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Chapter 5

Continuous Random Variables

5.1 Basic Results

5.1.1 Definitions: the c.d.f. and p.d.f.

Our previous definition of a discrete random variable was rather restrictive. A broader definition
is as follows:

A random variable X defined on the probability space (S,F ,P) is a mapping of S into the set
R of real numbers such that, if Bx denotes the subset of outcomes in S which are mapped onto
the set (−∞, x], then

Bx ∈ F for all x ∈ R.

We write
P(X ≤ x) = P(Bx).

We note that a discrete r.v. satisfies this definition.

Discrete r.v.s are generally studied through their probability functions; r.v.s in the broader
sense are studied through their cumulative distribution functions. The cumulative distribution
function (c.d.f.) FX of a r.v. X is the function

FX(x) = P(X ≤ x), −∞ < x < ∞. (5.1)

As with the probability function, the suffix ’X’ may be dropped when there is no ambiguity.
The c.d.f. has the following properties:

(i) F (x) ≤ F (y) if x ≤ y, i.e. F (.) is monotonic non-decreasing;

(ii) F (−∞) = 0, F (+∞) = 1;

(iii) F is continuous from the right, i.e.

F (x + h) → F (x) as h → 0+;

(iv) P(a < X ≤ b) = F (b) − F (a).
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For a discrete r.v., the c.d.f. is a step-function, i.e. at certain points it is discontinuous (from
the left). So it is natural to develop a theory for r.v.s with continuous c.d.f.s. However, it is
sufficient for practical purposes to consider c.d.f.s which are also reasonably smooth.

A r.v. X defined on (S,F ,P) is said to be continuous if

(i) its c.d.f. F (x),−∞ < x < ∞, is a continuous function;

(ii) there exists a non-negative function f(x) such that

F (x) =

∫ x

−∞

f(t)dt, −∞ < x < ∞. (5.2)

An alternative form of the second condition is:

(ii*) whose derivative
dF (x)

dx
= f(x) exists and is continuous except possibly at a finite

number of points.

The function f(x), −∞ < x < ∞, is called the probability density function (p.d.f.) of the r.v.
X.

Theorem If X is a continuous r.v.,

P(X = x) = 0 for all x. (5.3)

Proof For any r.v. X with c.d.f. F,

limh→0+ F (x + h) = F (x) = P(X ≤ x); and
limh→0+ F (x − h) = P(X < x), for all x.

If X is continuous, F (x) is a continuous function of x, i.e.

lim
h→0+

F (x − h) = lim
h→0+

F (x + h)

i.e.
P(X < x) = P(X ≤ x) = P(X < x) + P(X = x)

i.e.
P(X = x) = 0 for all x. tu

For any meaningful statement about probabilities we must consider X lying in an interval or
intervals. Probability is represented as an area under the curve of the p.d.f. f(x).

f(x)

x

F (y)

P(a < X ≤ b)

P(x0 < X ≤ x0 + δx0)

P(X > z) = 1− P(X ≤ z)

y a b

x0 x0 + δx0

z
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P(x0 ≤ X ≤ x0 + δx0) =

∫ x0+δx0

x0

≈ f(x0)δx0 when δx0 is small.

So f(x) itself is not a probability, but in the above sense f(x) is proportional to (or a measure
of) probability.

To summarise: the p.g.f. f(x) has the following properties:

(i) f(x) ≥ 0, −∞ < x < ∞, and

∫

∞

−∞

f(x)dx = 1.

(ii) f(x) is not a probability: f(x)δx ≈ P(x < X ≤ x + δx).

(iii) Since P(X = x) = 0 for all x,

P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b)
= F (b) − F (a)

=

∫ b

a
f(t)dt.

5.1.2 Restricted Range

Suppose that

f(x) =

{

> 0 for A < x < B, a subset of (−∞,∞)
= 0 otherwise.

Then probability (and other) calculations may be based on the interval (A,B) rather than on
(−∞,∞): e.g.

