page 1 110SOR201(2002)
SOR201 Solutionsto Examples 2

1. (i) Let Q(A) =P(A|B). Then
(a) foreveryevent A € F,
P(ANB)
P(B)
Also, since ANB C B, P(ANB) < P(B), soQ(A4) < 1.
B _P(SnB) P(B
(c) Let Ay, A,, ... be mutually exclusive events in F. Then

o) = e (W)

Q(A) = > 0. [by axiom 1]

-1

= WP (U (A;N B)) [distributive law]
— ﬁ Z P(4; N B) [{A; N B} m.e.: axiom 3]

= ZQ(AD-

So Q(:) = P(:|B) satisfies the three probability axioms.

(i1) Since
AiNAN---NA,1 C AiNAN---NA, 2
C AiNAyN---NA,3
C ANA,
C Ala
then
0 < PAN---NA,_,)
< PAIN---NA, )
< P(A1NAy)
< P(A1). (*)
Then

P(A N---NA,) = P(A AN N Ay 1)P(A; A= N A, )
— P(An| Ay NN Ay )P(An 1| Ar - Ay )
P(A; NN Ay_s)
- P(An‘Al NN Anfl)P<An,1‘A1 NN An72) .....
XP(A3|A1 N AQ)P<A2|A1)P<A1)

(by repeated application of the multiplication law P(A N B) = P(A|B)P(B)
(P(B) > 0) and noting from (x) that, since P(A; N --- N A,_1) > 0, all
the conditioning events have probability > 0 as required).
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(i) Bayes’ Rule Let Hy, Hs, ..., H, be a set of mutually exclusive, exhaustive and
possible events € F. For any event A € F such that P(A) > 0,

Proof  P(A)=P(ANS) = P(An(U H)
— (U @nm) [distributive law]

= P(AN Hj) [{ANH;} me.:axiom 3]

<.
Il
-

= iP(A\Hj)PGIj). [multiplication law] (x)

1

J

Then
P(H|A) = % [by definition]
= nP(A|Hk)P(Hk) [using multiplication law and (x)]
> " P(A[H,)P(H))
j=1
as required.
(i) Let

A;: search of box ¢ does not uncover the ball
H;:ballisinboxj (j =1,...,n).
Then we have

P(H;) = p,
1—q, ifj=i
PLAlH;) = { 1, ifj #
So by Bayes’ Rule
P(A;|H;)P(H;)
P(H;|A) = — ’ —.
> P(Ai|H)P(H))
=1
The denominator is (1 — a;)p;+ Z 1xp Z p—aipi =1 —a;p;.
I=1,l#1
So |
7(1 L) ST
P(H;|A;) = p
I . if j #£4.
1 —ap;

/continued overleaf
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(iii) Define events as follows:
L: legitimate coin chosen
H?2: 2-headed coin chosen
T2: 2-tailed coin chosen
nH: n heads in succession.
Then
P(H2) = 1077 = P(T2)
P(L) = 1-2x107"
P(10H|H2) = 1, P(10H|T2)=0, P(10H|L)=2"1°.
So, using Bayes’ Rule,
P(10H|H2)P(H?2
P(H2|10H) — (10H|H2)P(H?2)
P(10H|H2)P(H2) + P(10H|T2)P(T2) + P(10H|L)(P(L)
= 1077/{107" +2719(1 =2 x 107" }.

Since 210 ~ 103,

P(H2|10H) ~ 1/{1+107* x 107} ~ 10~*.
Generalising to nH we have
P(nH|H2)P(H2)

P(H2InH) = P(nH|H2)P(H2) + P(nH|T2)P(T2) + P(nH|L)(P(L)
where
P(nH|H2)=1, P(nH|T2)=0, P(nH|L)=27",
so that

P(H2/nH) =10""/{107"+27"(1 — 2 x 107 ")}.
For approximately even odds that the chosen coin is 2-headed, we require

1
P(H2|nH) ~ 3

i.e. we have to solve

107 421 -2x107) ~ 2x10°7
or 2 (107 —2) ~ 1
or o ~ 107

for n. The solution of 2% = 107 is x = 23.25, S0

n =23 or 24.

