unity on the left-hand side can be neglected. Note also that i
the “stationary” smooth part ofA5( mods) can be de-
scribed by

20 I'c

B oEE) 2B E)’

Energy (eV)

(R

which is the background phase shift provided by the wide
collective resonance.

It is easy to check, for the finite number of resonances
n, that Eqg. (27) can be rewritten in the following form
[11,23:

2(E-E,) r
cor a5~ Y aE-gy”
c K

(31

whereE,; andI'. are given by(25), Ek are the solutions of 0

Eg. (30), and the corresponding widthg, are 53 Coné I 121 conf
e =

=

-1

2 Yi

T 4(E—E))?

= (32 FIG. 2. Energy levels of the Ce atom wilif=4" obtained in
the two calculations which include 53 and 121 configurations, re-
spectively. The third column shows the levels of the'Qeositive

In this form the behavior of the phase shift in the>D case ion. Infinite Rydberg series are not presented in the graph.

(I'c<<D) looks especially clear.

trum of J"=4" states becomes densgs~125 eV ! at
1. MODEL CALCULATIONS FOR CERIUM E~5 eV). Figure 2 compares the spectra obtained in the two
In this section we would like to examine the widths of calculations. It can be seen that the level structure in the
compound AIS’s in a real system. As an example of such lower part of the spectrum_ is _aIm_ost unchanged, whereas at
system we take the Ce atom. E>4_ e\(, and above the |on|.zat|9n. threshold, the_ spectral
density in the second calculation is indeed much higher.
Also shown in Fig. 2 is the spectrum of the lower odd
levels of Ce" (including the C&€J™=7/2" ground state
In our earlier work this atom was studied as a realisticThese states have been obtained on the small basis which
model of a quantum chaotic systefif]. In that work includes 46s?, 4f5d?, and 46s5d configurations. This
the spectrum and eigenstates of the Ce atom WAtk 4™, calculation adequately describes the sequence of lower levels
and 4" were calculated using the relativistic configura- of Ce™ and intervals between them. Thus the calculated
tion-interaction(Cl) code[24]. For the odd states the basis spacing between the ground state=(7/2") and the first
of many-electron states included 53 configurations correexcited stateJ=9/27), A=0.137 eV, is close to the experi-
sponding to the seven nonrelativistic configura-mental valueA=0.122 eV[25]. The calculated value of the
tions 4f6s?5d, 4f6s5d?, 4f26s6p, 4f6s6p?, 4f5d%,  ionization potentiall =4.75 eV is smaller than the experi-
4f5d6p?, and 425d6p, which produced 260 states with mental valud =5.539 eV. We should mention that the elec-
J7=4". In spite of the moderate number of configurationstron orbitals have not been optimized to obtain the best en-
the calculation produced a very dense spectrum of levels. Fargies of the ground states of Ce and*Caeither have the
example, for states af"=4" symmetry, which includes the correlations between the valence and core electrons been
atomic ground state, the level densjly=44.5 eV’ was taken into account in our calculation. However, this discrep-
obtained for energies near the ionization threshdied=6  ancy is not very important for the model calculations we
eV). perform, since the level density of Ce does not change too
In the present work the basis set has been expanded touch over this energy interval. Note that infinite series of
obtain a more realistic value of the spectral density at thidRydberg levels converging to the excited states of Gave
energy. In particular, we have added configurations connot been included in the calculations, and they are not
structed from the original 53 configurations by transferringpresent in Fig. 2.
one of electrons into the next orbital, which makes a total of Of course, the true level density is even higher due to the
121 relativistic configurations. In our calculation the spec-presence of Rydberg series. Let us consider, for instance,

