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SOR201 Solutions to Examples 5

1. (i) The possible states are: 0,1,2,3.

The times are: n = 0, 1, 2, ...

Xn−1 = i �
�

��
Xn = i Conditional prob. i/3 1 6 i 6 3

@
@

@RXn = i + 1 Conditional prob. (3 − i)/3 0 6 i 6 2.

Other transitions have zero probabilities. The state of the system at time n depends
on the state at time (n − 1) but not on the states at times 0, 1, ..., (n − 2). Hence
{Xn}is a Markov chain: it is also homogeneous, since the transition probabilities
are not functions of n.

The transition probability matrix is

P =









0 1 2 3

0 0 1 0 0
1 0 1

3
2
3

0
2 0 0 2

3
1
3

3 0 0 0 1









.

Let p(n) denote the row vector of absolute probabilities at time n, i.e.

p(n) = (P(Xn = 0), P(Xn = 1), P(Xn = 2), P(Xn = 3)).

Then

p(2) = p(0)P
2

= (1, 0, 0, 0)









0 1
3

2
3

0
0 1

9
6
9

2
9

0 0 4
9

5
9

0 0 0 1









=
(

0, 1
3
, 2

3
, 0

)

.

(ii) Xn = Y1 + Y2 + · · ·+ Yn = Xn−1 + Yn.

Given Xn−1 = i, then Xn = i + k = j with probability ak, so we only need to
know the state at time (n − 1) to make a conditional probability statement about
Xn. Hence {Xn} is a Markov chain: it is also homogeneous, since the transition
probabilities are not functions of n. We have

P =



















0 1 2 3 ... ...

0 a0 a1 a2 a3 ... ...
1 0 a0 a1 a2 ... ...
2 0 0 a0 a1 ... ...
3 0 0 0 a0 ... ...
...

...
...

...
...

...
...

...
...

...



















.

/continued overleaf
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(iii) Ehrenfest model for diffusion

Xn−1 = i �
�

��
Xn = i + 1 if the randomly selected molecule

comes from urn B: conditional
probability is (M − i)/M, 0 6 i 6 M − 1

@
@

@RXn = i − 1 if the randomly selected molecule
comes from urn A: conditional
probability is i/M, 1 6 i 6 M.

Other transitions have zero probabilities. Once again, we only need to know Xn−1

to make a conditional probability statement about Xn, and the transition
probabilities are not functions of n. So {Xn} is a homogeneous Markov chain,
with

P =



















0 1 2 3 · · · M−2 M−1 M

0 0 1 0 0 · · · 0 0 0
1 1

M
0 M−1

M
0 · · · 0 0 0

2 0 2
M

0 M−2
M

· · · 0 0 0
...

...
...

...
...

...
...

...
M−1 0 0 0 0 · · · M−1

M
0 1

M

M 0 0 0 0 · · · 0 1 0



















.

2. (i) (a) Since the transition probabilities are homogeneous, we have

P(Xn = 1|Xn−1 = 0) = p01 – element (0,1) in P

P(Xm = 0|Xm−2 = 1) = p
(2)
10 – element (1,0) in P

2

P(Xr+3 = 1|Xr = 1) = p
(3)
11 – element (1,1) in P

3
.

Now

P =

(

0 1

0 1
3

2
3

1 1
2

1
2

)

.

So P(Xn = 1|Xn−1 = 0) = 2
3
.

P
2

=

(

1
3

2
3

1
2

1
2

) (

1
3

2
3

1
2

1
2

)

=

(

4
9

5
9

5
12

7
12

)

.

So P(Xm = 0|Xm−2 = 1) = 5
12

.

P
3

=

(

1
3

2
3

1
2

1
2

) (

4
9

5
9

5
12

7
12

)

=

(

23
54

31
54

31
72

41
72

)

.

So P(Xr+3 = 1|Xr = 1) = 41
72

.

(b) p(n) = p(0)P
n
, where p(n) = (P(Xn = 0), P(Xn = 1)).

Initially, the system is equally likely to be in state 0 or state 1: this means that

p(0) =
(

1
2
, 1

2

)

.

Then

p(1) =
(

1
2
, 1

2

)

(

1
3

2
3

1
2

1
2

)

=
(

5
12

, 7
12

)

.

/continued overleaf
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So P(X1 = 1) = 7
12

≈ 0.583.

p(2) =
(

1
2
, 1

2

)

(

4
9

5
9

5
12

7
12

)

=
(

31
72

, 41
72

)

.

So P(X2 = 1) = 41
72

≈ 0.569.

p(3) =
(

1
2
, 1

2

)

(

23
54

31
54

31
72

41
72

)

=
(

185
432

, 247
432

)

.