(iv) Define events as follows:
D: acertain person has the disease
T*: test diagnoses that the person has the disease
T~ testdiagnose that the person does not have the disease.
We have
P(T*|D) = 095 = P(T7|D) = 0.05
P(T-|D) = 0.995 = P(T*|D) = 0.005.
Then, by Bayes’ Rule, the required probability is
P(T"|D)P(D)
P(T+|D)P(D) + P(T+|D)P(D)
0.95 x 0.0001

(0.95 x 0.0001) + (0.005 x 0.9999)

/continued overleaf

P(DITT) =
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[Although, with P(T+|D) = 0.95, P(T~|D) = 0.995, the test appears at first sight
to be a good one, the predictive positive probability (see below) is very low because
of the very low prevalence probability P(D) = 0.0001. Compare, for example, the
case where P(D) = 0.01: then we find that P(D|T") ~ 0.66 — very much better.
[Further notes.  The validity of a test is measured by its
sensitivity P(T*|D) x 100%
and specificity ~ P(T~|D) x 100%
— both of which should be high.
For a patient, however, the important measures are the
predictive positive probability P(D|T)
and predictive negative probability P(D|T™),
which depend upon the prevalence rate P(D).]

A=ANS=AN(BUB)=(ANB)U(ANB). [union of 2 m.e. events]
So
P(A) = P(ANB)+P(ANB), [axiom 3]
ie. P(ANB) = P(A)—P(ANB)
= P(A) —P(A)P(B) [independence]
= P(A)[1 —P(B)] =P(A)P(B). [complementarity]

So A and B are independent events.
To prove that A and B are independent, reverse the symbols A and B in the above

proof.
Also
P(ANB)=P(AUB) = 1-P(AUB) [complementarity]
= 1—-P(A)—P(B)+P(ANB) [addition law]
1—-P(A) —P(B)+P(A)P(B) [independence]

— {1-PAH1-P(B))
= P(A)P(B). [complementarity]

So A and B are independent events.
We have therefore proved that

independence of A, B = independence of A, B; of A, B; &of A, B.
So

independence of A, B = independence of A, B = B; of A, B; & of A, B = B.
independence of 4, B = independence of A, B; of A= A, B; & of A = A, B.
independence of A, B = independence of A, B = B; of A = A, B;
&mi:,ﬁzB
(i) @ S={(a,b,0),(a,cb),(b,a,c),(bc,a),(ca,b),(cb a)(a,a,a),(bbb),(ccc)}
P(Al)zgzé; PAQ):%:%Q P(A?,):%:%-

P(AiNAy) = L = P(A)P(Ay)

P(Ay N Ay) — § — P(A))P(Ay)

P(A,NA3) = 5 = P(A2)P(A3)

But
P(A; N Ay N A) = £ # P(A;)P(A5)P(A3) (: 2—17) )

-9
So the events A;, Ay, A3 are pairwise independent but not completely
independent. /continued over|eaf
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(b) P(Ey) =2 — L P(By) =P(Ey) = L P(By) =3 — L2
So
P(A1) P(E1) + P(Es) = ;
P(4y) = P(Ey) +P(E;)=1- @;
P(A3) 1—¥2
Now
P(A; N Ay N Ag) = P(E3) = 3 — ¢
and

PAVP(A:)P(s) = § (1= 2)" = J(1-VE+}) = = = P(4iNA01Ay).

P(A1 N A2) = P(By) = 3 =2 £P(A)P(4z) (=3 -2).
So the events A;, Ay, A3 are not completely independent.

4. (i) Let
E,: even number of sixes in n throws
S: sixon first throw
Then conditioning on the result of the first throw:

P(E,) = P(E,|S)P(S)+P(E.[S)P(S)
S

= P(En-1)P(S) + P(En1)P(S5),
i.e.
Pn = é(l—pn_ngpn_l
= poati n=2 (1)
Also
p1 = P(not six on first throw) = 2. (2)
Notes:
(@) This is “first step analysis’: alternatively we could have used ‘last step
analysis’.

(b) With experience, we can appeal to the diagram below and write down (1)
directly (cf. solution to part (ii)).

6 pnfl
1/6
Even no. of sixes
inn throws
5/6
Not 6 1
— Pn—1

First throw Further n — 1 throws
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To show that
p=5[1+(3)", n>1 (3)

we use induction. (3) is true for n = 1. Suppose it is true for n = m, where m > 1.
Then (1) gives

L@ i=3 [ ™)

i.e. itis true for n = m + 1. So by induction it is true for all n > 1.

[N

2
Pm+1 = 3 X

Here
pn = P(player obtains a total of exactly n points at some stage of play).

For n > 3, we can decompose the event of interest by again conditioning on the
result of the first trial, as shown:

(0]
Pn
1/3
5/12

1 Total of n points
1/4

2
First trial Further trials

Hence
Pn = %pn + %pn—l + ipn—Qa n =3,

Pn = %pn—l + %pn—Za n > 3. (1)

To start the recursion, we need p; and p,. Now the event ‘total of 1 at some stage’
comprises the mutually exclusive events

{1, 01, 001, 0001, ...}.

