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Lo () P(A) =

i.e.

P(ANB)U

(i) P(ANB) = P(AU B)

(iif) P(exactly one of A, B occurs) =

U(ANB))=P(ANB)
P(AND) =
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Solutionsto Examples 1

+P(ANB)
P(A) —P(ANB).

1-P(AUB)
1—-P(A) —P(B)+P(AN B).

P(ANB)U (AN B))

=P(ANB)+P(AN B)

— P(A) —
— P(A) +

(iv) P(ANB) —P(A)P(B) =

P(ANB)+P(B)—P(BNA)
P(B) —2P(AN B).
P(A) —P(AN B) — P(A)P(B)
=P(A)[1 —P(B)] -P(AN B)
=P(A)P(B) —P(AN B).
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[m.e. events: axiom 3]

[complementarity rule]
[addition law]

[m.e. events: axiom 3]
[using part (i) result]

[from part (i)]

[(complementarity rule]

The second result follows from symmetry:

P(AN B) —P(A)P(B)

alternatively, using the first result,
P(BNA)—P(B)P(A)

P(B)P(A) —P(BNA)
P(A)P(B) —P(AN B).

To prove the third result:

P(An B)—P(A)P(B)

2. (i) P(ZQ1 Az)zl—P(
:1_p<

P(ifn]lAZ)zl—P<

:1_p(

.
Il
—_

= P(A) +P(B) - P(AU B) — P(A)P(B)[addn. law]
= 1-P(A)+1-P(B)-P(AUB)

—(1—P(A))(1 —P(B)) [complementarity]
= 1—-P(A)P(B)—-P(AUB) [after cancellation]
= P(AUB)—P(A)P(B). [complementarity]
6 Ai) [complementarity rule]
ﬁ Zz) : [de Morgan, (1.8) in notes]
fn] Ai) [complementarity rule]
LnJ Zz) : [de Morgan, (1.9) in notes]

/continued overleaf
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(i) (@) Since

P(Al U Ag) (Al) -+ P(AQ) — P(Al N Ag) [addltlon IaW}

= P
< P(4;) +P(Ay), [by axiom P(-) > 0] (1)
the result holds for n = 2.

Now suppose that it holds for n = m (> 2), i.e. that

P(A1U..UA,) <D P(A). (2)
Then
P([AyU...UALUAL) < P(AU.LLUA,) +P(Aer)  [using (1)]
< 3 P(A) 4 P(An) using (2)]
m—+1
- P(A:),

1

(2

I.e. the result holds for n = m + 1. So by induction it holds for all n > 2.
[Note: this result concerns one side of the Bonferroni inequality ((1.17a) in
lecture notes): for the other side, see Qn. 6 below.]

(b) We have that

PN A) = 1-P(U A [from part (i)]
> 1— i P(A;) [from part (ii)(a)]
= 1- zn: {1-P(A;)} [complementarity]

= ) P(4)—(n—1).

i=1

3. (i) (a) List total sample space and count favour able outcomes
Outcome = (a, b, ¢), where a is the floor at which A gets out, etc.

A B C A B C A B C
1 1 1 2 1 1 3 1 1
1 1 2 2 1 2 3 1 2*
1 1 3 2 1 3* 3 1 3
1 2 1 2 2 1 3 2 1%
1 2 2 2 2 2 3 2 2
1 2 3* 2 2 3 3 2 3
1 3 1 2 3 1* 3 3 1
1 3 2% 2 3 2 3 2 2
1 3 3 2 3 3 3 2 2

Favourable outcomes are marked *
So P(one person gets out at each floor) = 6/27 = 2/9
(since the outcomes are equally likely).
/continued over|eaf
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(b) Enumerate sample space and favour able outcomes
The favourable outcomes are the arrangements of 1,2,3: there are 3! = 6 such
arrangements.
Total number of outcomes= 3 x 3 x 3 = 27.
So required probability = 6/27 = 2/9.

From lecture notes (page 11):
p=(1-a)(1—-2a)..(1—-(n—1)a), wherea=1/365.

n—1

So log,p :Z log,(1 —ra).

r=1

For small positive z, log, (1 — =) ~ —zx.
n—1 n—1
n(n —1) n(n —1)
0g,.p ; ra a - T 5 a 70
For n = 30: 30 x 29
X
1 R — = —1.1918
Ogep 730 )
SO p=0.3037.
(The exact value is p = 0.294. )
20
2\ (18 A
4 %3 3 Pair i 18 others
P(AZ) _ (2)2g2) — X _ =
) 20x 19 95

2\ /2
4
By symmetry this result holds fori = 1, ..., 10.
20
o HISIES) 1 Pair i Pair j 16 others
Fori # j: P(AiNA;) = S0

0) 4845 2.2 0
(3) \Jl/

Again by symmetry this result holds for i, j = 1,...,10; i # J.
Also P(ANANA) =0, i#j#Ek;

Then
P(at least one pair) = Pl(OAl UAsU---UA)
= Y P(A) — > PANA)
i=1 5 1<i<5<10 99
= 10X%—(120) M:@%ﬁ

