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Chapter 6

Moment Generating Functions

6.1 Definition and Properties

Our previous discussion of probability generating functions was in the context of discrete r.v.s.
Now we introduce a more general form of generating function which can be used (though not
exclusively so) for continuous r.v.s.

The moment generating function (MGF) of a random variable X is defined as

MX(θ) = E(eθX) =















∑

x

eθxP(X = x) if X is discrete
∫ ∞

−∞
eθxfX(x)dx if X is continuous

(6.1)

for all real θ for which the sum or integral converges absolutely. In some cases the existence
of MX(θ) can be a problem for non-zero θ: henceforth we assume that MX(θ) exists in some
neighbourhood of the origin, |θ| < θ0. In this case the following can be proved:

(i) There is a unique distribution with MGF MX(θ).

(ii) Moments about the origin may be found by power series expansion: thus we may write

MX(θ) = E(eθX)

= E

(

∞
∑

r=0

(θX)r

r!

)

=
∞
∑

r=0

θr

r!
E(Xr) [i.e. interchange of E and

∑

valid]

i.e.

MX(θ) =
∞
∑

r=0

µ′
r

θr

r!
where µ′

r = E(Xr). (6.2)

So, given a function which is known to be the MGF of a r.v. X, expansion of this function in
a power series of θ gives µ′

r, the rth moment about the origin, as the coefficient of θr/r!.

(iii) Moments about the origin may also be found by differentiation: thus

dr

dθr
{MX(θ)} =

dr

dθr

{

E(eθX)
}

= E

{

dr

dθr
(eθX)

}

(i.e. interchange of E and differentiation valid)

= E
(

XreθX
)

.
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So
[

dr

dθr
{MX(θ)}

]

θ=0
= E(Xr) = µ′

r. (6.3)

(iv) If we require moments about the mean, µr = E[(X − µ)r], we consider MX−µ(θ), which
can be obtained from MX(θ) as follows:

MX−µ(θ) = E
(

eθ(X−µ)
)

= e−µθE(eθX) = e−µθMX(θ). (6.4)

Then µr can be obtained as the coefficient of θr

r! in the expansion

MX−µ(θ) =
∞
∑

r=0

µr
θr

r!
(6.5)

or by differentiation:

µr =

[

dr

dθr
{MX−µ(θ)}

]

θ=0
. (6.6)

(v) More generally:

Ma+bX(θ) = E
(

eθ(a+bX)
)

= eaθMX(bθ). (6.7)

Example

Find the MGF of the N(0, 1) distribution and hence of N(µ, σ2). Find the moments about the
mean of N(µ, σ2).

Solution If Z ∼ N(0, 1),

MZ(θ) = E(eθZ)

=

∫ ∞

−∞
eθz 1√

2π
e−

1

2
z2

dz

= 1√
2π

∫ ∞

−∞
exp{−1

2
(z2 − 2θz + θ2) +

1

2
θ2}dz

= exp(1
2θ2) 1√

2π

∫ ∞

∞
exp{−1

2
(z − θ)2}dz.

But here 1√
2π

exp{...} is the p.d.f. of N(θ, 1)), so

MZ(θ) = exp(
1

2
θ2) (6.8)

If X = µ + σZ,X ∼ N(µ, σ2), and

MX(θ) = Mµ+σZ(θ)
= eµθMZ(σθ) by (6.7)
= exp(µθ + 1

2σ2θ2).
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Then
MX−µ(θ) = e−µθMX(θ) = exp( 1

2σ2θ2)

=
∞
∑

r=0

(1
2σ2θ2)r

r!
=

∞
∑

r=0

σ2r

2rr!
θ2r

=
∞
∑

r=0

σ2r

2r
.
(2r)!

r!
.

θ2r

(2r)!
.

Using property (iv) above, we obtain

µ2r+1 = 0, r = 1, 2, ...

µ2r =
σ2r(2r)!

2rr!
, r = 0, 1, 2, ...

(6.9)

e.g. µ2 = σ2; µ4 = 3σ4. ♦

6.2 Sum of independent variables

Theorem

Let X,Y be independent r.v.s with MGFs MX(θ),MY (θ) respectively. Then

MX+Y (θ) = MX(θ).MY (θ). (6.10)

Proof

MX+Y (θ) = E
(

eθ(X+Y )
)

= E
(

eθX .eθY
)

= E(eθX).E(eθY ) [independence]
= MX(θ).MY (θ).

Corollary If X1, X2, ..., Xn are independent r.v.s,

MX1+X2+···+Xn(θ) = MX1
(θ).MX2

(θ)...MXn(θ). (6.11)

Note: If X is a count r.v. with PGF GX(s) and MGF MX(θ),

MX(θ) = GX(eθ) : GX(s) = MX(log s). (6.12)

Here the PGF is generally preferred, so we shall concentrate on the MGF applied to continuous

r.v.s.