1 =

∫

∞

−∞

f(x)dx =

∫ A

−∞

f(x)dx +

∫ B

A
f(x)dx +

∫

∞

B
f(x)dx =

∫ B

A
f(x)dx;

P(X ≤ y) =

∫ y

−∞

f(x)dx =

∫ y

A
f(x)dx, y ≥ A;

P(X > z) =

∫

∞

z
f(x)dx =

∫ B

z
f(x)dx, z ≤ B.

5.1.3 Expectation

The expected value or expectation of a continuous r.v. X with p.d.f. f(x) is denoted by E(X)
and is defined as

E(X) =

∫

∞

−∞

xf(x)dx (5.4)

provided that the integral is absolutely convergent (i.e.
∫

∞

−∞
|x|f(x)dx is finite). As in the

discrete case, E(X) is often termed the expected value or mean of X.

The continuous analogue of the ‘law of the unconscious statistician’ states that

E[g(X)] =

∫

∞

−∞

g(x)f(x)dx (5.5)

provided the integral is absolutely convergent: once again, this is a result and not a definition.
An immediate application is to the variance of X, denoted by Var(X) and defined as

Var(X) = E([X − E(X)]2). (5.6)
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Writing µ = E(X), we have

Var(X) =

∫

∞

−∞

(x − µ)2f(x)dx

=

∫

∞

−∞

x2f(x)dx − 2µ

∫

∞

−∞

xf(x)dx + µ2
∫

∞

−∞

f(x)dx

=

∫

∞

−∞

x2f(x)dx − µ2,

i.e.

Var(X) = E(X2) − [E(X)]2, (5.7)

just as in the discrete case. Other properties of the E and Var operators carry over in the same
way – in the proofs we simply replace

∑

and probability function by
∫

and p.d.f.

In modelling a set of data (see later), we are often interested in the shape of f(x): this can be
summarised by a measure of asymmetry called the coefficient of skewness, defined as

γ1 =
µ3

σ3
. (5.8)

f(x)

x
0

long tail

to right

positively skewed

γ1 > 0

f(x)

x
0

symmetrical

γ1 = 0

f(x)

x

long tail

to left

negatively skewed

γ1 < 0

0

For symmetrical p.d.f.s, a measure of peakedness is the coefficient of kurtosis, defined as

γ2 =
µ4

σ4
− 3. (5.9)

Comparison is with the normal distribution, for which γ2 = 0 (see §5.4.1).

f(x)

x
0

Heavier tails

than Normal:

γ2 < 0

f(x)

x
0

Lighter tails

than Normal:

γ2 > 0

Percentiles The 100qth percentile point is the value x[100q] such that

P(X ≤ x[100q]) = F (x[100q]) = q, 0 < q < 1. (5.10)

In particular, the median m is x[50] and

F (m) = 0.5. (5.11)
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5.2 Transformations

5.2.1 Simpler Cases

Given a transformation Y = g(X), where X is a continuous r.v. with known p.d.f fX(x), how
can we determine the distribution of the r.v. Y ? There are two straightforward cases:

(i) If Y = g(X) where Y is a discrete r.v. and Y = yi corresponds to the interval ai < X < bi

(or a set of intervals), then

P(Y = yi) =

∫ bi

ai

f(x)dx.

(ii) Suppose Y = g(X) where g is one-to-one and differentiable. Then Y is a continuous r.v.
with p.d.f.

fY (y) = fX{g−1(y)}
∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

, g(−∞) < y < g(+∞). (5.12)

(You may find it helpful to remind yourself of the proof of this result given in SOR101).

5.2.2 The Many-to-One Case

Now suppose that the transformation is no longer one-to-one, but many-to-one. There are two
possible procedures, which we shall illustrate by considering the transformation

Y = X2

where the range of X is (−∞,∞) – a two-to-one transformation.

