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Chapter 5

Continuous Random Variables

5.1 Basic Results

5.1.1 Definitions: the c.d.f. and p.d.f.

Our previous definition of a discrete random variable was rather restrictive. A broader definition
is as follows:

A random variable X defined on the probability space (S,F,P) is a mapping of S into the set
R of real numbers such that, if B, denotes the subset of outcomes in S which are mapped onto
the set (—oo, z], then

B, eF for all z € R.

We write
P(X <z)=P(B,).
We note that a discrete r.v. satisfies this definition.
Discrete r.v.s are generally studied through their probability functions; r.v.s in the broader

sense are studied through their cumulative distribution functions. The cumulative distribution
function (c.d.f.) Fx of ar.v. X is the function

Fx(z) =P(X <ux), —00 < & < 00. (5.1)

As with the probability function, the suffix X’ may be dropped when there is no ambiguity.
The c.d.f. has the following properties:

(i) F(z) < F(y) ifz<y, 1ie. F(.)is monotonic non-decreasing;
(ii) F(—o00) =0, F(400)=1;
(iii) F is continuous from the right, i.e.

Fx+h)— F(z) ash—0T;

(iv) P(a < X < b) = F(b) — F(a).
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For a discrete r.v., the c.d.f. is a step-function, i.e. at certain points it is discontinuous (from
the left). So it is natural to develop a theory for r.v.s with continuous c.d.f.s. However, it is
sufficient for practical purposes to consider c.d.f.s which are also reasonably smooth.

A rv. X defined on (S, F,P) is said to be continuous if

(i) its c.d.f. F(z), —0o < z < 00, is a continuous function;

(i) there exists a non-negative function f(x) such that

F(x):/x ft)dt, —oo<x<oo.

—00

(5.2)

An alternative form of the second condition is:

dF(x)
dx

(ii*) whose derivative = f(x) exists and is continuous except possibly at a finite

number of points.

The function f(x), —oo < x < o0, is called the probability density function (p.d.f.) of the r.v.
X.

Theorem If X is a continuous r.v.,

P(X=2)=0 for all x. (5.3)

Proof For any r.v. X with c.d.f. F,

limy o+ F(x+h) = F(z)=P(X <z); and
lim, g+ F(x —h) = P(X <ux), for all .

If X is continuous, F'(z) is a continuous function of z, i.e.

lim F(z —h)= lim F(zx+h)
h—0t h—0+

le.
PX<z)=P(X<z)=PX <z)+P(X =2x)
le.
P(X=2)=0 for all . O

For any meaningful statement about probabilities we must consider X lying in an interval or
intervals. Probability is represented as an area under the curve of the p.d.f. f(x).

A
f(z) Pla < X <)
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zo+dzo
P(zo < X <o+ dxg) = / ~ f(xo)dxo when dx¢ is small.

o

So f(x) itself is not a probability, but in the above sense f(x) is proportional to (or a measure
of) probability.

To summarise: the p.g.f. f(z) has the following properties:

(i) f(x) >0, —o0o<zx <00, and/ f(x)dx = 1.
(ii) f(x) is not a probability: f(x)dr ~P(x < X < x + dx).
(iii) Since P(X = z) =0 for all z,

Pla<X<b) = Pa<X<b)=Pla<X<b)=Pla<X<D)

5.1.2 Restricted Range

Suppose that
_ />0 for A<z < B, asubset of (—o0,00)
fla) =137~ i
=0 otherwise.
Then probability (and other) calculations may be based on the interval (A, B) rather than on
(—00,00): e.g.

1 = /_O:O f(z)dx /j; f(z)dx + /AB f(z)dx + /BOO f(z)dx = /AB f(z)dx;
Px<y) = [ f@iz = [ f@de yza
P(X>z2) = - flz)de = /ZB f(x)dzx, =z <B.

z

5.1.3 Expectation

The expected value or expectation of a continuous r.v. X with p.d.f. f(z) is denoted by E(X)
and is defined as

B(X) = / T o f(2)da (5.4)

provided that the integral is absolutely convergent (i.e. [0 |x|f(z)dx is finite). As in the
discrete case, E(X) is often termed the ezpected value or mean of X.