Example

Let Z1, ..., Zn be independent N(0, 1) r.v.s. Show that

V = Z2
1 + · · · + Z2

n ∼ χ2
n. (6.13)

Solution Let Z ∼ N(0, 1). Then

MZ2(θ) = E
(

eθZ2
)

=

∫ ∞

−∞
eθz2 1√

2π
e−

1

2
z2

dz

=

∫ ∞

−∞

1√
2π

exp{−1

2
(1 − 2θ)z2}dz.

Assuming θ < 1
2 , substitute y =

√
1 − 2θz. Then

MZ2(θ) =

∫ ∞

−∞

1√
2π

e−
1

2
y2

.
1√

1 − 2θ
dy = (1 − 2θ)−

1

2 , θ <
1

2
. (6.14)
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Hence
MV (θ) = (1 − 2θ)−

1

2 .(1 − 2θ)−
1

2 ...(1 − 2θ)−
1

2

= (1 − 2θ)−n/2, θ < 1
2 .

Now χ2
n has the p.d.f.

1

2
n
2 Γ(n

2 )
w

n
2
−1e−

1

2
w, w ≥ 0;n a positive integer.

Its MGF is
∫ ∞

0
eθw 1

2
n
2 Γ(n

2 )
w

n
2
−1e−

1

2
wdw

=

∫ ∞

0

1

2
n
2 Γ(n

2 )
w

n
2
−1exp{−1

2
w(1 − 2θ)}dw

(t = 1
2(1 − 2θ) (θ < 1

2 ))

= (1 − 2θ)−
n
2

1

Γ(n
2 )

∫ ∞

0
t

n
2
−1e−tdt

= (1 − 2θ)−
n
2 , θ < 1

2
= MV (θ).

So we deduce that V ∼ χ2
n. Also, from MZ2(θ) we deduce that Z2 ∼ χ2

1.

If V1 ∼ χ2
n1

, V2 ∼ χ2
n2

and V1, V2 are independent, then

MV1+V2
(θ) = MV1

(θ).MV2
(θ) = (1 − 2θ)−

n1

2 (1 − 2θ)−
n2

2 (θ < 1
2)

= (1 − 2θ)−(n1+n2)/2.

So V1 + V2 ∼ χ2
n1+n2

. [This was also shown in Example 3, §5.8.2.]

6.3 Bivariate MGF

The bivariate MGF (or joint MGF) of the continuous r.v.s (X,Y ) with joint p.d.f.
f(x, y), −∞ < x, y < ∞ is defined as

MX,Y (θ1, θ2) = E
(

eθ1X+θ2Y
)

=

∫ ∞

−∞

∫ ∞

−∞
eθ1x+θ2yf(x, y)dxdy, (6.15)

provided the integral converges absolutely (there is a similar definition for the discrete case). If
MX,Y (θ1, θ2) exists near the origin, for |θ1| < θ10, |θ2| < θ20 say, then it can be shown that

[

∂r+sMX,Y (θ1, θ2)

∂θr
1∂θs

2

]

θ1=θ2=0

= E(XrY s). (6.16)

The bivariate MGF can also be used to find the MGF of aX + bY , since

MaX+bY (θ) = E
(

e(aX+bY )θ
)

= E
(

e(aθ)X+(bθ)Y
)

= MX+Y (aθ, bθ). (6.17)
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Example Bivariate Normal distribution

Using MGFs:

(i) show that if (U, V ) ∼ N(0, 0; 1, 1; ρ), then ρ(U, V ) = ρ, and deduce ρ(X,Y ),
where (X,Y ) ∼ N(µx, µy;σ

2
x, σ2

y ; ρ);

(ii) for the variables (X,Y ) in (i), find the distribution of a linear combination aX + bY , and
generalise the result obtained to the multivariate Normal case.

Solution

(i) We have

MU,V (θ1, θ2) = E(eθ1U+θ2V )

=

∫ ∞

−∞

∫ ∞

−∞
eθ1u+θ2v 1

2π
√

1 − ρ2
exp

{

− 1

2(1 − ρ2)
[u2 − 2ρuv + v2]

}

dudv

= 1

2π
√

1−ρ2

∫ ∞

−∞

∫ ∞

−∞
exp{......}dudv

= ......... = exp{ 1
2 (θ2

1 + 2ρθ1θ2 + θ2
2)}.

Then
∂MU,V (θ1, θ2)

∂θ1
= exp{.....}(θ1 + ρθ2)

∂2MU,V (θ1, θ2)

∂θ1∂θ2
= exp{....}(ρθ1 + θ2)(θ1 + ρθ2) + exp{....}ρ.

So

E(UV ) =

[

∂2MU,V (θ1, θ2)

∂θ1∂θ2

]

θ1=θ2=0

= ρ.