Method 1 Proceed through the c.d.f. (compare the proof of the result for a one-to-one
transformation): thus

FY (y) = P(Y ≤ y)
= P(X2 ≤ y)
= P(−√

y ≤ X ≤ √
y)

= FX(
√

y) − FX(−√
y), y ≥ 0.

Then differentiating we get

fY (y) =
dFY (y)

dy

=
d

dy
{FX(

√
y) − FX(−√

y)}

= fX(
√

y)

(

1

2
√

y

)

− fX(−√
y)

(

− 1

2
√

y

)

=
1

2
√

y
{fX(

√
y) + fX(−√

y)}, 0 ≤ y < ∞.

Method 2 Express the transformation in terms of separate one-to-one transformations
(so that the result for the one-to one case can be invoked). Here

X =

{

+
√

Y , for 0 ≤ X < ∞
−
√

Y , for −∞ < X < 0.

Let
fX(x) = f+

X(x) + f−

X(x),
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where

f+
X(x) =

{

fX(x), 0 ≤ x < ∞
0, otherwise

and

f−

X(x) =

{

fX(x), x < 0
0, otherwise

We now use the formula for the separate one-to-one transformations:

f+
Y (y) = f+

X (+
√

y)

∣

∣

∣

∣

∣

1

2
√

y

∣

∣

∣

∣

∣

, 0 ≤ y < ∞

f−

Y (y) = f−

X (−√
y)

∣

∣

∣

∣

∣

− 1

2
√

y

∣

∣

∣

∣

∣

, 0 ≤ y < ∞.

Hence
fY (y) = f+

Y (y) + f−

Y (y)

=
1

2
√

y
{fX(

√
y) + fX(−√

y)}, 0 ≤ y < ∞.

- as obtained by Method 1.

5.2.3 Truncation

Suppose that the continuous r.v. X has p.d.f. fX(x),−∞ < x < ∞ and the r.v. Y has similar
properties to X in the interval (A,B) and is defined to be 0 elsewhere, i.e.

Y =

{

X, A ≤ X ≤ B
0, otherwise

.

Then
FY (y) = P(Y ≤ y) = P(X ≤ y|A ≤ X ≤ B)

=
P(X ≤ y and A ≤ X ≤ B)

P(A ≤ X ≤ B)

=
P(A ≤ X ≤ y ≤ B)

P(A ≤ X ≤ B)
=

FX(y) − FX(A)

FX(B) − FX(A)
, A ≤ y ≤ B.

Hence

fY (y) =







fX(y)
∫ B
A fX(x)dx

, A ≤ y ≤ B

0 otherwise

.

An alternative argument is as follows. Suppose that the p.d.f. of Y has a similar form to the
p.d.f. of X in the interval (A,B) and is zero otherwise. Thus

fY (y) =

{

KfX(y), A ≤ y ≤ B
0, otherwise

.

The normalisation requirement
∫

∞

−∞
fY (y)dy = 1 yields

K =

[

∫ B

A
fX(y)dy

]

−1

– the same result as above.

f(x)

xA B
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5.3 Modelling

Many discrete probability distributions are considered as suitable models for certain standard
situations for which a probabilistic analysis is possible, e.g. binomial, geometric, Poisson,
hypergeometic.

On the other hand, a continuous distribution is often chosen as a model because of its shape,
particularly if a large sample of observations is available: if we construct a relative frequency
histogram, the piecewise linear construction joining the mid-points of the tops of adjacent bars
should approximate the curve of a suitable p.d.f.

1

0

Relative

frequency

x

Real data, which must lie within a finite interval, may be modelled by a p.d.f. defined over
an infinite or semi-infinite range, since the infinite tail(s) of many p.d.f.s contain very little
probability. For example, if X ∼ N(µ, σ2), P(X ≥ µ + 4σ) ≈ 0.000032. Thus, positive data
may be modelled by a continuous r.v. which theoretically can take negative values.