So P(X3 = 1) = 247
432

≈ 0.572.

(c) The given Markov chain is finite, aperiodic and irreducible (states 0 and 1 form
a closed set). Hence we can use Markov’s theorem to calculate lim

n→∞

P
n
. This

limiting matrix will be an approximation to P
n

when n is large. Thus

lim
n→∞

P
n

=

(

π0 π1

π0 π1

)

,

where π0, π1 satisfy

(π0, π1) = (π0, π1)

(

1
3

2
3

1
2

1
2

)

π0 + π1 = 1, π0 > 0, π1 > 0.

i.e.
π0 = 1

3
π0 + 1

2
π1 → 2

3
π0 = 1

2
π1 → π1 = 4

3
π0

π1 = 2
3
π0 + 1

2
π1 → 2

3
π0 = 1

2
π1 → π1 = 4

3
π0

(note that one equation is redundant).
Normalizing: π0 + 4

3
π0 = 1 → π0 = 3

7
→ π1 = 4

7
.

So

lim
n→∞

P
n

=

(

3
7

4
7

3
7

4
7

)

.

Hence P(Xn = 1) ≈ 0.571 when n is large.

(ii) We have

P
2

=





0 1
2

1
2

1
3

2
3

0
0 1 0









0 1
2

1
2

1
3

2
3

0
0 1 0



 =





1
6

5
6

0
2
9

11
18

1
6

1
3

2
3

0





p(0) = (1, 0, 0).

Then

(a)

P(X0 = 0, X1 = 1, X2 = 1) = P(X2 = 1|X0 = 0, X1 = 1).P(X0 = 0, X1 = 1)
= P(X2 = 1|X1 = 1).P(X1 = 1|X0 = 0).P(X0 = 0)

[using the Markov property in the first term]
= p11.p01.P(X0 = 0)
= 2

3
.1
2
.1 = 1

3
.

(b) P(Xn = 1|Xn−2 = 0) = p
(2)
01 = 5

6
.

(c) (P(X2 = 0), P(X2 = 1), P(X2 = 2)) = p(2)

= p(0)P
2

= (1, 0, 0)P
2

=
(

1
6
, 5

6
, 0

)

.
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3. (i) (a) The P matrix and possible transitions are:









0 1 2 3

0 0 0 0 1
1 0 0 0 1
2 1

2
1
2

0 0
3 0 0 1 0









0 → 3
1 → 3
2 → 0, 1
3 → 2.

The chain is irreducible, implying that all states are recurrent.

0 - 3 - 2
��* 0

HHj 1

HHj
��* 3 - 2

��* 0

HHj 1
· · ·

p
(1)
00 = 0, p

(2)
00 = 0, p

(3)
00 > 0, p

(4)
00 = 0, p

(5)
00 = 0, p

(6)
00 > 0, ...

So state 0 has period 3: hence all states are periodic with period 3.

(b) The P matrix and possible transitions are:













0 1 2 3 4

0 1
2

0 1
2

0 0
1 1

4
1
2

1
4

0 0
2 1

2
0 1

2
0 0

3 0 0 0 1
2

1
2

4 0 0 0 1
2

1
2













0 → 0, 2
1 → 0, 1, 2
2 → 0, 2
3 → 3, 4
4 → 3, 4.

{3, 4} is an irreducible closed set: its states are recurrent and aperiodic.
Similarly for {0, 2}.
State 1 is transient and aperiodic.

(c) The P matrix and possible transitions are:













0 1 2 3 4

0 0 1 0 0 0
1 0 0 1 0 0
2 1 0 0 0 0
3 0 0 0 1 0
4 0 0 0 0 1













0 → 1
1 → 2
2 → 0
3 → 3
4 → 4.

States 3 and 4 are absorbing.
{0, 1, 2} is an irreducible closed set: its states are recurrent with period 3.

(d) The P matrix and possible transitions are:













0 1 2 3 4

0 1
4

3
4

0 0 0
1 1

2
1
2

0 0 0
2 0 0 1 0 0
3 0 0 1

3
2
3

0
4 1 0 0 0 0













0 → 0, 1
1 → 0, 1
2 → 2
3 → 2, 3
4 → 0.

/continued overleaf
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{0, 1} is an irreducible closed set with recurrent, aperiodic states.
State 2 is absorbing.
States 3 and 4 are transient, aperiodic states.

(ii) The P matrix and possible transitions are:





0 1 2

0 0 1 0
1 1

2
0 1

2

2 1
2

1
4

1
4





0 → 1
1 → 0, 2
2 → 0, 1, 2.

