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5.6 Bivariate distributions

5.6.1 The joint and marginal distributions

We now broaden our previous discussion of the joint properties of two r.v.s (which was restricted
to the discrete case). The joint (cumulative) distribution function of two r.v.s (X,Y ) is defined
as

F (x, y) = P(E ∈ S : X(E) ≤ x, and Y (E) ≤ y)
= P(X ≤ x, Y ≤ y)

(5.40)

The pair of r.v.s is called (jointly) continuous if its joint distribution function can be expressed
as

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dudv, for all x, y (5.41)

where the joint probability density function f(x, y),−∞ < x, y < ∞ has the properties

f(x, y) ≥ 0, −∞ < x, y < ∞,
∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1,

f(x, y) =







∂2F (x, y)

∂x∂y
if this derivative exists at (x, y)

0 otherwise.

As in the univariate case, we can give a probability interpretation to f(x, y) through the ap-
proximate relation

P(x < X < x + δx, y < Y < y + δy) ≈ f(x, y)δxδy.

More generally, if A is a subset of R2, then

P((X,Y ) ∈ A) =

∫ ∫

(x,y)∈A

fX,Y (x, y)dxdy. (5.43)

So, for example, at points of differentiability,

fX(x) =
d

dx
P(X ≤ x)

=
d

dx

∫ x

−∞

∫ ∞

−∞
f(u, y)dudy

=

∫ ∞

−∞
f(x, y)dy, −∞ < x < ∞. (5.44a)

and in this context this is termed the marginal distribution of X. Similarly the marginal
distribution of Y has p.d.f.

fY (y) =

∫ ∞

−∞
f(x, y)dx, −∞ < y < ∞. (5.44b)

The conditional p.d.f. of Y given X = x is defined by

fY |X(y|x) =
f(x, y)

fX(x)
, −∞ < y < ∞. (5.45a)

Similarly, the conditional p.d.f. of X given Y = y is defined by

fX|Y (x|y) =
f(x, y)

fY (y)
, −∞ < x < ∞. (5.45b)
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5.6.2 Independence

We can no longer define independence of random variables in terms of events like {X = x},
since in the continuous case such events have zero probability. A broader definition is as follows:

The random variables X and Y are called independent if {X ≤ x} and {Y ≤ y} are independent
events for all real x, y. Thus,

X and Y are independent if and only if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) for all x, y,

i.e. F (x, y) = FX(x)FY (y) for all x, y.
(5.46)

(In the discrete case, this can be shown to be equivalent to the definition given previously).

It can be proved that, if X and Y are independent, then so are g(X) and h(Y ) (assuming these
functions are also random variables).

It is easily shown from (5.46) that

if X and Y are jointly continuous, they are independent if and only if

f(x, y) = fX(x).fY (y) for all x, y; (5.47)

or, to state a more general result, if and only if

f(x, y) = (function of x).(function of y) = g(x)h(x) say. (5.48)

This result is often used in questions of the form ‘...determine the joint p.d.f. of the r.v.s U and
V , then deduce that U and V are independent, and find fU (u) and fV (v).’

Note that if X and Y are independent, then

fY |X(y|x) =
f(x, y)

fX(x)
=

fX(x).fY (y)

fX(x)
= fY (y) (5.49)

as expected; i.e. information about X is irrelevant to the study of Y .

5.6.3 Expectation

One can prove the bivariate form of the ‘law of the unconscious statistician’ for continuous r.v.s
X,Y :

E(h(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y)dxdy (5.50)

whenever this integral converges absolutely. Using this result, it is easily proved that

E(aX + bY ) = aE(X) + bE(Y ). (5.51)

Note that this is true whether or not X and Y are independent. By a similar proof to that
given for discrete r.v.s, it is readily shown that if X,Y are continuous independent r.v.s, then

E(XY ) = E(X)E(Y ). (5.52)

Once again, the converse is false.

The conditional expectation of X given Y = y is defined as the mean of the conditional p.d.f.
of X given Y = y: thus

E(X|Y = y) =

∫ ∞

−∞
xfX|Y (x|y)dx =

∫ ∞

−∞
x

f(x, y)

fY (y)
dx (5.53)
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for any value of y for which fY (y) > 0. By a proof analogous to that given in §2.4.3 for the
discrete case, it is readily shown that

E[E(X|Y )] =

∫

E(X|Y = y)fY (y)dy = E(X), (5.54)

the integral being over all y s.t. fY (y) > 0.

The generalisation of the definitions and results for the bivariate case to the multivariate case
is generally straightforward and will not be laboured here.