5.4 Important Continuous Distributions

5.4.1 Normal distribution

Also known as the Gaussian distribution, this has two parameters (µ, σ2): it is the most im-
portant distribution in statistics. If X ∼ N(µ, σ2), its p.d.f. is

fX(x) =
1√
2πσ

exp

{

−1

2

(

x − µ

σ

)2
}

, −∞ < x < ∞. (5.13)

The r.v. W = a+bX is distributed N(a+bµ, b2σ2) – an example of a one-to-one transformation.
In particular, the r.v. Z = (X −µ)/σ is distributed N(0, 1) (the standard normal distribution),
with p.d.f.

fZ(z) =
1√
2πσ

e−
1

2
z2

, −∞ < z < ∞. (5.14)

Many properties of X (probabilities, moments, etc.) are readily derived from those of Z.

E(Z) =

∫

∞

−∞

z
1√
2π

e−
1

2
z2

dz

=

∫

∞

0
· · · +

∫ 0

−∞

· · · (set y = −z in 2nd integral)

=

∫

∞

0
· · · +

∫ 0

∞

(−y)
1√
π

e−
1

2
y2

(−dy)

=

∫

∞

0
z

1√
2π

e−
1

2
z2

dz −
∫

∞

0
y

1√
2π

e−
1

2
y2

dy = 0.

Hence

E

[

X − µ

σ

]

= 0, giving E(X) = µ. (5.15)
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This result can also be deduced from the observation that fX(x) is symmetrical about x = µ.

Since P(X ≤ µ) = 1
2 = P(X ≥ µ), µ is also the median (it is also the mode).

To find Var(X), we first consider Var(Z) = E(Z2).

E(Z2) =

∫

∞

−∞

z2 1√
2π

e−
1

2
z2

dz

=

∫

∞

0
· · · +

∫ 0

−∞

· · · (set y = −z in 2nd integral)

=
2√
2π

∫

∞

0
z2e−

1

2
z2

dz.

For integrals over (0,∞) with an integrand consisting of a power term and an exponential term,
one should try transforming into a Gamma function, defined as

Γ(p) =

∫

∞

0
tp−1e−tdt, p > 0. (5.16)

Given p, Γ(p) can be found from tables or by means of a computer program. Some useful
properties of the Gamma function are:

Γ(p + 1) = pΓ(p)
Γ(n + 1) = n! for non-negative integer n

Γ(1
2 ) =

√
π.

(5.17)

So, setting t = 1
2z2, dt = zdz =

√
2tdz, we get

E(Z2) =
2√
2π

∫

∞

0
2te−t 1√

2t
dt

=
2√
π

∫

∞

0
t

1

2 e−tdt

=
2√
π

Γ(3
2)

=
2√
π

.
1

2
Γ(1

2 ) =
2√
π

.
1

2

√
π = 1.

So Var(Z) = 1 and
Var(X) = Var(µ + σZ) = σ2Var(Z) = σ2. (5.18)

By a similar argument to that used for E(Z), we find that

E(Z3) = 0,

so
µ3 = E[(X − µ)3] = 0

and the coefficient of skewness is
γ1 = 0. (5.19)

More generally,
E(Z2r+1) = 0 and µ2r+1 = 0, r ≥ 1.

Also, by a similar analysis to that for E(Z2), it can be shown that E(Z4) = 3, so

µ4 = E[(X − µ)4] = 3σ4

and the coefficient of kurtosis is
γ2 = 0. (5.20)
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5.4.2 (Negative) Exponential distribution

This important distribution has 1 parameter (λ): its p.d.f. and c.d.f. are

f(x) =

{

λe−λx, x ≥ 0, λ > 0,
0, x < 0.

F (y) =

{

1 − e−λy, y ≥ 0,
0, y < 0.

(5.21)

while the mean and variance are

E(X) = 1/λ, Var(X) = 1/λ2. (5.22)

(See fig. on p.71 for shapes). We write X ∼ Exp(λ). This is the only continuous distribution
with the ‘no memory’ property (see HW Examples 6).