A. Spectrum of Ce
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T and by another factor afi~%?2 due to the behavior of the
Rydberg electron wave function at small distances. The com-
pound AIS’s are very different from the Rydberg states. The
0.01 ! . . . . .
' | former are built of orbitals with small principal quantum
' | numbers(such states are also called “valence statg3]).
$ ] Due to this fact they are relatively compdtheir radius is
I ' t ] several Bohr radiiag), whereas the Rydberg states have
. . . . large radii ¢ ~nZa,). This difference has been used by ex-
. | perimentalists to observe Rydberg series in lanthanides and
. . ] actinides spectrf2,3]. The density of compound states is a
smooth function of energy, whereas that of the Rydberg
states peaks at every positive-ion threshold.
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B. Decay and electromagnetic amplitudes

involving compound AIS’s

47 475 48 485 49 In what follows, AlS’s lying just above the ionization
Energy (eV) threshold are examined. To restrict our consideration to one-
channel decay, we study only the levels between the ground
FIG. 3. Coulomb matrix elements®%Ce"ns|W|Ce*i); solid  state and the first excited state of C&here are many %
triangles,n=8; solid squaresn=9; solid hexagonsn=10; and  levels of the atom lying in this energy intervéd and 18,
open starsn=11. Thick short lines show the positions of the respectively, in the two calculations shown in Fig. Zhe

ground state and the first excited state of Ce AlIS’s we study haved”=4" symmetry, and the ground state
of Ce* hasJ™=7/2". Therefore, the AIS’s can decay via the
such series converging to the first excited state of CEhe  emission of an electron with=0,2,4, ... . However, the

energy of thenth Rydberg state with respect to the corre- contribution of thes wave dominates. This is suggested, for
sponding threshold iE,= — 1/2n?, and the spacing between example, by the behavior of the radial wave function in the
the Rydberg levels i®,,=JE,/dn=1/n3. Then for the den- Coulomb field( [18]),

sity p(1) of the Rydberg series of levels converging to the 1
first excited state of Cenear the ground state of Ceone Ru(r) (2r)
obtainsp™™=1/D,=1/(2A)%? whereA is the distance be- K (21+1)!
tween the two lowest levels of CeThe densityp® of the , _
Rydberg series converging to theh excited state of Ce is 1N€ magnitude oR,, atr~1 is suppressed fd=2,4, ... .
given by p®=1/(2kA)%2 where we assume that can Thereforg, calculating the Qecay of the low-lying AIS’_S we
characterize the mean spacing between lower levels dfan consider only one continuum, Gss, and the theoretical

Ce". To calculate the total density of the Rydberg stateConsiderations of Seq. Il are applicz_ible. Of course, one can
prys ONe has to sum up al®: use the same formalism and take into account other decay

channels as wellAppendix B.
1 £(312) 261 1 The perturbation width of theth AIS |Ce*i) is given by

— (k) — = ~ ~
PRyd kzl p gl (2kA)3’2 (2A)3’2 (ZA)SIZ A2
(33

(34)

yi=2m|(Ce"el|W|Ce*i)|.

In order to calculate it one should know the wave functions
In Order to estimate)Ryd |et us use the experimental Va'ue Of Ce il’l the Con.tinuum. To aVOid Calculating them eXp|ICIt|y
A=0.1 eV, which givespgy=150 eV 1. Therefore, com- and make do with the present Cl code we use the following
paring this value with 125 eV! obtained in the present Procedure. For low energiesthe wave function of the au-
calculations one can see that the density of the real spectrufionizing electron at small distances a, is proportional to
is at least two times higher than in our model due to thethe wave function of a highly excited Rydberg state,
series of Rydberg states. Moreover, if we take into accoun¥ei(r)=Ann(r). If ¢ (r) is normalized to thed function
the Rydberg series with differehiconverging to the excited ©f the energy, the coefficient is given by, =132 where
states of C&, which can be coupled into the same tald]  ¥=n— u is the effective principal quantum number, auds
the density of the atomic AIS may become even higioér ~ the quantum defectsee, e.g.[26]). Then we can use the
the order of 18 eV ~1; this number is consistent with the Substitution
experimental density of “valence states” near the ionization

limit in U, that can be estimated from Fig. 3 [8]). Ce"sl)—Aq|Ce"nl), (39
The spectrum of Ce, or any other complex atom, ConSiStﬁ/hich yields

of the two manifolds: compound AIS’s and Rydberg AlS’s,

whose interaction with each other can be very weak. The yi=2mvri[(Ce nl|W|Ce )] (v>1). (36)