/continued overleaf
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(b) If no pair is selected, then the selection consists of one from each of 4 different
pairs. The number of such selections is (140)24. The total number of possible
(equally likely) selections is (%). So

("))2 224

P(no pair) = = —.
(N0 PaI) = =0y~ = 553
224 99
So P(at leastone pair) =1 — — = — asin (a)).
( pair) =1 - oo = o0 (@sin(@)

(c) To find P(exactly one pair): the one pair can be chosen in 10 ways, and the other 2
shoes in (5)2? ways. So

o1ox (9)22 96

P(exactly one pair) = —2— = ——.
5. Number the 3 favourite dinosaurs 1,2,3. Let
A;: dinosaur 7 not found in purchase of 6 packets (i = 1, 2, 3).
The required probability is
P(A,NAyNA3) = 1-P(A NAyNAs)
= 1—-P(A;UAyU A;3). [de Morgan: egn. (1.9) of notes]
Now

3
P(ATUA UAs) =Y P(A)— > P(ANA;)+P(A N AN As),

i=1 1<i<j<3

where

AxAx4xdxAx4

6
) , [by combinatorial argument: == ="=*="2

P(4,) = (

or using multiplication law for independent events]

3 6
P(A;N4;) = (—) , AF]

)
9 6
P(AiNAsNA3) = (5) :
4\° 3\* /2\°
So the required probability is 1—3(5) +3(5) — (3) )

6. The result is true (as an equality) for n = 2 (by the addition law).
Assume that it is true for n = m(> 2), i.e. that

P(AU---UA,) 2) P(A)— D P(ANA). (%)
i=1 1<i<j<m

Then
P([A1U---UALJUAL) =P(A U UA,) +P(Ani1) —P([A U - UALINApgr)-

/continued overleaf
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The first term is developed using (*); we can write the third term as P(_@b1 (A;U A1)
and then use the result in Qn. 2(ii)(a) above. Finally we obtain

P(AIU--UAn) = > PA)— > PANA)+PAn)— Y PA N Apas)
=1 1<i<j<m =1
m+1
= ) PA)- Y. PANA),
=1 1<i<j<m+1

i.e. the result is true for n = m + 1. So by induction it is true for all n > 2

. Listing the outcomes in which no cup is placed on a saucer of the same colour:
Saucer: ' Y Y B B G G

Cup: B B G G Y'Y

G G VY Y B B

B G Y G B Y

B GY G Y B

B G G Y B Y

B G G Y Y B

G B Y G B Y

G B Y G Y B

G B GY B Y

G B G Y Y B

There are 10 favourable outcomes altogether.
Total number of arrangements of cups on saucers is 22:2‘ 90.

10 1
So th ired probability is — = —.
0 the required probability is o= = ¢

(Solution of this problem by means of the generalized addition law is difficult.)

. First consider matches on a particular set of & cards. The probability that there are no
matches on any of the other (n — k) cards is
11 (—1)n*k
1—14+= - 4. ... 7
LTI Py A ()
(from result in Lectures applied to (n — k) cards.) Now there are (n — k)! ways of
arranging the (n — k) cards, so the number of arrangements which yield no matches
is () x (n — k)!. But also there are (7) possible selections of the & matching cards.
So the number of arrangements of all » cards in which there are exactly £ matches is
(1) % (n—E)!' x (x). The required probability is then obtained by dividing this by n!, the
total number of arrangements, giving

n—k
e
For large n this is approximately e~!/k!. The values

e /K, k=0,1,..
are those associated with the Poisson distribution with mean 1.

[The above argument is more succinctly expressed using conditional probabilities
(discussed in the next chapter of the lecture notes).]
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9. Let A; : player i does not win a game in the series.

Then
P(at least one player does not winagame) = P(A;U---UA,)
= D P(A)— D P(ANA)
i=1 1<i<j<n
o+ (=1)"TP(A NN A).
Now

P(A;) = P(playeridoesn’twin game 1)
& player i doesn’t win game 2
& player i doesn’t win game 3

& player i doesn’t win game n)

—1\"7
- <” ), i=1,..,n.
n

[either by combinatorial method; (=l-n=1....(n=—1)

or product of probabilities: (%-1)....(%=1)]
Similarly

—92\"
P(AmAj):<”n ) i
andsoon. FinallyP(A;N---NA,)=0.

So required probability is

() -G ) ) ) () G)

10. Let A; : couple i seated together.  Required probability is then

n

L=P(AU---UA,) = 1=) P(A)+ Y P4, NA,)
i=1 1< <iz<n

o (D)"P(A N AN N A).

There are (2n)! equally likely seatings. Consider a typical term P(A4;, N---N A4;,) in the
k™ summation. Regard as k entities the & couples who are are seated together. There are
(2n — 2k) other people, i.e. (2n — k) entities in all. Number of (linear) arrangements
is (2n — k)!  But also each couple can be seated in 2 ways. So the total number of
seatings with & specified couples together is 2*(2n — k)!'  So

2k (2n — k)!

PAa 0 =50

and the required probability is then

For n = 4 this is

4x2 6x4  4x8 16 3 2 1 12
- e e

1 - _ _ 2
8 Bx7 6x7x6 BxTx6x5 7 21 105 35