The continuous analogue of the ‘law of the unconscious statistician’ states that

Elg(0)] = [ g(o)f(a)do (5.5

provided the integral is absolutely convergent: once again, this is a result and not a definition.
An immediate application is to the variance of X, denoted by Var(X) and defined as

Var(X) = E([X — E(X)]?). (5.6)
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Writing ¢ = E(X), we have

Var(X) = [ (- S (a)do
= /_O:O 22 f(x)dx — 2u /_O:O zf (x)dx + p /_O:O f(x)dx
= [ e -yt
Var(X) = E(X?) — [E(X))?, (5.7)

just as in the discrete case. Other properties of the E and Var operators carry over in the same
way — in the proofs we simply replace Y and probability function by [ and p.d.f.

In modelling a set of data (see later), we are often interested in the shape of f(x): this can be
summarised by a measure of asymmetry called the coefficient of skewness, defined as

K3
= —. 5.8
! g (5.8)

f(z) 4 f(z) 4} f(z) A

long tail long tail
to right to left

> 0 > 0 >
positively skewed T symmetrical x negatively skewed T
v1 >0 v =0 v1 <0

For symmetrical p.d.f.s, a measure of peakedness is the coefficient of kurtosis, defined as

=53 (5.9)

Comparison is with the normal distribution, for which v3 = 0 (see §5.4.1).

A
f(@) I ()

0 0
. . T . . x
Heavier tails Lighter tails
than Normal: than Normal:
Y2 <0 y2 >0

Percentiles The 100qth percentile point is the value x(;9gq such that

P(X < poog) = F(Zpoog) =¢, 0<g<1. (5.10)

In particular, the median m is x5y and

F(m) = 0.5. (5.11)
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5.2 Transformations

5.2.1 Simpler Cases

Given a transformation Y = g(X), where X is a continuous r.v. with known p.d.f fx(z), how
can we determine the distribution of the r.v. Y7 There are two straightforward cases:

(i) IfY = g(X) where Y is a discrete r.v. and Y = y; corresponds to the interval a; < X < b;
(or a set of intervals), then

P =y = [ f@

(ii) Suppose Y = g(X) where g is one-to-one and differentiable. Then Y is a continuous r.v.
with p.d.f.

dx

i) = fxig ')} iy

, g(—0) <y < g(+00). (5.12)

(You may find it helpful to remind yourself of the proof of this result given in SOR101).

5.2.2 The Many-to-One Case

Now suppose that the transformation is no longer one-to-one, but many-to-one. There are two
possible procedures, which we shall illustrate by considering the transformation

Y = X?

where the range of X is (—o00,00) — a two-to-one transformation.

Method 1 Proceed through the c.d.f. (compare the proof of the result for a one-to-one
transformation): thus

Fy(y) = P(Y <y)
= P(X?<y)
— P(-VI<X <))
= Fx(yy) —Fx(—=yY), y=>0
Then differentiating we get
dFy (y
fr(y) = c}l/y( )
d
= o AEx(VY) — Fx(=vy)}
1 1
— f);(\/@) <ﬂ> — fx (=) <_ﬁ>
= — - <
T UV Ix (vl 0y <o
Method 2 Express the transformation in terms of separate one-to-one transformations

(so that the result for the one-to one case can be invoked). Here

X:{—i—\/?, for 0 < X < 0
—\/?, for —oc0o < X < 0.

Let
fx(@) = fx(x) + fx(2),
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where
Fi) = {fx(x), 0<z<oo

0, otherwise

and

frl) = {Jx@ 2t

0, otherwise
We now use the formula for the separate one-to-one transformations:

KW = fE+vy)

1
=, 0<y<o
2\/§

, 0<y <oo.