Coulomb matrix element coupling a compound state to a

Rydberg state with the principal quantum numipeis re- Practically, to calculate; from Eq.(36) we consider the

duced by the factor of UN, where N is the number of nsseries withn= 8—11(the states witm=7 are included in
principal components of the compound stigee Eq.(3)], the 121 configurations describin@e*i) states. The states
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FIG. 4. Probability density of the Coulomb matrix elements  FIG. 5. Probability density of the 80 dipole matrix elements
(Ce"es|W|Cei) for the 121-18Q7=4" states of Ce. The solid (Ce*i|E1|Ce4") for the AIS near the ionization threshold of
curve is a Gaussian distribution ¢2V%) ~%exp(~-W#/2W?) with ~ Ce". Solid line shows the Gaussian distribution with
W?=1.77x10"° a.u. They” test for the seven central bins yields (Q?)¥2=0.139. They? criterion calculated for the nine central bins
x%(6)=5.0. of the histogram is¢?(8)=7.44.

|Ce*i) are obtained by diagonalization of the Hamiltonian tistics observed indicates that the compound atomic eigen-
matrix in the basis of 121 configurations which produce 862states are to a large extent chaotic, as we pointed dut]in
states withJ”=4". The |Ce*ns) states are eigenstates of  The mean width of the 18 AlIS’s between the two lowest
the Hamiltonian matrix in the basis constructed by addingstates of C& is y=27W2=4.3x 10 2 eV. This value must

the Rydberg statess to the configurations of Cemen-  pe compared with the mean level spaciDg0.008 eV. The
tioned above. Therefore, the Iovvter Rydberg ;eneé@e relation y~0.5D is in agreement with the estimate made in
converge to the ground state _Of shown in F|g.2 2. This  gec |, As discussed earlier, the density of states in our model
Sei'isl '_‘F‘h described dbyEns— che+— 1/2(n—,u) Vé'th Icalculation is underestimatgdhainly due to the absence of
'“T t. .th edcorrespontllng vxllave unctf)nsv?/r%;s_e to ca Rydberg serigs The following question is very important: if
Clgj,fe " e cecay matrix eemenl‘(‘s[:e ‘?S| | . 1) as 4 better calculatioifor experimental dajgproduce a smaller
¥4 Ce"'ns|W|Ce*i). Note that the “continuum” and dis- ) = i

value of D, how would it change the value of? Estimate

crete states in this matrix element are orthogonal.
Figure 3 presents the Coulomb matrix elements(4) suggests that the decreasefshould cause a decrease

13%(Ce*ns|W|Ce*i) calculated for differenns (n= 8—11. of v, as long as the_ residual Coulomt_> interaction is strong
One can see that the matrix elements for differeate very ~€N0Ugh to mix basis components within tlig, energy
close to each other. Therefore, H86) is valid, and in the 'ange. On the othe_r hand, whgn many-electron states include
further calculations we simply use the matrix elements ob€lectron orbitals with larger principal quantum numbers, the
tained forn=10. radius of these states increases, and the residual interaction
To obtain a better understanding of the structure of thedoes down. This ultimately leads to the emergence of the two
compound states in question, it is instructive to look at theveakly interacting components in the spectrdtne com-
statistics of their matrix element§ig. 4). In this figure we pound “valence” states, and the Rydberg stat@is trans-
have plotted the probability distribution for 60 Coulomb ma- formation of the spectrum is an interesting question in its
trix elements(Ce*es|W|Ce*i) calculated for the 4 levels  own right, deserving special investigation.
121-180(the AIS’s between the two lowest Cestates are The mean widthy~0.5D is close to the critical value
137-154. The histogram in Fig. 4 is compared with the y=2D/x, beyond which the regime of narrowing of reso-
Gaussian distribution with variand&?. The agreement ob- nances occurs. Therefore, the interaction of the AIS’s via the
served may not be perfect; however, it supports the theoreteontinuum is important. To obtain a physical picture of how
cal reasoning that the matrix element is the sum of uncorrethis interaction influences the shape of the resonances, we
lated random variables and thus, obeys Gaussian statisticensider a process of photoionization of the lowest even state
[Sec. I, Eq.(3) and below. The Gaussian statistics of the of Ce (J"=4") in the 4" —4~ channel. The even state of
matrix elements corresponds to the Porter-Thomas distribue has been calculated using the basis of 50 configurations
tion of the widths y=27W?, f(y)=exp(y/2y)/ in the same way as if7]. To find the photoionization cross
V2myy [27]. As is known the widths of nuclear compound section we need the dipole amplitudes coupling the lowest
states are distributed according to the Porter-Thomag$3aw J"=4" state to the compound staté€e*i|E1|Ce4’), as
The present calculation suggests that atomic compound reseell as the dipole amplitude of the transition from the even
nances are in this respect very similar to the nuclear onestate into the continuun{Ce" es|E1|Ce4"). The latter was
This could be expected because the origin of the Porterealculated as®%Ce"ns|E1|Ce4"), which gave a numeri-
Thomas distribution is “quantum chaos.” Therefore, the sta-cal value of 0.375.
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The calculated dipole amplitudes give us another possibil-
ity to analyze the statistical properties of the compound?
states. In Fig. 5 we present the distribution of Bk ampli-
tudes(Ce*i|E1|Ce4")=Q; for 80 compound states near the
ionization threshold. The root-mean-square value of thes