So )
_ 5 15 1 5 _ 5 1
p=1+35+ ) E"'"’_Exg—
Similarly, the event ‘total of 2 at some stage’ comprises the mutually exclusive

events

oot

{2, 02, 002, ...;r zeros and one ‘1’, followed by a ‘1, r > 0}.

Hence

o0

(1) (5)"+ 3 () () B) > 5

St () =6

S

3
[
hE

Il
X o
[

=3
S
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Alternatively we can use suitable diagrams:

@ p1= %p1 + % ,giving  p; = %
P
13

1 Total of 1 a some
5/12 tridl after 1 tria
1 5 1
() p2=3p2+ 5p1+
which (using p; = 2) gives p, = 22
0 D2
1/3
5/12 Total of 2 at some

1 \mj ater 1% trial
4

1/4

To show that
=1t (—2)", n>1 (2)

we first note that it is true for n = 1, n = 2, since it gives

3 3

i (=3)

—'— =
2
rECD - &

cojut

D1
P2

joo =
B

Vv
Vi

[y

1

Now assume that it is true forn = m —2andn =m —1 (m > 3). Then from

(1):
o= HEHEED"T S (DT
= a+a(-3)"
i.e it is true for n = m. Hence by induction it is true for all n > 1.

5. Let

A: norun of 3 consecutive heads in n tosses
T,: first tail occurs on the i toss.

Then
pn =P(A) = P(A|T1)P(Th) + P(A[T3)P(T2) + P(A|T3)P(T3)
P(A|T;) =0 for i=4,..,n]
BUtP(Ty) = 1, P(Ty) = P(HT) = () ,P(T3) = P(HHT) = (3)°,
and P(AIT;) = pn, i=1,2,3.
So
Pn = 5Pn-1+ Pn—2 + §Pn-3, N =3
To get three successive heads, we need at least 3 tosses, so clearly

p1=p2=p3=1

/continued overleaf
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Then Lo
P = §1+ Z7+ 8 1 1
S O A et |0 Bk
P — G g Ty
pr = (? X g(;l) + (le Zl)l+(§ X 16
ps = (3% 1) T (3% 5) + (5
6. We have

= 1-P(A,NnAyNn---NA,)
= 1= P(A)P(A) - P(4,)

n

= 1= H [1 —P(A:)].

i=1

7. Write 6 to mean ‘not a 6°, and let
Aik .
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©

256

[complementarity]
[independence]

[complementarity]

die makes k circuits (with all n players throwing 6 on each turn),

then players 1, ...,7 — 1 throw 6 and player i throws 6 (to win).

From independence it follows that

P(Aw) = [(3)"" (
Then
P(player 1 WinS) = P(Azo U Ail U AZ'2 U-- )

ot
N~——
<.
|
—
o=

[m.e. events]

kO:OO
n1k i—1
= > [T @ %
k=0 o
= o (%)Z % [geometric series]
1-(5)
8. (a) By Bayes’ Rule:
P(S=3|N=2)P(N =2)
P(N = 2|S = =
( 15 ) P(S =3)
where P(S =3) = 3 P(S = 3|N = k)P(N = k).
k=1
But
P(S=3|N=1) = %
P(S=3IN=2) = P({(1,2),(2,)}) =2 =+
P(S=3IN=3) = P((1,1,1)) = & = 5
P(S—3IN=k) = 0 fork>14
So
P(S=8)= (3 x 1)+ (G x 1)+ s x §) = s
and
36x48 24

169"
/continued overleaf
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(b) P(S = 3|N odd) — PU5 =31 (IV odd))

P(N odd)
Now
P(Nodd) = P(N=1)+P(N=3)+
o ALC o
= (43 +(E)7+)
_ %X%
1=
— 2
39
and

P(S=3)N(Nodd) = S P((S=3)N(Nodd)|N = kPN = k)

NE

k=1
— P(S=3|N=1)P(N =1)+P(S=3|N =3)P(N = 3)
(é§9+@%X@

36x48
[Alternatively:

P((S=3)Nn(Nodd)) = P(NoddlS=3)P(S=3)
[1 —P(N even|S = 3)|P(S = 3)
1—P(N =2[S =3)]P(S = 3)

[114; 25] X a0 [using results in (a)]

T 36x48° ]

So

P(S = 3|N odd) = 145 x 3 — 145

36x48 1152°

9. Let

W,:  white ball drawn from urn r
B,: black ball drawn from urn »

Conditioning on the result of the draw from urn » — 1:

Pr = P(WT) = P(WT|WT—1)P(WT‘—1) + P(WT‘|BT‘—1)P(BT—1)

_ (_aetl Y —— G )
- a+b—i—1 Pr—1 a+b—|—1 Pr—1

a