In a Poisson process, with parameter (rate) λ, the time to the first event (and the time between
successive events) is distributed Exp(λ) (see final chapter).

5.4.3 Gamma distribution

This distribution has 2 parameters (α, λ), and its p.d.f. is

f(x) =







λαxα−1e−λx

Γ(α)
, x ≥ 0; α, λ > 0

0, x < 0,

(5.23)

where Γ(α) =

∫

∞

0
tα−1e−tdt, (α > 0) is the Gamma function already introduced in (5.16),

with properties (5.17). Here α is an index or shape parameter, λ a scale parameter. We write
X ∼ Gamma(α, λ).

For integer α this distribution is often termed the Erlang distribution: this case is of consider-
able importance because X can then be written as the sum of α i.i.d. exponential r.v.s. Note
that in particular

Gamma(α = 1, λ) ≡ Exp(λ). (5.24)

The Gamma distribution is very useful for modelling data over the range (0,∞): by selecting
various values of α, quite a range of different shapes of p.d.f. can be obtained (see fig.).

The mean is

E(X) =

∫

∞

0
x.

λαxα−1e−λx

Γ(α)
dx (set t = λx, dt = λdx)

=
1

Γ(α)

∫

∞

0
tαe−t 1

λ
dt

=
1

Γ(α)λ
Γ(α + 1) =

α

λ
. (5.25)

Similarly

E(X2) =
α(α + 1)

λ2
, so Var(X) =

α

λ2
. (5.26)

In a Poisson process with parameter (rate) λ, the time to the rth event ( and the time between

the mth and (m + r)th events) is distributed Gamma(r, λ) (see final chapter).
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The shapes of some common distributions

Exponential

1

f(x)

x0
0

1

F (x)

x0
0

Gamma

0 < α < 1

f(x)

x0
0

α = 1
(exponential distn.)

1

f(x)

x0
0

1 < α ≤ 2

f(x)

x0
0

α > 2

f(x)

x0
0

(the mode moves to the right as α increases)

Beta

a < 1, b < 1 (a = b)
1

1

f(x)

x00
a < 1, b > 1

1

1

f(x)

x00
a < 1, b = 1

1

1

f(x)

x00
a = 1, b = 1

1

1

f(x)

x00

a = 1, b = 2

1

1

2

f(x)

x

1

00
1 < a, b ≤ 2 (a = b)

1

1

f(x)

x00
1 < a ≤ 2, b > 2

1

1

f(x)

x00
a > 2, b > 2

1

1

f(x)

x00

Weibull

0 < c ≤ 1

f(x)

x0
a

c = 1

1

f(x)

x0
a

1 < c ≤ 2

f(x)

x0 a

c > 2

f(x)

x0 a
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5.4.4 Beta distribution

This distribution has 2 parameters (a, b), and the p.d.f is

f(x) =







1

B(a, b)
xa−1(1 − x)b−1, 0 ≤ x ≤ 1; a, b > 0

0, otherwise,
(5.27)

where

B(a, b) =

∫ 1

0
ta−1(1 − t)b−1dt =

Γ(a)Γ(b)

Γ(a + b)
, (a, b > 0) (5.28)

is the Beta function. Also

E(X) =

∫ 1

0
x.

1

B(a, b)
xa−1(1 − x)b−1dx

=
1

B(a, b)

∫ 1

0
xa(1 − x)b−1dx

=
B(a + 1, b)

B(a, b)
=

Γ(a + 1)Γ(b)

Γ(a + b + 1)
.
Γ(a + b)

Γ(a)Γ(b)

i.e.
E(X) =

a

a + b
. (5.29)

Similarly we can show that

Var(X) =
ab

(a + b)2(a + b + 1)
. (5.30)

Again selection of values of a and b gives different shapes for the p.d.f. (see figures on p.71).
Note that these shapes may be reversed by interchanging the values of a and b, since, if X ∼
Beta(a, b), then 1 − X ∼ Beta(b, a).