This Markov chain is finite, aperiodic and irreducible. So by Markov’s theorem,

P
n →





π0 π1 π2

π0 π1 π2

π0 π1 π2



 as n → ∞,

where (π0, π1, π2) = (π0, π1, π2)P and π0 + π1 + π2 = 1, π0, π1, π2 > 0, i.e.

π0 = 1
2
π1 + 1

2
π2

π1 = π0 + 1
4
π2

π2 = 1
2
π1 + 1

4
π2







one of these is redundant.

The normalized solution is π0 = 5
15

, π1 = 6
15

, π2 = 4
15

.

4. (a) r = 1

Xn−1 = 0 ���*Xn = 0 Conditional prob. q

HHHjXn = 1 Conditional prob. p

Xn−1 = 1 ���*Xn = 0 Conditional prob. 0

HHHjXn = 1 Conditional prob. 1.

{Xn} is a Markov chain since the state at time n is influenced only by the state at
time n − 1, not by the states at earlier times. The transition probabilities are not
functions of n, so the chain is homogeneous.

P =

(

q p
0 1

)

.

r > 1

Xn−1 = i ���*Xn = i Conditional prob. q

HHHjXn = i + 1 Conditional prob. p
for i = 0, ..., r − 1.

Xn−1 = r -Xn = r Conditional prob. 1.

/continued overleaf



page 6 110SOR201(2002)

Other transition probabilities are zero. For the reasons given above, {Xn} is again
a homogeneous Markov chain.

P =

















0 1 2 3 · · · r−1 r

0 q p 0 0 · · · 0 0
1 0 q p 0 · · · 0 0
2 0 0 q p · · · 0 0
...

...
...

...
...

...
...

r−1 0 0 0 0 · · · q p
r 0 0 0 0 · · · 0 1

















.

(b) r = 1 State 1 is absorbing, state 0 is transient. Let f01 be the probability of
eventually entering state 1, starting from state 0, i.e. the probability of absorption.
Then

f01 = p01 + p00f01 = p + qf01.

Hence f01 = 1, i.e. absorption is certain.
Let µ0 denote the mean time to absorption. Then

µ0 = 1 + p00µ0 = 1 + qµ0.

Hence µ0 =
1

1 − q
=

1

p
(cf. geometric distribution).

(c) r > 1 State r is absorbing, states 0, 1, ..., (r − 1) are transient.
Let T = {0, 1, ..., (r−1)}. Let fir be the probability of eventual absorption in state
r, starting from state i, i ∈ T. Then

fir = pir+
∑

j∈T

pijfjr, i ∈ T.

Now
pr−1,r = p, otherwise pir = 0 for i ∈ T
pi,i = q, pi,i+1 = p, otherwise pij = 0 for i, j,∈ T.

So
f0r = qf0r + pf1r

f1r = qf1r + pf2r

..............................
fr−2,r = qfr−2,r + pfr−1,r

fr−1,r = p + qfr−1,r.

[Solution(not required): working backwards, fr−1,r = 1, fr−2,r = 1, ..., f0,r = 1.]
Let µi be the mean time to absorption, starting from state i. Then

µi = 1+
∑

j∈T

pijµj, i ∈ T

i.e.
µ0 = 1 + qµ0 + pµ1

µ1 = 1 + qµ1 + pµ2

.................................
µr−2 = 1 + qµr−2 + pµr−1

µr−1 = 1 + qµr−1

[Solution (not required): Working backwards, µr−1 =
1

p
, µr−2 =

2

p
, ..., µ0 =

r

p
.

Usually the system would be starting in state 0.]
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5. The system can be represented thus:

Cell 1 Cell 2

i W
N − i R

N − i W
i R

The possible transitions are:

Xn−1 = i �
�

��
Xn = i + 1

if R from 1 and W from 2:
for 0 6 i 6 N − 1, cond. prob. is

(

N−i
N

)2

HHHjXn = i
if (W from 1 and W from 2) OR (R from 1 and R from 2):
for 1 6 i 6 N − 1, cond. prob. is 2

(

i
N

) (

N−i
N

)

A
A
A
A
A
AUXn = i − 1

if W from 1 and R from 2:
for 1 6 i 6 N , cond. prob. is

(

i
N

)2

All other transition probabilities are zero.

We have a Markov chain because we only require to know the state after step n − 1 in
order to make a conditional probability statement about the state of the system after step
n. The chain is homogeneous since the transition probabilities are not functions of n.
The P matrix is



















0 1 2 3 · · · N−2 N−1 N

0 0 1 0 0 · · · 0 0 0
1

(

1
N

)2
2
(

1
N

) (

N−i
N

) (

N−1
N

)2
0 · · · 0 0 0

2 0
(

2
N

)2
2
(

2
N

) (

N−2
N

) (

N−2
N

)2 · · · 0 0 0
...