matrix elements is/aiz_= 0.178. The histogram in Fig. 5 is [ Ce
in reasonable agreement with the Gaussian fit drawn to mini-§  *F
mize x°. Thus the line strength@i2 involving compound \JLJ«
states should have a Porter-Thomas distribution. Earlier evi
dence of this effect and the results of calculations of dipole g
excitations in complex atoms can be found[&8]. At a
closer inspection one may notice some similarities in the?
deviations of the histograms from the Gaussians in Figs. 4*a
and 5, particularly an abundance of small matrix elements.
We believe that this can be explain&ibs in[7], Fig. 17 as
traces of broken symmetriéthe total spin and the total or-
bital angular momentujm not completely removed by the
spin-orbit interaction. Another reason for the Gaussian sta-z |
tistics to be distorted can be the presence of states with verys o4 L
different mean radii whose mixing by the residual interaction % I
is not complete. This effect becomes dominating when ¥
higher Rydberg states are considered together with the com
pound valence states.

Estimating the dipole amplitude in the spirit of E¢), we

obtain 4.75 48 4.85 4.9
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(Ce*||El|Ce4+)~QO<W) : (37 FIG. 6. (a Photoabsorption spectrum obtained as

Si(yil2m) fil[ (0 —E;)?+ 7?/4], wheref; is the oscillator strength.

(b) Photoabsorption spectrum calculated with AIS interaction via
whereq’ is the number of single-particle transitions which the continuum includedc) Electron-Cé scattering(resonance ap-
contribute to the many-particle matrix element, @@glis a  proximation. The energy is given with respect to the Ce ground
typical single-particle dipole matrix element between va-state. Thick lines indicate the positions of the two lowest states of
lence and nearby excited orbitalQ{~1). Since we con- Ce'.
sider the lowest even state of Geith the dominant configu- ) ]
ration 4f26s%), there are few such transitions, e.g.,'esonance widths are smaller than the level spacings. Con-
4f—5d,6s—6p, which gives, sayq’' ~5. Therefore, for Versely, there are wide overlapping resonances on the right-
N~T ¢,/D~200, estimate(37) gives Q;~0.1, in accord hand side of Fig. @&). _ , .
with the root-mean-squared value 0.178. Estimé3d) The photoabsorption amplitude which takes into account
shows also that the oscillator strengths Q2 are inversely —the interaction of AlS’s is given by Eq12). In our calcula-
proportional toN. This fact is a manifestation of the dipole tions we .have neglected Fhe real _parthqu.(14), because
sum rule,S f,~n, (n, is the number of active electrongs the principal value of the mtegra_l is quite s_maII due to a very
the number of transitions from a given state into the com-\’\’ﬁf"‘k depgndence fOf the_matn)r(] elerr]ne(ltale >. on &
pound spectrum of states is proportionalNoMore precise (t IS can be seen from Fig.) 3T e photoabsorption cross

: : ; : section|A(E)|? [29] is presented in Fig. (6). It is quite
estimates of the mean-square amplitudes involving com?