5.7 The bivariate Normal distribution and its generalisation

5.7.1 Bivariate Normal distribution

In its most general form, this distribution has 5 parameters: µx, µy, σx, σy and ρ. The joint
p.d.f. of (X,Y ) is

f(x, y) =
1

2πσxσy

√

1 − ρ2
×

exp







− 1

2(1 − ρ2)





(

x − µx

σx

)2

− 2ρ

(

x − µx

σx

)

(

y − µy

σy

)

+

(

y − µy

σy

)2










(5.55)

where −∞ < x, y < ∞; the parameters are such that

−∞ < µx, µy < ∞; σx, σy > 0; −1 < ρ < 1.

This is referred to as the N(µx, µy;σ
2
x, σ2

y ; ρ) distribution. The joint p.d.f. has an asymmetric
bell shape.

The marginal distribution of X has p.d.f.

fX(x) =

∫ ∞

−∞
f(x, y)dy, −∞ < x < ∞.
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In calculating the integral, we consider x to be fixed: the exponent in f(x, y) can be written
(by ‘completing the square’):

(

x − µx

σx

)2

+







(

y − µy

σy

)2

− 2ρ

(

x − µx

σx

)

(

y − µy

σy

)

+ ρ2

(

x − µx

σx

)2






−ρ2

(

x − µx

σx

)2

= (1 − ρ2)

(

x − µx

σx

)2

+ u2,

where

u =

(

y − µy

σy

)

− ρ

(

x − µx

σx

)

.

Now make a change of variable from y to u:
du

dy
=

1

σy
. Then

fX(x) =

∫ ∞

−∞

1

2πσxσy

√

1 − ρ2
exp

{

− 1

2(1 − ρ2)

[

(1 − ρ2)

(

x − µx

σx

)2

+ u2

]}

σydu

=
1

2πσx

√

1 − ρ2
exp

{

−1
2

(

x − µx

σx

)2
}

∫ ∞

−∞
exp

{

− 1

2(1 − ρ2)
u2
}

du.

But
∫ ∞

−∞

1√
2π
√

1 − ρ2
exp

{

− 1

2(1 − ρ2)
u2
}

du = 1,

since the integrand is the p.d.f. of N(0, 1 − ρ2). So

fX(x) =
1√

2πσx

exp

{

−1

2

(

x − µx

σx

)2
}

, −∞ < x < ∞ (5.56)

i.e. X ∼ N(µx, σ2
x), so that

E(X) = µx, Var(X) = σ2
x. (5.57a)

Similarly Y ∼ N(µy, σ
2
y) and

E(Y ) = µy, Var(Y ) = σ2
y . (5.57b)

Note: It is possible to have a joint p.d.f. which has marginal p.d.f.s which are Normal, yet
which is not bivariate normal.

The conditional p.d.f. fY |X(y|x) is defined as

f(x, y)

fX(x)
=

1√
2πσy

√

1 − ρ2
exp

{

− 1

2(1 − ρ2)σ2
y

[y − (µy + ρ
σy

σx
(x − µx))]2

}

,

i.e., fY |X(y|x) is the p.d.f. of

N(µy + ρ
σy

σx
(x − µx), (1 − ρ2)σ2

y). (5.58a)

Similarly, fX|Y (x|y) is the p.d.f. of

N(µx + ρ
σx

σy
(y − µy), (1 − ρ2)σ2

x). (5.58b)

Many calculations involving the bivariate Normal distribution can be done in terms of the
standard bivariate Normal distribution N(0, 0; 1, 1; ρ). Let

U =
X − µx

σx
, V =

Y − µy

σy
. (5.59)
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Then, as we shall prove later, the joint p.d.f. of (U, V ) is the standard bivariate Normal
distribution, with

fS(u, v) =
1

2π
√

1 − ρ2
exp{− 1

2(1 − ρ2)
[u2 − 2ρuv + v2]}, −∞ < u, v < ∞. (5.60)

Then
F (x, y) = P(X ≤ x, Y ≤ y)

= P

(

U ≤ x − µx

σx
, V ≤ y − µy

σy

)

= F S

(

x − µx

σx
,
y − µy

σy

)

.

Bivariate moments of X,Y are most easily calculated from the moments of U, V . In particular,
we show later that

ρ(X,Y ) = ρ(U, V ) = ρ. (5.61)

Now when ρ = 0, f(x, y) = g(x).h(y) for all x, y. So for the bivariate Normal distribution (but
not in general)

ρ = 0 ⇒ X and Y are independent r.v.s.

5.7.2 Multivariate Normal distribution

(NOTE: Not required for examination purposes.]