Since E(U) = E(V ) = 0 and Var(U) = Var(V ) = 1, we have that the correlation coefficient of
U, V is

ρ(U, V ) =
Cov(U, V )

√

Var(U).Var(V )
=

E(UV ) − E(U)E(V )

1
= ρ.

Now let
X = µx + σxU, Y = µy + σyV.

Then, as we have seen in Example 1, §5.8.2,

(U, V ) ∼ N(0, 0; 1, 1; ρ) ⇐⇒ (X,Y ) ∼ N(µx, µy;σ
2
x, σ2

y ; ρ).

It is readily shown that a correlation coefficient remains unchanged under a linear transforma-
tion of variables, so ρ(X,Y ) = ρ(U, V ) = ρ.

(ii) We have that

MX,Y (θ1, θ2) = E
[

eθ1(µx+σxU)+θ2(µy+σyV )
]

= e(θ1µx+θ2µy)MU,V (θ1σx, θ2σy)
= exp{(θ1µx + θ2µy) + 1

2(θ2
1σ

2
x + 2θ1θ2ρσxσy + θ2

2σ
2
y)].

So, for a linear combination of X and Y ,

MaX+bY (θ) = MX,Y (aθ, bθ) = exp{(aµx + bµy)θ + 1
2(a2σ2

x + 2abCov(X,Y ) + b2σ2
y)θ

2}
= MGF of N(aµx + bµy, a

2σ2
x + 2abCov(X,Y ) + b2σ2

y)θ
2),

i.e.
aX + bY ∼ N(aE(X) + bE(Y ), a2Var(X) + 2abCov(X,Y ) + b2Var(Y )). (6.18)
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More generally, let (X1, ..., Xn) be multivariate normally distributed. Then, by induction,

n
∑

i=1

aiXi ∼ N





n
∑

i=1

aiE(Xi),
n
∑

i=1

a2
i Var(Xi) + 2

∑

i<j

aiajCov(Xi, Xj)



 . (6.19)

(If the Xs are also independent, the covariance terms vanish – but then there is a simpler
derivation (see HW 8).) ♦

6.4 Sequences of r.v.s

6.4.1 Continuity theorem

First we state (without proof) the following:

Theorem

Let X1, X2, ... be a sequence of r.v.s (discrete or continuous) with c.d.f.s FX1
(x), FX2

(x), ...
and MGFs MX1

(θ),MX2
(θ), ..., and suppose that, as n → ∞,

MXn(θ) → MX(θ) for all θ,

where MX(θ) is the MGF of some r.v. X with c.d.f. FX(x). Then

FXn(x) → FX(x) as n → ∞

at each x where FX(x) is continuous.

Example

Using MGFs, discuss the limit of Bin(n, p) as n → ∞, p → 0 with np = λ > 0 fixed.

Solution Let Xn ∼ Bin(n, p), with PGF GX(s) = (ps + q)n. Then

MXn(θ) = GXn(eθ) = (peθ + q)n = {1 +
λ

n
(eθ − 1)}n where λ = np.

Let n → ∞, p → 0 in such a way that λ remains fixed. Then

MXn(θ) → exp{λ(eθ − 1)} as n → ∞,

since
(

1 +
a

n

)n

→ ea as n → ∞, a constant, (6.20)

i.e.
MXn(θ) → MGF of Poisson(λ) (6.21)

(use (6.12), replacing s by eθ in the Poisson PGF (3.7)). So, invoking the above continuity
theorem,

Bin(n, p) → Poisson(λ) (6.22)

as n → ∞, p → 0 with np = λ > 0 fixed. Hence in large samples, the binomial distribution
can be approximated by the Poisson distribution. As a rule of thumb: the approximation is
acceptable when n is large, p small, and λ = np ≤ 5.
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6.4.2 Asymptotic normality

Let {Xn} be a sequence of r.v.s (discrete or continuous). If two quantities a and b can be found
such that

c.d.f. of
(Xn − a)

b
→ c.d.f. of N(0, 1) as n → ∞, (6.23)

Xn is said to be asymptotically normally distributed with mean a and variance b2, and we write

Xn − a

b
a∼ N(0, 1) or Xn

a∼ N(a, b2). (6.24)

Notes: (i) a and b need not be functions of n; but often a and b2 are the mean and variance of
Xn (and so are functions of n).

(ii) In large samples we use N(a, b2) as an approximation to the distribution of Xn.

6.5 Central limit theorem

A restricted form of this celebrated theorem will now be stated and proved.

Theorem

Let X1, X2, ... be a sequence of independent identically distributed r.v.s, each with mean µ and
variance σ2. Let

Sn = X1 + X2 + · · · + Xn, Zn =
(Sn − nµ)√

nσ
.

Then

Zn
a∼ N(0, 1) or P(Zn ≤ z) → P(Z ≤ z) as n → ∞, where Z ∼ N(0, 1),

and Sn
a∼ N(nµ, nσ2).