pound states can be obtained using statistical thEdry natural th_at the Ieft_-hand _part_of the spectrum is almost un-
changed in comparison with Fig(#. Due to the narrowness

of the resonances in this part of the spectra their interaction
C. Interaction of compound AIS’s via the continuum via the continuum do not change their widths. Conversely,

To elucidate the effects produced by the interaction ofo" the right-hand side of the picture dramatic changes are
AIS’s via the continuum we, first, calculate the photoabsorp-ObV'OUS' The local mean perturbation width here turns out to

tion spectrum as a sum of Lorentzian profiles, be greater than the local mean Ieve! spacing. As a result, very
sharp resonances become the main feature of the spectrum.
i Q? Their total width is apparently smaller than that of the broad
Vi ’ 38 P o . ) )
> 2m (E_E)2+ ,7/4 (88)  feature in Fig. 6a). This is a manifestation of the regime of

narrowing described in Sec. Il B.
If the narrowing takes place then one should expect a
i.e., neglecting the interaction of the AIF'29]. Figure §a)  wide collective(doorway state to emerge. However, such a
presents the result of this calculation. Due to fluctuations ofesonance is not visible in the spectrum. The point is that,
level positions and widths a picture of isolated resonances iwhile acquiring width, the doorway state does not obtain a
observed on the left-hand side of the energy scale, where tHarger share of the oscillator strengthnless theE1l and
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decay amplitudes are correlated in some way, which magnergies sufficient for excitation of several electrons above
produce a “giant resonancg’5,14]). In other words, it does the ground state. High-resolution atomic photoionization
not work as the doorway for the absorption of the photonmeasurements provide growing experimental evidence for
However, the doorway state has the strongest coupling to thihis (see, e.g.[30]).

continuum. Thus it becomes the main feature of the electron- The effects produced by the interaction of compound

ion scattering cross section in the given continuous channellS’s via the continuum can also be important for the prob-
Using the notation of Eq12) we can write the resonant part lem of dielectronic recombination, which is believed to play

of the electron-ion scattering amplitude as an essential role in high-temperature plasnsee, e.g., re-
. . view [31]). Such effects can be driven by an external electric
T(E)=W"(A-3%)""W. (39 field. Even if the direct field ionization does not take place,

mixing of different state manifolds varies the level spacings

If the contribution of potential scattering is neglected, theand the AIS decay amplitudé82]. The effect of narrowing

cross section is simply proportional {B(E)|*. This quantity may influence the ©* scaling of the widths of autoionizing

IS plotteq In F'g'd‘ﬁf)' The gontrllbl;)tlor: of eaclh oftth(tahreso— Rydberg states observed in strong electric fidl83]. One
nances Is now determined only Dy 1ts coupiing fo he con-j, only imagine what kind of reach physics will be in-
tinuum. Therefore, we observe narrower and weaker, oi

wider and stronger features. The doorway state reveals itse fo Ived if an external electric or magnetic field is applied to
s ! i uch systemgdynamical enhancement of perturbations in
as a broad structure on the right-hand side of Fi@).6 y sdy P

o .weak fields, transition from regular states to chaos and “col-
Within its range the narrow resonances appear as sharp d”i)ésctivization” in stronger fields, et
on the broad-scale background. This picture is in a striking There is also another queétion we have merely touched

contrast with the photoabsorption cross section, where dire(ﬁfpon in this work. It concerns the interaction of compound

photoabsorption into the continuum is simply too small t0.yalence” states with Rydberg level series in complex open-

give a noticeable background. shell atoms. So far there is no criteria or condition which

of COUrse, the calculations presented in this section arould tell at whatn the perturbation of the Rydberg series
not realistic in the sense that they can reproduce some PaLL comes weak

ticular features of the real photoabsorption spectrum of Ce. Finally, the existence and manifestations of guantum

