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SOR201 Solutions to Examples 2

1. (i) Let Q(A) = P(A|B). Then

(a) for every event A ∈ F ,

Q(A) =
P(A ∩ B)

P(B)
> 0. [by axiom 1]

Also, since A ∩ B ⊂ B, P(A ∩ B) 6 P(B), so Q(A) 6 1.

(b) Q(S) = P(S|B) =
P(S ∩ B)

P(B)
=

P(B)

P(B)
= 1.

(c) Let A1, A2, ... be mutually exclusive events in F . Then

Q

(

⋃

i

Ai

)

=
1

P(B)
P

(

(
⋃

i

Ai) ∩ B

)

=
1

P(B)
P

(

⋃

i

(Ai ∩ B)

)

[distributive law]

=
1

P(B)

∑

i

P(Ai ∩ B) [{Ai ∩ B} m.e.: axiom 3]

=
∑

i

Q(Ai).

So Q(·) = P(·|B) satisfies the three probability axioms.

(ii) Since
A1 ∩ A2 ∩ · · · ∩ An−1 ⊂ A1 ∩ A2 ∩ · · · ∩ An−2

⊂ A1 ∩ A2 ∩ · · · ∩ An−3

...............................

...............................
⊂ A1 ∩ A2

⊂ A1,

then

0 < P(A1 ∩ · · · ∩ An−1)
6 P(A1 ∩ · · · ∩ An−2)

..............................

..............................
6 P(A1 ∩ A2)
6 P(A1). (∗)

Then

P(A1 ∩ · · · ∩ An) = P(An|A1 ∩ · · · ∩ An−1)P(A1 ∩ · · · ∩ An−1)
= P(An|A1 ∩ · · · ∩ An−1)P(An−1|A1 ∩ · · · ∩ An−2)

×P(A1 ∩ · · · ∩ An−2)
......................................................

= P(An|A1 ∩ · · · ∩ An−1)P(An−1|A1 ∩ · · · ∩ An−2).....
×P(A3|A1 ∩ A2)P(A2|A1)P(A1)

(by repeated application of the multiplication law P(A ∩ B) = P(A|B)P(B)
(P(B) > 0) and noting from (∗) that, since P(A1 ∩ · · · ∩ An−1) > 0, all
the conditioning events have probability > 0 as required).
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2. (i) Bayes’ Rule Let H1, H2, . . . , Hn be a set of mutually exclusive, exhaustive and
possible events ∈ F . For any event A ∈ F such that P(A) > 0,

P(Hk|A) =
P(A|Hk)P(Hk)

n
∑

j=1

P(A|Hj)P(Hj)

.

Proof P(A) = P(A ∩ S) = P

(

A ∩ (
n
⋃

j=1

Hj)

)

= P

(

n
⋃

j=1

(A ∩ Hj)

)

[distributive law]

=

n
∑

j=1

P(A ∩ Hj) [{A ∩ Hj} m.e.: axiom 3]

=

n
∑

j=1

P(A|Hj)P(Hj). [multiplication law] (∗)

Then

P(Hk|A) =
P(Hk ∩ A)

P(A)
[by definition]

=
P(A|Hk)P(Hk)

n
∑

j=1

P(A|Hj)P(Hj)

[using multiplication law and (∗)]

as required.

(ii) Let
Ai: search of box i does not uncover the ball
Hj: ball is in box j (j = 1, ..., n).

Then we have
P(Hj) = pj

P(Ai|Hj) =

{

1 − αi, if j = i
1, if j 6= i

So by Bayes’ Rule

P(Hj|Ai) =
P(Ai|Hj)P(Hj)

n
∑

l=1

P(Ai|Hl)P(Hl)

.

The denominator is (1 − αi)pi+

n
∑

l=1,l 6=i

1 × pl =

n
∑

l=1

pl − αipi = 1 − αipi.

So

P(Hj|Ai) =











(1 − αi)pi

1 − αipi

, if j = i

pj

1 − αipi

, if j 6= i.

/continued overleaf



page 3 110SOR201(2002)

(iii) Define events as follows:
L: legitimate coin chosen

H2: 2-headed coin chosen
T2: 2-tailed coin chosen
nH: n heads in succession.

Then

P(H2) = 10−7 = P(T2)
P(L) = 1 − 2 × 10−7

P(10H|H2) = 1, P(10H|T2) = 0, P(10H|L) = 2−10.

So, using Bayes’ Rule,

P(H2|10H) =
P(10H|H2)P(H2)

P(10H|H2)P(H2) + P(10H|T2)P(T2) + P(10H|L)(P(L)
= 10−7/{10−7 + 2−10(1 − 2 × 10−7)}.