Proof Let Yi = Xi − µ (i = 1, 2, ...). Then Y1, Y2, ... are i.i.d. r.v.s, and

Sn − nµ = X1 + · · · + Xn − nµ = Y1 + · · · + Yn.

So
MSn−nµ(θ) = MY1

(θ).MY2
(θ)....MYn(θ) = {MY (θ)}n,

and
MZn(θ) = MSn−nµ

√

nσ

(θ) = E
[

exp
(

Sn−nµ√
nσ

θ
)]

= E
[

exp
{

(Sn − nµ)( θ√
nσ

)
}]

= MSn−nµ

(

θ√
nσ

)

=
{

MY

(

θ√
nσ

)}n
.

Note that
E(Y ) = E(X − µ) = 0 : E(Y 2) = E{(X − µ)2} = σ2.

Then

MY (θ) = 1 + E(Y )
θ

1!
+ E(Y 2)

θ2

2!
+ E(Y 3)

θ3

3!
+ · · ·

= 1 + 1
2σ2θ2 + o(θ2)



page 100 110SOR201(2002)

(where o(θ2) denotes a function g(θ) such that g(θ)
θ2 → 0 as θ → 0). So

MZn(θ) = {1 + 1
2σ2( θ2

nσ2 ) + o( 1
n )}n = {1 + 1

2θ2. 1
n + o( 1

n)}n

(where o( 1
n) denotes a function h(n) such that h(n)

1/n → 0 as n → ∞).

Using the standard result (6.20), we deduce that

MZn(θ) → exp( 1
2θ2) as n → ∞

– which is the MGF of N(0,1).

So

c.d.f. of Zn =
Sn − nµ√

nσ
→ c.d.f. of N(0, 1) as n → ∞,

i.e.
Zn

a∼ N(0, 1) or Sn
a∼ N(nµ, nσ2). (6.25)

tu

Corollary

Let Xn = 1
n

n
∑

i=1
Xi. Then Xn

a∼ N(µ, σ2

n ). (6.26)

Proof Xn = W1 + · · · + Wn where Wi = 1
nXi and W1, ...,Wn are i.i.d. with mean µ

n and

variance σ2

n2 . So

Xn
a∼ N(n.

µ

n
, n.

σ2

n2
) = N(µ,

σ2

n
). tu

(Note: The theorem can be generalised to

independent r.v.s with different means & variances
dependent r.v.s

–but extra conditions on the distributions are required.

Example 1

Using the central limit theorem, obtain an approximation to Bin(n, p) for large n.

Solution Let Sn ∼ Bin(n, p). Then

Sn = X1 + X2 + · · · + Xn,

where

Xi =

{

1, if the ith trial yields a success
0, if the ith trial yields a failure.

Also, X1, X2, ..., Xn are independent r.v.s with

E(Xi) = p, Var(Xi) = pq.

So
Sn

a∼ N(np, npq),

i.e., for large n, the binomial c.d.f. is approximated by the c.d.f. of N(np, npq). tu

[As a rule of thumb: the approximation is acceptable when n is large and p ≤ 1
2 such that

np > 5.]
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Example 2

As Example 1, but for the χ2
n distribution.

Solution Let Vn ∼ χ2
n. Then we can write

Vn = Z2
1 + · · · + Z2

n,

where Z2
1 , ..., Z2

n are independent r.v.s and

Zi ∼ N(0, 1), Z2
i ∼ χ2

1; E(Z2
i ) = 1, Var(Z2

i ) = 2.

So
Vn

a∼ N(n, 2n). tu

Note: These are not necessarily the ‘best’ approximations for large n. Thus

(i)

P(Sn ≤ s) ≈ P

(

Z ≤ s+ 1

2
−np

√
npq

)

where Z ∼ N(0, 1)

= FS

(

s+ 1

2
−np

√
npq

)

.

The 1
2 is a ‘continuity correction’, to take account of the fact that we are approximating a

discrete distribution by a continuous one.

(ii)
√

2Vn
approx∼ N(

√
2n − 1, 1).

6.6 Characteristic function

The MGF does not exist unless all the moments of the distribution are finite. So many distri-
butions (e.g. t,F ) do not have MGFs. So another GF is often used.

The characteristic function of a continuous r.v. X is

CX(θ) = E(eiθX) =

∫ ∞

−∞
eiθxf(x)dx, (6.27)

where θ is real and i =
√
−1. CX(θ) always exists, and has similar properties to MX(θ). The

CF uniquely determines the p.d.f.:

f(x) =
1

2π

∫ ∞

−∞
CX(θ)e−ixθdθ (6.28)

(cf. Fourier transform). The CF is particularly useful in studying limiting distributions. How-
ever, we do not consider the CF further in this module.