HO\;\_/et\_/erc,ZIthe)I/ UIS?. the deﬁaﬁ aEd_ amplitudes :roTht[lhe chaos in many-electron atoms remains largely an unexplored
re? |s||c t' Ce: Cé;i |or(1js(,3v7)v Il\(jl a:rg In atgrettlam;ahn WII | €0%ielq. Apart from its fundamental importance, such a point of
retica’ estimateso) an - Most importantly, the calcuia- - ;q,, may prove to be useful for studying complex atoms

tions indicate that the perturbation widths of the AIS's are, . - . rate calculations employing even the most sophis-

comparable to their level spacing. This, on one hand, makeﬁ; ated numerical methods will remain for a while a formi-
atomic compound states observable, and, on the other han

brings about the interesting regime of narrowing. It is quite able task.

important that if more than one continuum is taken into ac-

count, the role of the interaction of AlS’s via the continuum ACKNOWLEDGMENTS

is still determined by the magnitude of tipartial width in )

comparison withD (Appendix B. Therefore, such an inter-  1he authors would like to thank O. P. Sushkov, M. Yu.
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IV. CONCLUSIONS APPENDIX A: PERTURBATION THEORY AND

The prime motivation of the present work is to study the EMERGENCE OF THE COLLECTIVE STATE
spectrum of complex open-shell atoms above the ionization Tq gptain a better understanding of the model with
threshold, and tp find out whe.ther_lt is possmle to observ%qua”y spaced levelg; and constant coupling to the con-
compound atomic resonances in this region. We have Sho"}’trihuum,Eij = —iyl/2, studied in Sec. Il B, it is instructive to
that simultaneous excitation of several valence electrons iBpply perturbation theory to find the positions and widths of
atoms produces a dense spectrum of compound AIS's. Thge resonances. Since the potentiain this model is purely
statistics of matrix elements involving compound states argmaginary, the odd-order perturbation terms contribute to the
close to Gaussian. The root-mean-square estimates of WRGqth whereas the even ones shift the resonance along the

matrix elements can be made in terms of the number of pringe,| axis. The three lowest-order corrections to the energy of
cipal components of the compound states. the kth resonance are

We have demonstrated, both analytically and numerically,
that the interaction of compound states via the continuum 5
results in the overall narrowing of the resonances, accompa- AED = _j Y AE@ = _ RAANY
nied by the formation of broad collective resonant states k k 42
(doorway states The narrow resonances are probably best
observed in photoabsorption and photoionization experi-

. 3 1 1
ments, whereas the doorway states should feature in EG)_j v %, _Z/
electron-ion scattering. We believe that the effects discussedA k 8 (Ex—E)(Ex—Ep) (Ex—E)?|
in the present paper can be found in almost any atom at (A2)

E—g' AV
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where in the primed sumsm#Kk. If the number of levels is
large (h>1) the sums in Eqs(Al) and (A2) can be esti-
mated as follows:
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where we putt=0 in the last expression, since the collec-
tive state emerges from the middle of the spectrum. Introduc-
ing (A5) into Eqg. (16b), we obtain the expression for the
width of the collective state valid far>D [15]:
I'=nD cot(D/y). (AB)
Note that the above derivation is still valid fer# const, and
fluctuating level positions. In this cagein Eq. (A6) should
be replaced withy, and D with the mean level spacing.
Equation(A6) shows that fon>1 the transformation of the
spectrum happens quite rapidly, which prompted the authors
of [15] to call it a “phase transition.” It is also interesting to

where we assumed that the levels are distributed symmetrbserve that formally the collective state width6) turns

cally with respect tte=0, —n/2<k<n/2, i.e.,k=0 corre-

into zero atD/y= /2, which coincides with the critical con-

sponds to the center of the spectrum. Thus the resonance dgion for the picket-fence model, Sec. Il B.

shifted with respect td&, by

n k
N 2" A3
'SH Zn n—k ) (A3)
5~
and its width is
n 2
; ) | §+k
K=Y~ 2D2 nf — —2{(2) (A4)
E_k