The r.v.s (X1, X2, ..., Xp) have the multivariate Normal distribution (or multinormal
distribution) if the joint p.d.f. is

f(x1, x2, ..., xp) =
1

(2π)
1
2
p|V | 12

exp{−1

2
(x − µ)′V −1(x − µ)}, (5.62)

where −∞ < xi < ∞, i = 1, ..., p; here

(x − µ)′ = (x1 − µ1, x2 − µ2, ..., xp − µp) ( (...)′ denotes the transpose), and

V is the variance-covariance matrix of (X1, ..., Xp), i.e.

V =















Var(X1) Cov(X1, X2) ... ... Cov(X1, Xp)
Cov(X2, X1) Var(X2) ... ... Cov(X2, Xp)

: : :
: : :

Cov(Xp, X1) Cov(Xp, X2) ... ... Var(Xp)















,

a symmetric matrix with (i, j)th element

Cov(Xi, Xj) = ρ(Xi, Xj)
√

Var(Xi)Var(Xj).

Many marginal distributions can be derived, but in particular

Xi ∼ N(µi, σ
2
i ), where σ2

i = Var(Xi). (5.63)

There is a convenient matrix notation for means,variances, covariances etc. Introduce

X =









X1

:
:

Xp








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– a p × 1 vector of random variables, and

E(X) =









E(X1)
:
:

E(Xp)









a p × 1 vector of means. Then the p × p covariance matrix (of X or X1, ..., Xp) is denoted by
Var(X), and

Var(X) = E[(X − E(X)(X − E(X))′]
= E(XX ′) − E(X)[E(X)]′.

For the linear combination
∑p

i=1
aiXi = a′X , we have

E(
p
∑

i=1

aiXi) = E(a′X) = a′E(X),

– the scalar product of a 1 × p vector and a p × 1 vector, and

Var(
p
∑

i=1

aiXi) = Var(a′X) = a′Var(X)a

– (1 × p) × (p × p) × (p × 1).
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5.8 Functions of several random variables

We first discuss methods of finding the p.d.f. of a function of (X,Y ), before generalizing.

5.8.1 Transformation rule

Let the continuous r.v.s (X,Y ) have joint p.d.f. fX,Y (x, y), and let A = {(x, y) : fX,Y > 0}.
Consider

U = H1(X,Y ), V = H2(X,Y ),

where the partial derivatives of H1,H2 exist and are continuous at all (x, y) ∈ A. Suppose
further that the transformation

u = H1(x, y), v = H2(x, y) (5.64a)

is one-to-one and maps A (in the (x, y) plane) onto B (in the (u, v) plane): then there is an
inverse transformation

x = G1(u, v), y = G2(u, v). (5.64b)

which maps B onto A. The Jacobian of the original transformation is the determinant

J(u, v;x, y) =
∂(u, v)

∂(x, y)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣

∣

∣

∣

∣

∣

∣

∣

. (5.65a)

The Jacobian of the inverse transformation is

J(x, y;u, v) =
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

. (5.65b)

It is the latter that we will require, but since the product of the two Jacobians is 1, we calculate
whichever is easier to do. Consider any A ⊆ A and suppose that under (5.64a) it is mapped
into B ⊆ B. Then

P((X,Y ) ∈ A) =

∫ ∫

A
fX,Y (x, y)dxdy

=

∫ ∫

B
fX,Y (G1(u, v), G2(u, v))|J(x, y;u, v)|dudv

by a theorem in analysis, while

P((U, V ) ∈ B) =

∫ ∫

B
fU,V (u, v)dudv.

But P((X,Y ) ∈ A) = P((U, V ) ∈ B) for all A ⊆ A: this implies that

fU,V (u, v) =

{

fX,Y {G1(u, v), G2(u, v)}|J(x, y;u, v)|, if (u, v) ∈ B
0, otherwise.

(5.66)

which is the required transformation rule.

Some practical aspects need to be mentioned before we look at examples.

(i) Suppose we wish to find the p.d.f. of the continuous r.v. U = H1(X,Y ). We introduce
a second continuous r.v. V = H2(X,Y ) such that H1,H2 have the above properties, and use
the transformation rule (5.66) to obtain the joint p.d.f. of (U, V ), fU,V (u, v). The p.d.f. of U
is then obtained as a marginal p.d.f. of fU,V (u, v), by integrating fU,V (u, v) with respect to v
over the appropriate range of v. Naturally, we choose V so as to make the calculations as easy
as possible!
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(ii) Suppose we wish to show that the continuous r.v.s U = H1(X,Y ) and V = H2(X,Y ) are
independent. If we can find the joint p.d.f. of (U, V ), fU,V (u, v), and it factorises into a function
of u times a function of v, then by (5.48) U and V are independent.

(iii) Many-to-one cases can be handled in a manner analogous to univariate transformations
(not required in this Module).