Since 210 ≈ 103,

P(H2|10H) ≈ 1/{1 + 10−3 × 107} ≈ 10−4.

Generalising to nH we have

P(H2|nH) =
P(nH|H2)P(H2)

P(nH|H2)P(H2) + P(nH|T2)P(T2) + P(nH|L)(P(L)

where
P(nH|H2) = 1, P(nH|T2) = 0, P(nH|L) = 2−n,

so that
P(H2|nH) = 10−7/{10−7 + 2−n(1 − 2 × 10−7)}.

For approximately even odds that the chosen coin is 2-headed, we require

P(H2|nH) ≈ 1

2
,

i.e. we have to solve

10−7 + 2−n(1 − 2 × 10−7) ≈ 2 × 10−7

or 2−n(107 − 2) ≈ 1
or 2n ≈ 107

for n. The solution of 2x = 107 is x = 23.25, so

n = 23 or 24.

(iv) Define events as follows:
D: a certain person has the disease

T+: test diagnoses that the person has the disease
T−: test diagnose that the person does not have the disease.

We have
P(T+|D) = 0.95 ⇒ P(T−|D) = 0.05
P(T−|D) = 0.995 ⇒ P(T +|D) = 0.005.

Then, by Bayes’ Rule, the required probability is

P(D|T+) =
P(T+|D)P(D)

P(T+|D)P(D) + P(T +|D)P(D)

=
0.95 × 0.0001

(0.95 × 0.0001) + (0.005 × 0.9999)
= 0.019.

/continued overleaf
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[Although, with P(T +|D) = 0.95, P(T−|D) = 0.995, the test appears at first sight
to be a good one, the predictive positive probability (see below) is very low because
of the very low prevalence probability P(D) = 0.0001. Compare, for example, the
case where P(D) = 0.01: then we find that P(D|T +) ≈ 0.66 – very much better.
[Further notes: The validity of a test is measured by its

sensitivity P(T +|D) × 100%
and specificity P(T−|D) × 100%

– both of which should be high.
For a patient, however, the important measures are the

predictive positive probability P(D|T +)
and predictive negative probability P(D|T−),

which depend upon the prevalence rate P(D).]

3. (i) A = A ∩ S = A ∩ (B ∪ B) = (A ∩ B) ∪ (A ∩ B). [union of 2 m.e. events]
So

P(A) = P(A ∩ B) + P(A ∩ B), [axiom 3]
i.e. P(A ∩ B) = P(A) − P(A ∩ B)

= P(A) − P(A)P(B) [independence]
= P(A)[1 − P(B)] = P(A)P(B). [complementarity]

So A and B are independent events.
To prove that A and B are independent, reverse the symbols A and B in the above
proof.
Also

P(A ∩ B) = P(A ∪ B) = 1 − P(A ∪ B) [complementarity]
= 1 − P(A) − P(B) + P(A ∩ B) [addition law]
= 1 − P(A) − P(B) + P(A)P(B) [independence]
= {1 − P(A)}{1 − P(B)}
= P(A)P(B). [complementarity]

So A and B are independent events.
We have therefore proved that

independence of A, B ⇒ independence of A, B; of A, B; & of A, B.
So

independence of A, B ⇒ independence of A, B = B; of A, B; & of A, B = B.

independence of A, B ⇒ independence of A, B; of A = A, B; & of A = A, B.

independence of A, B ⇒ independence of A, B = B; of A = A, B;

& of A = A, B = B.

(ii) (a) S = {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a), (a, a, a), (b, b, b), (c, c, c)}.
P(A1) = 3

9
= 1

3
; P(A2) = 3

9
= 1

3
; P(A3) = 3

9
= 1

3
.

P(A1 ∩ A2) = 1

9
= P(A1)P(A2)

P(A1 ∩ A3) = 1

9
= P(A1)P(A3)

P(A2 ∩ A3) = 1

9
= P(A2)P(A3).

But
P(A1 ∩ A2 ∩ A3) = 1

9
6= P(A1)P(A2)P(A3)

(

= 1

27

)

.

So the events A1, A2, A3 are pairwise independent but not completely
independent. /continued overleaf
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(b) P(E1) =
√

2

2
− 1

4
; P(E2) = P(E4) = 1

4
; P(E3) = 3

4
−

√
2

2
.

So
P(A1) = P(E1) + P(E3) = 1

2
;

P(A2) = P(E2) + P(E3) = 1 −
√

2

2
;

P(A3) = 1 −
√

2

2
.