) = f-vi) ‘—%
Hence

) = K+

;W{fxwy) (VD)) 0<y < oo

- as obtained by Method 1.

5.2.3 Truncation

Suppose that the continuous r.v. X has p.d.f. fx(x),—0c0 < x < oo and the r.v. Y has similar
properties to X in the interval (A, B) and is defined to be 0 elsewhere, i.e.

S _[X ASX<B
10, otherwise

Then
Fy(y) = P(Y<y)=P(X <ylA< X <DB)
_ P(X<yand A< X <B)
B P(A< X < B)
_ PA<X<y<B)_ Fx(w-Fx(A) ,_ _,
P(A< X <B) Fx(B) — Fx(A)’ y
Hence

Ix(y)

0 otherwise
An alternative argument is as follows. Suppose that the p.d.f. of ¥ has a similar form to the
p.d.f. of X in the interval (A, B) and is zero otherwise. Thus

wa:{K&@,AgygB.

0, otherwise

The normalisation requirement [ fy (y)dy = 1 yields

B -1
K = [ /A fX<y>dy]

— the same result as above.

\
(@)
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5.3 Modelling

Many discrete probability distributions are considered as suitable models for certain standard
situations for which a probabilistic analysis is possible, e.g. binomial, geometric, Poisson,
hypergeometic.

On the other hand, a continuous distribution is often chosen as a model because of its shape,
particularly if a large sample of observations is available: if we construct a relative frequency
histogram, the piecewise linear construction joining the mid-points of the tops of adjacent bars
should approximate the curve of a suitable p.d.f.

1~

Relative
frequency

0 >
T

Real data, which must lie within a finite interval, may be modelled by a p.d.f. defined over
an infinite or semi-infinite range, since the infinite tail(s) of many p.d.f.s contain very little
probability. For example, if X ~ N(u,0?), P(X > u+ 40) ~ 0.000032. Thus, positive data
may be modelled by a continuous r.v. which theoretically can take negative values.

5.4 Important Continuous Distributions

5.4.1 Normal distribution

Also known as the Gaussian distribution, this has two parameters (u,o?): it is the most im-
portant distribution in statistics. If X ~ N(u,0?), its p.d.f. is

fx(z) = . exp{—l<x_u)2}, —00 < < 00. (5.13)

2ro 2 o

Ther.v. W = a+bX is distributed N (a+bpu, b>0?) — an example of a one-to-one transformation.
In particular, the r.v. Z = (X —p)/o is distributed N(0,1) (the standard normal distribution),
with p.d.f.

1
fz(z) = e_%ZQ, —00 < z < 0. (5.14)
2mo

Many properties of X (probabilities, moments, etc.) are readily derived from those of Z.

0 1
E(Z2) :/ 2 e 27 dz

Hence

E [X — “] =0, giving B(X) = . (5.15)
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This result can also be deduced from the observation that fx(z) is symmetrical about = = p.
Since P(X < p) = 3 = P(X > ), p is also the median (it is also the mode).
To find Var(X), we first consider Var(Z) = E(Z?).

E(Z?) = /oo 22 1 e 17 dz
P 27T0
= / cee 4 / e (set y = —z in 2nd integral)
0 —00

2 /OO 2 _122
— zée 2% dz.
V2w Jo
For integrals over (0, 00) with an integrand consisting of a power term and an exponential term,
one should try transforming into a Gamma function, defined as

r(p):/ tr~letat,  p>0. (5.16)
0

Given p, I'(p) can be found from tables or by means of a computer program. Some useful
properties of the Gamma function are:

F(p+1) = pl(p)
n+1) = nl! for non-negative integer n (5.17)

rd) = Vw

So, setting t = %22, dt = zdz = \/2tdz, we get

E(Z%) = ote!