(iv) The technique can be extended without difficulty to p-dimensional r.v.s (p ≥ 3). Now

p r.v.s X1, X2, ..., Xp → p r.v.s U1, U2, ..., Up

and the Jacobian J(x1, ..., xp;u1, ..., up) is a p × p determinant.

5.8.2 Examples

Example 1

Suppose that
(X,Y ) ∼ N(µx, µy;σ

2
x, σ2

y ; ρ).

Show that

U =
X − µx

σx
, V =

Y − µy

σy

have the standard bivariate Normal distribution (anticipated at end of §5.7.1).

Solution The transformation

u =
x − µx

σx
, v =

y − µy

σy

is one-to-one and has the inverse

x = µx + σxu, y = µy + σyv.

Also
−∞ < x, y < ∞ → −∞ < u, v < ∞

and

J(x, y;u, v) =

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

σx 0
0 σy

∣

∣

∣

∣

∣

= σxσy.

Now from (5.55) the joint p.d.f. of (X,Y ) is

fX,Y (x, y) =
1

2πσxσy

√

1 − ρ2
exp







− 1

2(1 − ρ2)





(

x − µx

σx

)2

− 2ρ

(

x − µx

σx

)

(

y − µy

σy

)

+

(

y − µy

σy

)2










where −∞ < x, y < ∞. So by (5.66) the joint p.d.f. of (U, V ) is

fU,V (u, v) = fX,Y (µx + σxu, µy + σyv)|J(x, y;u, v)|
=

1

2π 6 σx 6 σy

√

1 − ρ2
exp

{

− 1

2(1 − ρ2)
[u2 − 2ρuv + v2]

}

6 σx 6 σy, −∞ < u, v < ∞

i.e. (U, V ) ∼ N(0, 0; 1, 1; ρ) (see (5.60)). tu
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Example 2

Let Z and V be independent r.v.s, where Z ∼ N(0, 1) and V ∼ χ2
r, i.e.

fZ(z) =
1√
2π

e−
1
2
z2

, −∞ < z < ∞;

fV (v) =
1

2
r
2 Γ( r

2)
v

r
2
−1e−

v
2 , 0 ≤ v < ∞.

Find the p.d.f. of the r.v. T =
Z

√

V/r
.

Solution Since Z and V are independent, the joint p.d.f. of (Z, V ) is

fZ,V (z, v) = fZ(z).fV (v), −∞ < z < ∞, 0 ≤ v < ∞.

Consider the transformation
t =

z
√

v/r
, u = v.

It is one-to-one and has inverse

z = t
√

u/r, v = u; −∞ < t < ∞, 0 ≤ u < ∞.

Also

J(t, u; z, v) =

∣

∣

∣

∣

∣

∣

∣

1
√

v/r
− z

√
r

2v3/2

0 1

∣

∣

∣

∣

∣

∣

∣

=
1

√

v/r
=

1
√

u/r
.

So
fT,U(t, u) = fZ,V (t

√

u/r, u)|J(z, v; t, u)|
=

1√
2π

e−
1
2
t2u/r.

1

2
r
2 Γ( r

2 )
u

r
2
−1e−u/2.|

√

u/r|,

−∞ < t < ∞, 0 ≤ v < ∞.

So the p.d.f. of T is

fT (t) =

∫ ∞

0
fT,U(t, u)du

=
1√

2πr2
r
2 Γ( r

2)

∫ ∞

0
u

r
2
− 1

2 e−
u
2
(1+t2/r)du.

We can express this as a Gamma function integral by changing a variable: introduce

w = u
2 (1 + t2/r)

or u =
2w

(1 + t2/r)
.

Then

fT (t) = .....

∫ ∞

0

(

2w

1 + t2/r

) r
2
− 1

2

e−w
(

2

1 + t2/r

)

dw

=
1

√
πrΓ( r

2 )(1 + t2/r)
r+1
2

∫ ∞

0
w

r+1
2

−1e−wdw

=
Γ( r+1

2 )√
πrΓ( r

2 )
(1 + t2/r)−

r+1
2 , −∞ < t < ∞.

This is the p.d.f. of Student’s t-distribution with r degrees of freedom. tu
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Example 3

Suppose that X and Y are independent r.v.s, where

X ∼ χ2
m, Y ∼ χ2

n.

Show that

U = X + Y, V =
(X/m)

(Y/n)

are independent r.v.s and find their distributions.

Solution We have

fX(x) =
1

2
m
2 Γ(m

2 )
x

m
2
−1e−

x
2 = Cmx

m
2
−1e−

x
2 , 0 ≤ x < ∞

fY (y) = Cny
n
2
−1e−

y

2 , 0 ≤ y < ∞.