Now
P(A1 ∩ A2 ∩ A3) = P(E3) = 3

4
−

√
2

2

and

P(A1)P(A2)P(A3) = 1

2

(

1 −
√

2

2

)2

= 1

2
(1−

√
2+1

2
) = 3

4
−

√
2

2
= P(A1∩A2∩A3).

But

P(A1 ∩ A2) = P(E3) = 3

4
−

√
2

2
6= P(A1)P(A2)

(

= 1

2
−

√
2

4

)

.

So the events A1, A2, A3 are not completely independent.

4. (i) Let
En: even number of sixes in n throws
S: six on first throw

Then conditioning on the result of the first throw:

P(En) = P(En|S)P(S) + P(En|S)P(S)
= P(En−1)P(S) + P(En−1)P(S),

i.e.

pn = 1

6
(1 − pn−1) + 5

6
pn−1

= 2

3
pn−1 + 1

6
, n > 2. (1)

Also
p1 = P(not six on first throw) = 5

6
. (2)

Notes:

(a) This is ‘first step analysis’: alternatively we could have used ‘last step
analysis’.

(b) With experience, we can appeal to the diagram below and write down (1)
directly (cf. solution to part (ii)).

6

Not 6

Even no. of sixes
in n throws

1/6

5/6

1− pn−1

pn−1

First throw Further n− 1 throws
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To show that
pn = 1

2

[

1 +
(

2

3

)n]

, n > 1 (3)

we use induction. (3) is true for n = 1. Suppose it is true for n = m, where m > 1.
Then (1) gives

pm+1 = 2

3
× 1

2

[

1 +
(

2

3

)m]

+ 1

6
= 1

2

[

1 +
(

2

3

)m+1
]

,

i.e. it is true for n = m + 1. So by induction it is true for all n > 1.

(ii) Here

pn = P(player obtains a total of exactly n points at some stage of play).

For n > 3, we can decompose the event of interest by again conditioning on the
result of the first trial, as shown:

0

1

2

Total of n points

1/3

5/12

1/4

pn−1

pn

pn−2

First trial Further trials

Hence
pn = 1

3
pn + 5

12
pn−1 + 1

4
pn−2, n > 3,

i.e.
pn = 5

8
pn−1 + 3

8
pn−2, n > 3. (1)

To start the recursion, we need p1 and p2. Now the event ‘total of 1 at some stage’
comprises the mutually exclusive events

{1, 01, 001, 0001, ...}.

So
p1 = 5

12
+ 1

3

5

12
+
(

1

3

)2 5

12
+ · · · = 5

12
× 1

1−1

3

= 5

8
.

Similarly, the event ‘total of 2 at some stage’ comprises the mutually exclusive
events

{2, 02, 002, ...; r zeros and one ‘1’, followed by a ‘1’, r > 0}.

Hence

p2 =

∞
∑

r=0

(

1

4

) (

1

3

)r
+

∞
∑

r=0

(

r+1

1

) (

5

12

) (

1

3

)r × 5

12

= 1

4
× 1

1−1

3

+ 1
(

1−1

3

)2

(

5

12

)2
= 49

64
.
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Alternatively we can use suitable diagrams:

(a) p1 = 1

3
p1 + 5

12
, giving p1 = 5

8
.

0

1
Total of 1 at some
trial after 1

st trial

1/3

5/12

p1

(b) p2 = 1

3
p2 + 5

12
p1 + 1

4

which (using p1 = 5

8
) gives p2 = 49

64
.

0

1

2

Total of 2 at some
trial after 1

st trial

1/3

5/12

1/4

p1

p2

To show that
pn = 8

11
+ 3

11

(

−3

8

)n
, n > 1 (2)

we first note that it is true for n = 1, n = 2, since it gives

p1 = 8

11
+ 3

11

(

−3

8

)

= 5

8

√

p2 = 8

11
+ 3

11

(

−3

8

)2
= 49

64
.

√

Now assume that it is true for n = m − 2 and n = m − 1 (m > 3). Then from
(1):

pm = 5

8

{

8

11
+ 3

11

(

−3

8

)m−1
}

+ 3

8

{

8

11
+ 3

11

(

−3

8

)m−2
}

= 8

11
+ 3

11

(

−3

8

)m

i.e it is true for n = m. Hence by induction it is true for all n > 1.

5. Let
A: no run of 3 consecutive heads in n tosses
Ti: first tail occurs on the ith toss.

Then
pn = P(A) = P(A|T1)P(T1) + P(A|T2)P(T2) + P(A|T3)P(T3)

[P(A|Ti) = 0 for i = 4, ..., n]

But P(T1) = 1

2
, P(T2) = P(HT ) =

(

1

2

)2
, P(T3) = P(HHT ) =

(

1

2

)3
,

and P(A|Ti) = pn−i, i = 1, 2, 3.