This family of distributions is useful for modelling data over a finite range: the standard p.d.f.
(given above) is defined over [0, 1], but it may also be defined over [A,B] where A and B are
both finite. Thus, if we write Z = A + (B − A)X, i.e. A ≤ Z ≤ B, then

fZ(z) =
1

B(a, b)
.
(z − A)a−1(B − z)b−1

(B − A)a+b−1
, A ≤ z ≤ B. (5.31)

5.4.5 Uniform (or Rectangular) distribution

This simple distribution has 2 parameters (a, b): the p.d.f. and c.d.f. are

f(x) =







1

b − a
, a ≤ x ≤ b,

0, otherwise.
(5.32)

and

F (x) =







0, if x ≤ a,
(x − a)/(b − a), if a < x ≤ b,
1, if x > b.

(5.33)

Also,

E(X) =
1

2
(a + b), Var(X) =

1

12
(b − a)2. (5.33)

The case a = 0, b = 1 is particularly important (e.g. for random number generation in simula-
tion).
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5.4.6 Weibull distribution

This distribution (particularly associated with lifetime and reliability studies) has, in its most
general form, 3 parameters (a, b, c): the p.d.f., c.d.f. and mean are

f(x) =







c(x − a)c−1

bc
exp

{

−
(

x − a

b

)c}

, x ≥ a,

0, x < a.

F (y) =







1 − exp

{

−
(

y − a

b

)c}

, y ≥ 0,

0, y < 0.
E(X) = a + bΓ(1 + 1/c).

(5.35)

Selection of c determines the shape of the p.d.f. (see fig. for examples); b is a scale parameter
and a a location parameter. This distribution has properties similar to the Gamma distribution.
Note that Weibull(a = 0, b, c = 1) ≡ Exp(1/b).

5.4.7 Chi-squared distribution

Several other distributions arise frequently in statistical inference. Here we mention only the
chi-squared (χ2) distribution with n degrees of freedom, sometimes written χ2

n or χ2(n), which
has p.d.f.

f(x) =







1

2Γ(1
2n)

(1
2x)

1

2
n−1e−

1

2
x, x > 0,

0, x < 0
(5.36)

and mean
E(X) = n. (5.37)

We observe that in fact

χ2
n ≡ Gamma(α = n/2, n a positive integer, λ = 1

2). (5.38)
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5.5 Reliability

Let the continuous r.v. X, with c.d.f. F (x) and p.d.f. f(x), x ≥ 0 denote the lifetime of some
device or component: the device is said to fail at time X. There are a number of functions used
in reliability studies:

Survival function F (x) = 1 − F (x) = P(X > x), x ≥ 0
Hazard function H(x) = −log(1 − F (x)), x ≥ 0 (5.39)

Hazard rate function r(x) =
f(x)

F (x)
=

dH(x)

dx
, x ≥ 0.

The significance of r(x) may be derived as follows. The probability that the device fails during
(x, x + h) given that it has not failed by time x is

P(x ≤ X ≤ x + h|X > x) = {F (x + h) − F (x)}/F (x).

Then

limh→0

{

above prob.

h

}

= limh→0
F (x + h) − F (x)

hF (x)

=
1

F (x)

dF (x)

dx
=

f(x)

F (x)
= r(x)

i.e., r(x) may be regarded as an instantaneous failure rate or intensity of the probability that
a device aged x will fail. If r(x) is an increasing function of x, this implies that the device is
‘wearing out’, while if it is a decreasing function of x, this implies that the device is ‘bedding
in’, i.e. improving with age.

If X ∼ Exp(λ), then r(x) = λ, x ≥ 0: this constant hazard rate is consistent with the ‘lack-of
memory’ property of this distribution - the device cannot ‘remember’ how old it is.