The joint p.d.f. of (U, V ) is

fX,Y (x, y) = fX(x).fY (y) (independence)

= CmCnx
m
2
−1y

n
2
−1e−

x+y

2 , 0 ≤ x, y < ∞.

The transformation

u = x + y, v =
(x/m)

(y/n)

is one-to-one with inverse

x =
muv

mv + n
, y =

nu

mv + n
; 0 ≤ u, v < ∞.

Also

J(u, v;x, y) =

∣

∣

∣

∣

∣

1 1
n

my − nx
my2

∣

∣

∣

∣

∣

= −n(x + y)

my2
= −(mv + n)2

mnu
.

So the joint p.d.f. of (U, V ) is

fU,V (u, v) = fX,Y ( muv
mv+n , nu

mv+n )

∣

∣

∣

∣

{

− (mv+n)2

mnu

}−1
∣

∣

∣

∣

= CmCn

(

muv
mv+n

)m
2
−1 (

nu
mv+n

)n
2
−1

e−
u
2 .

mnu

(mv + n)2

= CmCnm
m
2 n

n
2 u

m+n

2
−1e−

u
2 .

v
m
2
−1

(mv + n)
m+n

2

, 0 ≤ u, v < ∞,

i.e. fU,V (u, v) = (function of u) × (function of v) for all (u, v). It follows that U and V are
independent r.v.s. Also

fU(u) = Au
m+n

2
−1e−

u
2 , 0 ≤ u < ∞;

fV (v) = B
v

m
2
−1

(mv + n)
m+n

2

, 0 ≤ v < ∞,

where A and B are constants such that
∫ ∞

0
fU (u)du =

∫ ∞

0
fV (v)dv = 1

and also that
A.B = CmCnm

m
2 n

n
2 . (5.67)

By inspection, or by integration with respect to u and using the Gamma function, we obtain

A =

[

2
m+n

2 Γ(
m + n

2
)

]−1

= Cm+n,
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and U ∼ χ2
m+n; i.e. U has the χ2-distribution with (m + n) degrees of freedom.

Then from (5.67) we find that

B =
m

m
2 n

n
2

B(m
2 , n

2 )
, where B(

m

2
,
n

2
) =

Γ(m
2 )Γ(n

2 )

Γ(m+n
2 )

,

so that V ∼ Fm,n; i.e. V has the F - distribution with (m,n) degrees of freedom.

Example 4

Suppose the independent r.v.s X and Y are each uniformly distributed on [0, 1]. Find the joint
p.d.f. of

U =
X

Y
, V = XY,

and hence find the p.d.f. of U .

Solution We have

fX(x) =

{

1, 0 ≤ x ≤ 1,
0, otherwise;

fY (y) =

{

1, 0 ≤ y ≤ 1,
0, otherwise.

Then
fX,Y = fX(x).fY (y) [independence]

=

{

1, 0 ≤ x, y ≤ 1,
0, otherwise.

The transformation
u =

x

y
, v = xy, 0 ≤ x, y ≤ 1

is one-to-one and has inverse

x =
√

uv, y =

√

v

u
.

Also

J(u, v;x, y) =

∣

∣

∣

∣

∣

1
y − x

y2

y x

∣

∣

∣

∣

∣

= 2
x

y
= 2u.

So

fU,V (u, v) = fX,Y (
√

uv,

√

v

u
)| 1

2u
| =

{

1
2u , 0 ≤ √

uv ≤ 1, 0 ≤
√

v
u ≤ 1,

0, otherwise.

Now

0 ≤
√

uv ≤ 1, 0 ≤
√

v

u
≤ 1 =⇒ 0 ≤ v ≤ 1

u
, 0 ≤ v ≤ u.

Only one or other of these ranges need be retained, depending on whether u is in [0, 1] or [1,∞].
Thus

fU,V (u, v) =







1

2u
,

0 ≤ u ≤ 1, 0 ≤ v ≤ u;
1 ≤ u < ∞, 0 ≤ v ≤ 1

u
0, otherwise.

Then

fU(u) =

∞
∫

−∞
fU,V (u, v)dv

=

{∫ u
0

1
2udv, 0 ≤ u ≤ 1

∫

1
u

0
1
2udv, 1 ≤ v < ∞

=

{

1
2 , 0 ≤ u ≤ 1
1

2u2 , 1 ≤ u < ∞.

tu
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5.9 Orthogonal transformations

We now proceed to examine a particularly important multivariate situation. Let Z1, Z2, ..., Zn

be independent N(0, 1) r.v.s. Consider the orthogonal transformation

Y1 = c11Z1 + · · · + c1nZn

Y2 = c21Z1 + · · · + c2nZn

... .. ................
Yn = cn1Z1 + · · · + cnnZn

or
Y = CZ

(n × 1) (n × n) (n × 1)
(5.68)

where C is an orthogonal matrix, i.e.