For resonances in the middle of the spectryii<n/2,
hence In(¥X1, the shiftAE, is very small, and the widths are
larger than the first-order estimaje due to the third-order

correction in brackets. Note that the perturbation theory pa-

rameter for these states j8D. Near the edges of the spec-
trum, |(n/2)—k|<n/2, or |(n/2)+k|<n/2, the logarithm
becomes large/|In()|=Inn>1, and the third-order term
makes the widths smaller thap. The perturbation-theory
parameter for these states #4nn/D, and the perturbation
series expansion breaks down at much smalf&. More-
over, even for arbitrary smaf}/D one can finch for which

the perturbation theory fails near the edges of the spectrum

(although such will have to be exponentially large The

APPENDIX B: MANY-CHANNEL PROBLEM

It is very straightforward to generalize the formalism of
Sec. Il A to the case afi discrete states coupled ko differ-
ent continua. Lete,) be the state of the system in thkéh
continuum k=1,... K). The discrete stateis coupled to
the kth continuum by the matrix elemel;, = (i|W|e,), so
W, is now anxXK matrix. If we are concerned with the
photoabsorption from thég) state, we should introdudg
electromagnetic amplitudes,=(e,/d|g). Now the vector
A(E) of photoabsorption amplitudes,(E) in the kth chan-
nel can be presented in complete analogy with @gby the
perturbation series expansion

A(E)=d+W yQ+W"xyQ+ WS xQ+ W3 xQ+- -,
(B1)

where the definitions of thex-component vecto@i and
nXxn matrix %;; are modified with respect to Eq€lL0) and
(12) by the extra summation over the channels,

~ (ilWleg)(eildlg)
Q‘_Ekf E—el+i0 de (B2)
- (i(Wleg)(erWlj)y
=2 E—eptio 00k (B3)

results obtained in the numerical example, Fig. 1, clearlyThe resulting photoabsorption amplitude is given in the

illustrate all these effects.

closed form identical to Eq12),

For v/D=1 the perturbation theory becomes invalid ev-
erywhere. This corresponds to the regime of narrowing of
resonances, and to the emergence of the collective state
which absorbs most of the total width. It is interesting thatand the total photoabsorption cross section is proportional to
the width of the collective state can be calculated on weakeAT(E)A(E) == |A(E)|>.
assumptions than those used to derive the result of 2. The poles of the amplitudéB4) are determined by the
Consider Eq(16b), and assume thdit is greater thafD. The  eigenvalues of Eq.13), and widths of the resonances corre-
expression under the sum is then a smooth functiog;of  sponding to these poles are due to the presence of an imagi-
and can be replaced by the integral nary part in the matrix.;; ,

. nD/2 dE i|W|e e |W|j
2 Yi ZZJ i Ei,:E f<| | k>< I’<| | >ds{<
7 (E—Ei)z+F2/4 D ,nD/g(E—Ei)z-‘rF?M K E—gy

A(E)=d+W'(A—3)"[Q+0Q], (B4)

(A5) —im 2 (i Wle (el Wi, (B5)



2078 V. V. FLAMBAUM, A. A. GRIBAKINA, AND G. F. GRIBAKIN 54
where, as in Eq(14), the integrals are calculated in the prin- of the system in the strongly interacting resonance regime,
cipal value sense. If perturbation theory is applicable, thertan be characterized by the(K—1)/2 independent ele-
yK= 21| W,,|? is the partial width of théth resonance asso- ments of the “overlap matrix'{11]

ciated with thekth channel, and the total perturbation width

of this AIS is given by the sumyi=2kyik If the partial

widths for different channels are of the same order of mag- _ o ©

nitude, the condition for nonoverlapping resonances is O"m_ZWZ WiciWim /N i Y’ (B10)
NOW YooK <D, where yp, is the average partial width of

the AIS. . where y{9=273|W,|? is the total width associated with
The imaginary part of; is now the sum of separable thekth channel. The matrix element810) are in fact equal

terms. It is easy to show that if we neglect its real gartif co®y,,,, where®,, is the angle betweelV, and W,,

we diagonalize it prior to the inclusion of the imaginary part, (these parameters were used113,14)).

and thus incorporate the corresponding energy shifts in the | ot s considems>1 compoundAIS's embedded K