...
...

...
...

...
...

...
N−1 0 0 0 0 · · ·

(

N−1
N

)2
2
(

1
N

) (

N−1
N

) (

1
N

)2

N 0 0 0 0 · · · 0 1 0



















.

Clearly the distribution of X0 is hypergeometric, viz.

P(X0 = i) =

(

N

i

)(

N

N − i

)

/

(

2N

N

)

.

Then p(n) = p(0)P
n
, where p(r) = (P(Xr = 0), ..., P(Xr = N).
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6. We have:

P
2

=





0 1
2

1
2

3
4

0 1
4

1
4

1
4

1
2









0 1
2

1
2

3
4

0 1
4

1
4

1
4

1
2



 =





1
2

1
8

3
8

1
16

7
16

1
2

5
16

1
4

7
16



 .

Then

(P(X2 = 0), P(X2 = 1), P(X2 = 2)) = p(2) = p(0)P
2

=
(

1
3
, 1

3
, 1

3

)





1
2

1
8

3
8

1
16

7
16

1
2

5
16

1
4

7
16



 .

So
P(X2 = 1) = 1

3
(1

8
+ 7

16
+ 1

4
) = 13

48

P(X2 = 2) = 1
3
(3

8
+ 1

2
+ 7

16
) = 7

16
.

By Markov’s theorem, a limiting distributionπ exits because the chain is finite, aperiodic
and irreducible. π satisfies π = πP , with

∑

i

πi = 1. Thus

π0 = 3
4
π1 + 1

4
π2 (1)

π1 = 1
2
π0 + 1

4
π2 (2)

π2 = 1
2
π0 + 1

4
π1 + 1

2
π2 (3)

and π0 + π1 + π2 = 1.

Regard (3) as redundant. Then from (1) and (2) (by subtraction)

π0 − π1 = −1
2
π0 + 3

4
π1, i.e 3

2
π0 = 7

4
π1, i.e. π1 = 6

7
π0.

Then from (2): π2 = 10
7
π0.

π0 is found from the normalization requirement

π0 + π1 + π2 = 1 = π0 + 6
7
π0 + 10

7
π0.

This gives π0 = 7
23

and then π1 = 6
23

, π2 = 10
23

.

[Check: from (3), 10
23

= 7
46

+ 3
46

+ 10
46

= 10
23

.
√

]

7. States 1 and 3 are absorbing, while states 0, 2 and 4 are transient.

General form of equations for {fik}:

fik = pik+
∑

j∈T

pijfjk, i ∈ T.

In this case:

k = 1

f01 = 1
2
f01 + 1

4
f21 + 1

4
f41 (1)

f21 = 1
3

+ 1
3
f01 (2)

f41 = 1
4
f01 + 1

4
f21 + 1

4
f41. (3)

Substituting (2) in (1) and (3) we get

5
12

f01 − 1
4
f41 = 1

12
1
3
f01 − 3

4
f41 = − 1

12
.

Then f01 = 4
11

, f41 = 3
11

and finally f21 = 5
11

. /continued overleaf
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k = 3

f03 = 1
2
f03 + 1

4
f23 + 1

4
f43 (4)

f23 = 1
3

+ 1
3
f03 (5)

f43 = 1
4

+ 1
4
f03 + 1

4
f23 + 1

4
f43. (6)

Substituting (5) in (4) and (6) we get

5
12

f03 − 1
4
f43 = 1

12
3
4
f43 − 1

3
f03 = 1

3

whence f43 = 8
11

, f03 = 7
11

and then f23 = 6
11

.

The general equations for the {µi} are

µi = 1+
∑

j∈T

pijµj, i ∈ T.

So here:
µ0 = 1 + 1

2
µ0 + 1

4
µ2 + 1

4
µ4

µ2 = 1 + 1
3
µ0

µ4 = 1 + 1
4
µ0 + 1

4
µ2 + 1

4
µ4.

Proceeding as above, we deduce that

µ0 = 60
11

, µ2 = 31
11

, µ4 = 45
11

.

8.

P =

















0 1
2

1
2

0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1

4
0 1

2
1
8

1
8

1
2

0 0 0 1
4

1
4

















.

0

1

2

0
(0,1,2) - closed irreducible set of periodic states

(period =2)

(3) - absorbing state

0 1 3 4 5

(4,5) - irreducible set of transient, aperiodic states.