So Var(Z) =1 and
Var(X) = Var(u + 0Z) = 0*Var(Z) = o (5.18)

By a similar argument to that used for E(Z), we find that
E(Z%) =0,
=)
s = B[(X — 1] = 0

and the coefficient of skewness is
v = 0. (5.19)

More generally,
E(Z* ) =0and pg41 =0, r>1.

Also, by a similar analysis to that for E(Z?), it can be shown that E(Z%) = 3, so
s = E[(X — )] = 30

and the coefficient of kurtosis is

Il
e



page 70 110SOR201(2002)

5.4.2 (Negative) Exponential distribution

This important distribution has 1 parameter (A\): its p.d.f. and c.d.f. are

—A\x
flz) = {)\e , x>0,A>0,
1- e—)\y, Yy Z 07 i
Fly) =
0, y < 0.
while the mean and variance are
E(X)=1/\, Var(X)=1/\% (5.22)

(See fig. on p.71 for shapes). We write X ~ Exp(A). This is the only continuous distribution
with the ‘no memory’ property (see HW Examples 6).

In a Poisson process, with parameter (rate) A, the time to the first event (and the time between
successive events) is distributed Exp(A)  (see final chapter).

5.4.3 Gamma distribution

This distribution has 2 parameters (o, A), and its p.d.f. is

)\awaflef)\m

B > 0:

f(w)z{ Ty “20 @r>0 (5.23)
0, z <0,

o

where T'(a) = / t*le7tdt, (a > 0) is the Gamma function already introduced in (5.16),
0

with properties (5.17). Here « is an index or shape parameter, A a scale parameter. We write

X ~ Gamma(a, \).

For integer « this distribution is often termed the Erlang distribution: this case is of consider-
able importance because X can then be written as the sum of « i.i.d. exponential r.v.s. Note
that in particular

Gamma(a = 1, ) = Exp()). (5.24)

The Gamma distribution is very useful for modelling data over the range (0,00): by selecting
various values of «, quite a range of different shapes of p.d.f. can be obtained (see fig.).

The mean is

00 A\ a—1_—\x
E(X) = / x.%dw (set t = Az, dt = \dx)
0
= —/oot%—tldt
a T(?) 0 A
o
= T 1) = —. 5.25
T(a)X (1) =3 (5:25)
Similarly
aola+1 o
E(XQ) = ()\2 )7 SO Var(X> = ﬁ (526)

In a Poisson process with parameter (rate) A, the time to the rth event (‘and the time between

the m™ and (m + r)*™® events) is distributed Gamma(r, \) (see final chapter).
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The shapes of some common distributions
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Exponential
f(@) F(x)
| \\ Ve
00 T 00 X
Gamma
f(@) f(x)
1
a=1
t (exponential distn.)
90 K 90 v
() S (@)
l<a<?2 a > 2
Y 0 T 0 0 T
(the mode moves to the right as « increases)
Beta
I I I I
/() L @) L ) L ) |
| | | E—
1 | 1 | 1 | 1 |
| | | |
| | |
| | | |
| | |
0 T= 0 Tz 0§ Tz 0 Tz
a<l,b<1 (a=0) a<l,b>1 a<l, b=1 a=1,b=1
I I I I
/(@) L @) L ) L ) |
| | | |
2 | 1 | 1 | 1 |
| | | |
1 I I I I
| | |
00 == 0§ = 00 T 00 T
a=1,b=2 1<a,b<2(a=0b) 1<a<2,b>2 a>2b>2
Weibull
() fl@) flz)
0<c<1 1<e<2 c>2
Oa x Oa T Oa x
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5.4.4 Beta distribution

This distribution has 2 parameters (a,b), and the p.d.f is

1 —1 b—1

— 2011 - <z <l
f@) =1 Bap® 797 Osesh ab>0 (5.27)

0, otherwise,

where
! ['(a)T'(b)
Bla,b) = [ t*1(1—1t)"tdt = b 2

(@)= [ e 0 0d= T (@b >0 (528)

is the Beta function. Also

1 1
E(X) = : i1 — )t
(X) /oxB(a,lb)x (1—2)"""dx
1

= B(a,b)/o m“(l—x)bildm
Bla+1,0) T(a+1)T(b) T(a+b)