“unperturbed” energiest;), the poles of the amplitude in ¢ontinua. Due to the chaotic nature of the compound states,

the complex energy plane will be solutions of the algebraiGhe gecay amplituded,; for them are uncorrelated Gaussian

equation. Indeed, let us introdudg; = —i 72 Wy Wy; into  yariables(this assumption was used when studying the dis-
Eq. (13 tribution of widths in matrix modeld20,21])). The root-
mean-square estimate of the sum in E§10) then yields
(E— Ei)ci+iw; Wi >, W,C;=0. (B6)  Owm~1//n (k#m). This means that the off-diagonal matrix
J

elements are small, and the vectdvg are almost orthogonal
to each other. In this case there is a doorway state in each of
the K channels(for y,,D), and the channels become ef-
fectively decoupled from each other. To show this formally,
Wi, W let us introduce the complex ener@y~il'/2 into Eq.(B8)
E E_E }szo. (B7) explicitly, and expand the corresponding matrix in inverse
: : powers ofl’,

Denoting =W, ;C;=F, one can easily obtain an equation
for Fy,

F|+Iﬂ-2k

The solvability condition for this homogeneous equation is 5km+i772 W W, (E—iT/2—E;)*
i

W 2 47i
de( SkmTim Vék'V\é ) =0, (B8) = Okm— ?Ei WiiWim+ 72 2. WiiWim(E—E))
| —Ei
- . . 8w
where the rank of the matrix in bracketsKs This equation + FZ WiWi(E—E))2+ - - -.

generalizes the single-channel equatidd). It gives the po-

sitions of poles of theS matrix in the complex plangl1],

and its alternative derivations can be found 113,14,18. As explained above, the off-diagonal matrix elements are
Generally, in theK-channel case there ake collective ~ suppressed, and hence can be neglected. Retaining all terms

short-lived stategdoorway$ that emerge in the regime of Up toI'~* we obtain, instead of EqB8);

strongly interacting resonances, whereas the widths of the

rest ofn—K states are suppressgt2—14,16,2Q In the ex-

treme case when the collective state widths are much greate¥!,

than the energy spanned I on the real axis {paD),

the widths of the collective states are found from the char- =0. (B11)

acteristic equation

1 2i 4
1- 52 7+ 2 WE-E)+ =2 v(E-E)?

Thus we immediately obtain the positions and widths of the
K doorway states:

de(Fékm—ZwZ W W, | =0, (B9) S E
[ iYiEi
E¥=—", (B12)
KOSy
which follows from Eq.(B8) if we replaceE—E—iI'/2, and 4
neglect|E—E;| as small compared tb. There are exactly [= O~ Wz YNEL-E)? (B13)
K short-lived doorway states if alK rows of the matrix [y 177

W,; are linearly independent, in other words, if tevectors

W, =(W,q, ... W,,) in n-dimensional space form a in direct analogy with Eqs(20) and(21). Each of the door-
K-dimensional subspace. Otherwise, F§9) has solutions way states accumulates almost all width in the corresponding
I'=0, and the number of doorway states is less tkaft is  channel Fﬁ"‘)avn?pan). The second term on the right-hand
equal to the number of linearly independatf,. The con- side of Eq.(B13) enables one to estimate the average widths
figuration ofK vectorsW, in space, and hence the behavior of the n—K narrow resonancdsee Eqs(22) and(23)]:
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F_ ZLE 4 2 EC )2 K_D2 D<_y_part<KD, a nonperturbative regim@_ormation of col-
naitow™ [y K 4 [ 102 Y9124 Yilkk i 3Ypart’ lective states, or doorways, and narrowit@kes over; ho_w—
(B14)  ever, the widths of the narrow resonand@i4) are still
greater than the mean level spacifig) yp.KD, the re-
Note that the condition for the emergence of the doorwaygime of extreme narrowing; isolated narrow resonances
states in the many-channel caseyjg&D. again become the main feature of the spectrum. This picture
Therefore, in theK-channel case one should distinguish and estimate§B13) and (B14) are in agreement with the
the following four regimesli) ypx<D/K, a perturbation- results of numerical modelinf20]. Note that regimesii)
theory regime, yielding a spectrum of isolated resonanceand (jii) leave enough room for the existence of Ericson’s
with widths Fi:Ekyik. (i) D/K<7pa,t<D, a perturbation- fluctuations, which take place in spectra when the state
theory regime, yielding a picture of overlapping noninteract-widths are uncorrelated and greater than the level spacing
ing or weakly interacting resonances in the spectriin.  [34] (see alsd15]).
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