C ′C = CC ′ = In (5.69)

where In is the n × n identity matrix














1 0 0 ... ... 0
0 1 0 ... ... 0
0 0 1 ... ... 0
.. .. .. ... ... ..
0 0 0 ... ... 1















.

C has the following properties:

(i) for any row, the sum of the squared elements is 1, i.e.

n
∑

j=1

c2
ij = 1;

(ii) for any two rows, the sum of the products of corresponding elements is 0, i.e.

n
∑

j=1

cijckj = 0, i 6= k;

(iii) |C| = ±1.

Such a transformation is one-to-one with inverse Z = C−1Y = C ′Y , and the Jacobian

J(y1, ..., yn; z1, ..., zn) is |C| = ±1 since
∂yi

∂zi
= cij .

Also
n
∑

i=1

Y 2
i = Y ′Y = Z ′C ′CZ = Z ′InZ = Z ′Z =

n
∑

i=1

Z2
i ;

n
∑

i=1

y2
i =

n
∑

i=1

z2
i .

(5.70)

Now

fZi
(z) =

1√
2π

e−
1
2
z2

, −∞ < z < ∞ (i = 1, ..., n).

So the joint p.d.f. of Z1, ..., Zn is

fZ1...Zn
(z1, ..., zn) = fZ1(z1).fZ2(z2)...fZn

(zn) [independence]

=
n
∏

i=1

1√
2π

exp{−1
2z2

i }

=

(

1√
2π

)n

exp{−1
2

n
∑

i=1

z2
i }, −∞ < zi < ∞.
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Then
fY1,...Yn

(y1, ..., yn) = fZ1,...,Zn
(z1, ..., zn)|J(z1, ..., zn; y1, ..., yn)|

=

(

1√
2π

)n

exp

{

−1
2

n
∑

i=1

z2
i

}

.1

=

(

1√
2π

)n

exp

{

−1
2

n
∑

i=1

y2
i

}

=
n
∏

i=1

1√
2π

exp{−1
2y2

i },

i.e. Y1, ..., Yn are independent N(0, 1) r.v.s.

5.10 Some applications to sampling theory

5.10.1 Sampling from N(0, 1)

Now, in the orthogonal transformation considered in the previous section, let the first row of
C be 1√

n
, 1√

n
, ..., 1√

n
, so that

Y1 =
n
∑

i=1

1√
n

Zi =
1√
n

n
∑

i=1

Zi =
√

nZ

where Z =
1

n

n
∑

i=1

Zi. The other rows can be chosen in any way which gives an orthogonal C:

in any case,

V ≡
n
∑

i=1

(Zi − Z)2 =
n
∑

i=1

Z2
i − nZ

2

=
n
∑

i=1

Y 2
i − Y 2

1 =
n
∑

i=2

Y 2
i .

So, since the {Yi} are independent r.v.s,
√

nZ and V are independent r.v.s, i.e. Z and
1

n − 1

n
∑

i=1

(Zi − Z)2 are independent r.v.s, i.e. the sample mean r.v. and the sample vari-

ance r.v. for a random sample from N(0, 1) are independent r.v.s.

Now
Yi ∼ N(0, 1), i = 1, ..., n

so
Y 2

i ∼ χ2
1 [see HW Ex.6, Qn. 3(ii)].

Hence

√
nZ = Y1 ∼ N(0, 1) ⇒ Z ∼ N(0,

1

n
) (5.71)

and
V = Y 2

2 + · · · + Y 2
n ∼ χ2

n−1 [see Example 3 in §5.8.2] (5.72)
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5.10.2 Sampling from N(µ, σ2)

Suppose that X1, ..., Xn are independent N(µ, σ2) r.v.s corresponding to a random sample
(x1, ..., xn) from N(µ, σ2). Let

Zi =
Xi − µ

σ
, i = 1, ..., n.

Then Z1, ..., Zn are independent N(0, 1) r.v.s.

Consider the sample mean r.v.

X =
1

n

n
∑

i=1

Xi

and the sample variance r.v.

S2 =
1

n − 1

n
∑

i=1

(Xi − X)2.

Since

Z =
X − µ

σ
, (n − 1)

S2

σ2
=

n
∑

i=1

(Zi − Z)2,

we have that
√

n
X − µ

σ
=

√
nZ = Y1,

and (n − 1)
S2

σ2
= V.