B(a,b)  T(a+b+1) T(a)l'(b)

ie.
a
E(X) = . 5.29
(x)=-2 (529
Similarly we can show that
ab

Var(X) = (5.30)

@+tb)2atbrl)

Again selection of values of a and b gives different shapes for the p.d.f. (see figures on p.71).
Note that these shapes may be reversed by interchanging the values of a and b, since, if X ~
Beta(a, b), then 1 — X ~ Beta(b, a).

This family of distributions is useful for modelling data over a finite range: the standard p.d.f.
(given above) is defined over [0, 1], but it may also be defined over [A, B] where A and B are
both finite. Thus, if we write Z = A+ (B — A)X, i.e. A<Z < B, then

1 (z — A)* (B - z)b_l
f2(2) = Bla,b)  (B— Ayer—1

A<z<B. (5.31)

5.4.5 Uniform (or Rectangular) distribution

This simple distribution has 2 parameters (a,b): the p.d.f. and c.d.f. are

1
f@)=qb—a aszsb (5.32)
0, otherwise.
and
0, ifr <a,
Fz)={ (r—a)/(b—a), ifa<xz<b, (5.33)
1, ifx >b.
Also,
1 1
E(X)=g(a+b),  Var(X)=(b—a)". (5.33)

The case a = 0,b = 1 is particularly important (e.g. for random number generation in simula-
tion).
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5.4.6 Weibull distribution

This distribution (particularly associated with lifetime and reliability studies) has, in its most
general form, 3 parameters (a, b, c): the p.d.f., c.d.f. and mean are

flz) = C(x_bif)c_lexp{— (mga)c}, T > a,

) T < a.

Fly) = ;—eXP{—<y;a>c}, iig (5.35)

E(X) = a+bl(1+1/c).

Selection of ¢ determines the shape of the p.d.f. (see fig. for examples); b is a scale parameter
and a a location parameter. This distribution has properties similar to the Gamma distribution.
Note that Weibull(a = 0,b,¢c = 1) = Exp(1/b).

5.4.7 Chi-squared distribution

Several other distributions arise frequently in statistical inference. Here we mention only the
chi-squared (x*) distribution with n degrees of freedom, sometimes written x2 or x?(n), which
has p.d.f.

1 1 %n—l —%x
f(z) = { 21“(%11)(5”6) e w>0, (5.36)

and mean

E(X) =n. (5.37)
We observe that in fact

X2 = Gamma(a = n/2,n a positive integer, A = 1). (5.38)
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5.5 Reliability

Let the continuous r.v. X, with c.d.f. F(z) and p.d.f. f(z), > 0 denote the lifetime of some
device or component: the device is said to fail at time X. There are a number of functions used
in reliability studies:

Survival function F(r)=1-F(x)=P(X >z), >0
Hazard function H(z) = —log(1 — F(z)), x>0 (5.39)
H
Hazard rate function r(z) = i(x) _4d (x), x> 0.
F(x) dx

The significance of r(x) may be derived as follows. The probability that the device fails during
(x,z + h) given that it has not failed by time x is

Pz <X <z+h|X>x)={F(x+h)—F(z)}/F(x).

Then

[
g
>
]
o

T {above prob. } ) F(x+h)— F(x)

h

i.e., r(xz) may be regarded as an instantaneous failure rate or intensity of the probability that
a device aged = will fail. If r(x) is an increasing function of x, this implies that the device is
‘wearing out’, while if it is a decreasing function of z, this implies that the device is ‘bedding
in’, i.e. improving with age.

If X ~ Exp(A), then r(z) = A\, © > 0: this constant hazard rate is consistent with the ‘lack-of
memory’ property of this distribution - the device cannot ‘remember’ how old it is.