So
pn = 1

2
pn−1 + 1

4
pn−2 + 1

8
pn−3, n > 3

To get three successive heads, we need at least 3 tosses, so clearly

p1 = p2 = p3 = 1.

/continued overleaf
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Then
p3 = 1

2
+ 1

4
+ 1

8
= 7

8

p4 = (1

2
× 7

8
) + (1

4
× 1) + (1

8
× 1) = 13

16

p5 = (1

2
× 13

16
) + (1

4
× 7

8
) + (1

8
× 1) = 3

4

p6 = (1

2
× 3

4
) + (1

4
× 13

16
) + (1

8
× 7

8
) = 11

16

p7 = (1

2
× 11

16
) + (1

4
× 3

4
) + (1

8
× 13

16
) = 81

128

p8 = (1

2
× 81

128
) + (1

4
× 11

16
) + (1

8
× 3

4
) = 149

256

6. We have

P(A1 ∪ A2 ∪ · · · ∪ An) = P(A1 ∩ A2 ∩ · · · ∩ An)
= 1 − P(A1 ∩ A2 ∩ · · · ∩ An) [complementarity]
= 1 − P(A1)P(A2) · · ·P(An) [independence]

= 1−
n
∏

i=1

[1 − P(Ai)]. [complementarity]

7. Write 6 to mean ‘not a 6’, and let

Aik : die makes k circuits (with all n players throwing 6 on each turn),
then players 1, ..., i − 1 throw 6 and player i throws 6 (to win).

From independence it follows that

P(Aik) =
[(

5

6

)n]k (5

6

)i−1 1

6
.

Then

P(player i wins) = P(Ai0 ∪ Ai1 ∪ Ai2 ∪ · · ·)

=

∞
∑

k=0

P(Aik) [m.e. events]

=
∞
∑

k=0

[(

5

6

)n]k (5

6

)i−1 1

6

= 1

1−
(

5

6

)

n

(

5

6

)i−1 1

6
. [geometric series]

8. (a) By Bayes’ Rule:

P(N = 2|S = 3) =
P(S = 3|N = 2)P(N = 2)

P(S = 3)

where P(S = 3) =
∞
∑

k=1

P(S = 3|N = k)P(N = k).

But
P(S = 3|N = 1) = 1

6

P(S = 3|N = 2) = P({(1, 2), (2, 1)}) = 2

36
= 1

18

P(S = 3|N = 3) = P((1, 1, 1)) = 1

63 = 1

216

P(S − 3|N = k) = 0 for k > 4.

So
P(S = 3) = (1

6
× 1

2
) + ( 1

18
× 1

4
) + ( 1

216
× 1

8
) = 169

36×48

and
P(N = 2|S = 3) = 1

18
× 1

4
× 36×48

169
= 24

169
.

/continued overleaf
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(b) P(S = 3|N odd) =
P((S = 3) ∩ (N odd))

P(N odd)
.

Now
P(N odd) = P(N = 1) + P(N = 3) + · · ·

= 1

2
+ (1

2
)3 + · · ·

= 1

2
(1 + 1

4
+ (1

4
)2 + · · ·)

= 1

2
× 1

1−1

4

= 2

3
,

and

P((S = 3) ∩ (N odd)) =
∞
∑

k=1

P((S = 3) ∩ (N odd)|N = k)P(N = k)

= P(S = 3|N = 1)P(N = 1) + P(S = 3|N = 3)P(N = 3)
= (1

6
× 1

2
) + ( 1

216
× 1

8
)

= 145

36×48

[Alternatively:

P((S = 3) ∩ (N odd)) = P(N odd|S = 3)P(S = 3)
= [1 − P(N even|S = 3)]P(S = 3)
= 1 − P(N = 2|S = 3)]P(S = 3)
= [1 − 24

169
] × 169

36×48
[using results in (a)]

= 145

36×48
. ]

So

P(S = 3|N odd) = 145

36×48
× 3

2
= 145

1152
.

9. Let
Wr: white ball drawn from urn r
Br: black ball drawn from urn r

Conditioning on the result of the draw from urn r − 1:

pr = P(Wr) = P(Wr|Wr−1)P(Wr−1) + P(Wr|Br−1)P(Br−1)

=

(

a + 1

a + b + 1

)

pr−1 +

(

a

a + b + 1

)

(1 − pr−1)

=
1

a + b + 1
pr−1 +

a

a + b + 1
, r = 2, ..., n

with p1 =
a

a + b
.