Since Y1 and V are independent, it follows that
√

n(X−µ)/σ and (n−1)S2/σ2 are independent.
Hence X and S2 are independent r.v.s and

X = µ +
σ√
n

Y1 ∼ N(µ,
σ2

n
); (n − 1)

S2

σ2
∼ χ2

n−1. (5.73)

5.10.3 Test statistic for t-test of a mean

Since
√

n
X − µ

σ
∼ N(0, 1)

and

(n − 1)
S2

σ2
∼ χ2

n−1

are independent r.v.s,

√
n

X − µ

σ
÷
√

(n − 1)
S2

σ2
÷ (n − 1) ∼ tn−1

(see Example 2 in §5.8.2), i.e.

X − µ
√

S2/n
∼ tn−1. (5.74)
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5.10.4 Test statistic for F-test of two variances

Let X11, ..., X1m be m independent r.v.s, each distributed N(µ1, σ
2
1). Let X21, ..., X2n be n

independent r.v.s, each distributed N(µ2, σ
2
2), independent of the first set. Define the sample

variance r.v. for the first distribution:

S2
1 =

1

m − 1

m
∑

j=1

(X1j − X1)
2, where X1 =

m
∑

j=1

X1j/m.

Similarly for the second distribution:

S2
2 =

1

n − 1

n
∑

j=1

(X2j − X2)
2, where X2 =

n
∑

j=1

X2j/n.

From §5.10.2 above, we have

(m − 1)
S2

1

σ2
1

∼ χ2
m−1,

(n − 1)
S2

2

σ2
2

∼ χ2
n−1,

and these r.v.s are also independent. Then (from Example 3, §5.8.2),

(m − 1)S2
1/σ2

1 ÷ (m − 1)

(n − 1)S2
2/σ2

2 ÷ (n − 1)
=

S2
1/σ2

1

S2
2/σ2

2

∼ Fm−1,n−1. (5.75a)

If σ2
1 = σ2

2, this simplifies to

S2
1

S2
2

∼ Fm−1,n−1. (5.75b)
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5.11 Order statistic random variables

Let x1, ..., xn be a random sample of size n on the continuous r.v. X with p.d.f. f(x), c.d.f.
F (x),−∞ < x < ∞.

OR

Let X1, ..., Xn be independent r.v.s, each having the same distribution as X; and let x1 be a
random sample of size 1 on X1, x2 a random sample of size 1 on X2, and so on.

In applications we generally use the first formulation, in theoretical work the second.

Rearrange the sample x1, ..., xn in ascending order:

x(1) ≤ x(2) ≤ · · · ≤ x(n).

Then x(i) is the ith order statistic of the sample (x1, ..., xn) and is an observation on the

r.v. X(i,n) = X(i) which is described as the ith order statistic r.v. (If we consider repeated

samples of size n from the p.d.f. f(x), the ith order statistic values have a distribution with
associated r.v. X(i)). {X(1), X(2), ..., X(n)} is the set of order statistic r.v.s associated with the
set {X1, X2, ..., Xn}.

We wish to find, for example, the p.d.f. of X(i), i = 1, ..., n and the joint p.d.f. of X(i), X(j), i < j.
We start with two simple cases.

(i) p.d.f. of X(1)

(X(1) is the r.v. associated with the smallest observation in the sample of size n.)

We have that

P(X(1) > x) = P(X1 > x,X2 > x, ...,Xn > x)

= P(X1 > x).P(X2 > x).....P(Xn > x) [independence]
= {1 − F (x)}n.

So the c.d.f. of X(1) is

F(1)(x) = P(X(1) ≤ x) = 1 − {1 − F (x)}n,

and the p.d.f. is then

f(1)(x) =
dF(1)(x)

dx
= n{1 − F (x)}n−1f(x), −∞ < x < ∞. (5.76)

(ii) p.d.f. of X(n)

(X(n) is the r.v. associated with the largest observation in the sample of size n.)

By a similar argument, we have that the c.d.f. of X(n) is

F(n)(x) = P(X(n) ≤ x) = {F (x)}n

so the p.d.f. is

f(n)(x) = n{F (x)}n−1f(x), −∞ < x < ∞. (5.77)
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(iii) p.d.f. of X(i)

Two derivations of this general p.d.f. can be given.

The first procedure is similar to that used above, i.e. we establish, and then differentiate, the
c.d.f. The c.d.f. of X(i) is as follows:

F(i)(x) = P(X(i) ≤ x)

= P(i or more Xjs are ≤ x)

=
n
∑

k=i

(n
k

)

{F (x)}k{1 − F (x)}n−k, 1 ≤ i ≤ n,

where we have invoked the binomial distribution with p = P(Xj ≤ x) = F (x).

For i = n, differentiation of (the single term of) this expression yields the p.d.f. obtained in
(ii). For i < n, differentiation gives

f(i)(x) =
n−1
∑

k=i

(n
k

)

{F (x)}k−1{1 − F (x)}n−k−1f(x){k(1 − F (x)) − (n − k)F (x)}

+n{F (x)}n−1f(x).

Rearranging terms we get

f(i)(x) = i
(n

i

)

{F (x)}i−1{1 − F (x)}n−if(x)

−
n−1
∑

k=i

{(n − k)
(n
k

)

− (k + 1)
( n
k+1

)

}{F (x)}k{1 − F (x)}n−k−1f(x).

In the summation, each term has coefficient 0 (i.e. cancellation occurs), leaving us with

f(i)(x) =
n!

(i − 1)!(n − i)!
{F (x)}i−1{1 − F (x)}n−if(x). (5.78)

– an expression which also holds for i = n.

An alternative derivation of (5.78) proceeds as follows. Divide the real axis into 3 parts:
(−∞, x], (x, x+h], (x+h,+∞). Then the probability that (i− 1) of the sample values fall in
(−∞, x], one value in (x, x + h], and (n − i) values in (x + h,+∞) is given by the multinomial
distribution

n!

(i − 1)!(n − 1)!
{F (x)}i−1{

∫ x+h

x
f(t)dt}{1 − F (x)}n−i.

But this probability can also be written as

P(x < X(i) ≤ x + h) =

∫ x+h

x
f(i)(t)dt.

Invoking the mean value theorem for integrals, the integrals can be written

∫ x+h

x
f(i)(t)dt = f(i)(x + h′).h, where 0 ≤ h′ ≤ h;

∫ x+h

x
f(t)dt = f(x + h′′).h, where 0 ≤ h′′ ≤ h.

So

f(i)(x + h′). 6 h =
n!

(i − 1)!(n − i)!
{F (x)}i−1{1 − F (x)}n−if(x + h′′). 6 h

Then in the limit h → 0,both h′ and h′′ → 0, giving the result (5.78).
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(Note as a check that (5.78) is correct for the cases i = 1 and i = n discussed in (i) and (ii)
above).

(iv) Joint p.d.f. of X(i), X(j), i < j

Similar arguments can be used here. For example, divide the real axis into

(−∞, u], (u, u + s], (u + s, v], (v, v + t], (v + t,+∞);

then the probability that (i − 1) values are in (∞, u], one value in (u, u + s], (j − i − 1) values
in (u + s, v], one value in (v, v + t] and (n − j) values in (v + t,+∞) is (again invoking the
multinomial distribution)

∫ u+s

u

∫ v+t

v
f(i)(j)(x, y)dxdy =

n!

(i − 1)!(j − i − 1)!(n − j)!
{F (u)}i−1{F (v) − F (u)}j−i−1

×{1 − F (v)}n−j
∫ u+s

u
f(x)dx.

∫ v+t

v
f(y)dy,

i < j;−∞ < u ≤ v < ∞.

Again invoking the mean value theorem for integrals, we have

∫ u+s

u

∫ v+t

v
f(i)(j)(x, y)dxdy = f(i)(j)(u + s′, v + t′), 0 ≤ s′ ≤ s, 0 ≤ t′ ≤ t;
∫ u+s

u
f(x)dx = f(u + s′′).s, 0 ≤ s′′ ≤ s;

∫ v+t

v
f(y)dy = f(v + t′′).t, 0 ≤ t′′ ≤ t.

In the limit s, t → 0, we obtain

f(i)(j)(u, v) =
n!

(i − 1)!(j − i − 1)!(n − j)!
×

{F (u)}i−1{F (v) − F (u)}j−i−1{1 − F (v)}n−jf(u)f(v),
i < j;−∞ < u ≤ v < ∞.

(5.79)

Other joint p.d.f.s can be derived by similar arguments.

A useful one-one transformation in the study of order statistic r.v.s is

Y(i) = F (X(i)) or y = F (x) :
dy

dx
= f(x). (5.80)

We have

fY(i)
(y) = fX(i)

(F−1(y))|dx
dy |

=
n!

(i − 1)!(n − i)!
yi−1(1 − y)n−i [since F (F−1(y)) = y]

=
1

B(i, n − i + 1)
yi−1(1 − y)(n−i+1)−1, 0 ≤ y ≤ 1,

So
Y(i) ∼ Beta(i, n − i + 1). (5.81)

The following functions of order statistic r.v.s are important in practice:

(a) median =

{

X(r+1), when n = 2r + 1 (odd)
1
2(X(r) + X(r+1)), when n = 2r (even);

(b) range R = X(n) − X(1).

(5.82)


