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1. (i) State three basic properties of the probability function P defined on the event space F
of a probabilistic experiment with sample space S. [4]
For two events A, B ∈ F , deduce from the axioms that

(a) P(A) ≤ P(B) if A ⊂ B;

(b) P(A ∪ B) = P(A) + P(B) − P(A ∩ B). [5]

(ii) State (without proof) the generalisation of the result in part (i)(b) to n events A1, ..., An ∈
F . [2]
Two players are each given a well-shuffled standard pack of 52 playing cards. Each
player deals out cards from their pack, one by one, until the pack is exhausted. A
match Ai is said to occur when the ith card dealt out by player 2 is the same (in both
suit and denomination) as the ith card dealt out by player 1. Obtain an expression for
the probability p0 that no matches occur, and give a convenient approximation to its
value. [6]
By enumerating ‘favourable’ outcomes, or otherwise, show that p1, the probability that
exactly one match occurs, is approximately equal to p0. [3]

2. (i) (a) Given a probability space (S,F , P), explain what is meant by the
assertion that two events A, B ∈ F are independent. Show that, if A, B are
independent, then so too are the complementary events A, B. [4]

(b) For events A1, A2, ..., An ∈ F (n ≥ 3), explain the distinction between the
property of pairwise independence and that of mutual (or complete)
independence. [3]

(ii) State carefully, and prove, the law of total probability (or partition rule). [4]

(iii) A biased coin is such that the probability of getting a head in a single toss is p. Suppose
that the coin is tossed n times.

(a) Let un denote the probability that an even number of heads is obtained (0 being
regarded as an even number). Obtain a recurrence relation for un and show, by
induction or otherwise, that

un = 1
2
[1 + (1 − 2p)n], n ≥ 1. [5]

(b) Let vn denote the probability that two successive heads are not obtained, and
define the events

Ti: first tail obtained on the ith toss (i = 1, 2, ...).
By conditioning on the {Ti}, or otherwise, show that

vn = (1 − p)vn−1 + p(1 − p)vn−2, n ≥ 2,

and indicate how vn can be determined for given n and p. [4]



page 3 of 7 110SOR201

3. (i) The count random variables X and Y are independent and Poisson distributed with
parameters λ and µ respectively, i.e.

P(X = k) =
λke−λ

k!
, P(Y = k) =

µke−µ

k!
, k ≥ 0.

Show that Z = X + Y is Poisson distributed with parameter (λ + µ). Show also that
the conditional distribution of X , given that X + Y = n, is binomial, and determine
the parameters. [8]

(ii) (a) Let (X, Y ) be discrete random variables with joint probability function
{P (X = x; Y = y) : X = x1, x2, ...; Y = y1, y2, ...}. Define E(X|Y = yj)
and introduce the random variable E(X|Y ). Prove that

E[E(X|Y )] = E(X) [5]

(b) A prisoner is trapped in a dark cell containing three doors. Doors 1 and 2 lead to
tunnels which return the prisoner to the cell after a travel time of 10 hours and 15
hours respectively: door 3 leads to freedom after 12 hours. If it is assumed that the
prisoner will always select doors 1,2,3 with probabilities 0.3, 0.2, 0.5 respectively,
what is the expected time for the prisoner to reach freedom? [3]

(iii) Cards are drawn at random, one by one, from a standard pack of 52 cards. How many
cards would one expect to have to draw in order to obtain a king? [4]
[Hint: number the other (non-king) cards 1,...,48; then define

Ii =
{

1, if card i is drawn before any king
0, otherwise

and explain why P(Ii = 1) = 1
5
.]

4. (i) Define the P generating function (PGF) GX(s) of a count random
variable X . If X has the modified geometric distribution

pk ≡ P(X = k) = pqk, k = 0, 1, ...; p + q = 1, (∗)

show that
GX(s) =

p

1 − qs
, |qs| < 1,

and hence obtain E(X) and Var(X). [5]

(ii) If X1, ..., Xn are independent count random variables with PGFs G1(s), ..., Gn(s) re-
spectively, and X =

∑n

i=1
Xi, state how GX(s) is related to the {Gi(s)}.

If X is the score obtained in 3 rolls of a fair die, show that

GX(s) =
s3(1 − s6)3

63(1 − s)3
,

and deduce the value of P(X = 13). [5]
/continued...
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(iii) Consider a simple branching process in which the family sizes are i.i.d. random vari-
ables, each with mean µ and PGF G(s). Let Xn denote the size of the nth generation,
with PGF Gn(s), and suppose that the initial population X0 is 1.

(a) Quoting the relevant Theorem, explain why

Gn(s) = Gn−1(G(s)), n ≥ 1,

and deduce that
E(Xn) = µE(Xn−1), n ≥ 1. [6]

(b) Define the probability of ultimate extinction, e, and state (without proof) how e
can be derived from G(s). If the family size distribution is modified geometric
with parameter p (see (*) above), determine e as a function of p. [4]

5. (i) If X0, X1, . . . is a sequence of random variables defined on a state space {0, 1, . . .},
explain what is meant by saying that {Xn : n = 0, 1, . . .} is a homogeneous Markov
chain with transition probability matrix P. Show that

p(n) = p(0)Pn
,

where p(r) denotes the row vector (P(Xr = 0), P(Xr = 1), . . .), and explain the
significance of p

(n)
ij , the (i, j) element of Pn. [6]

(ii) A homogeneous Markov chain {Xn : n = 0, 1, . . .} has states {0, 1, 2} and
transition probability matrix

P =







0 2
5

3
5

1
5

2
5

2
5

4
5

0 1
5





 .

At time n = 0, the system is equally likely to be in states 0, 1 or 2.

(a) Find P(X2 = 0). [2]
(b) Explain briefly why a limiting distribution π exists, and determine it. [6]

(iii) A finite homogeneous Markov chain has a set T of transient states and a set A of
absorbing states, and its transition P matrix is P = (pij). When starting from state
i ∈ T , let fik denote the probability of eventual absorption in state k ∈ A and µi the
expected time to absorption in any absorbing state.

Write down (without proof) sets of linear equations for the {fik : i ∈ T} and the
{µi : i ∈ T}. If an absorbing chain with states {0, 1, 2, 3} has

P =











1
4

1
4

1
4

1
4

3
5

0 3
10

1
10

0 0 1 0
0 0 0 1











,

determine f02 and µ0. [6]
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6. (i) Consider a continuous non-negative random variable X which is distributed Gamma(α, λ),
with p.d.f.

f(x) =
λαxα−1 exp(−λx)

Γ(α)
, x ≥ 0; α, λ > 0

(where the function

Γ(p) =
∫

∞

0
tp−1e−tdt, p > 0,

has the properties

Γ(p + 1) = pΓ(p) : Γ(1/2) =
√

π : Γ(n + 1) = n!, n integer ≥ 0.)

Obtain an expression for E(Xr) and deduce expressions for the mean µ, variance
σ2 and coefficient of skewness γ1 (defined as E{(X − µ)3/σ3}): also determine the
mode for the case where α > 1. Comment briefly on the usefulness of the Gamma
distribution for modelling data. [10]

(ii) A continuous random variable X has p.d.f.

fX(x) =

{

3
8
(1 + x)2, −1 ≤ x ≤ 1

0, elsewhere.

Using any suitable method, determine the p.d.f. of Y = X 2. [6]

(iii) The life-time X of a certain device has the 2-parameter Weibull distribution, with c.d.f.

F (x) = 1 − exp
{

−
(

x

b

)c}

, x ≥ 0.

Determine the p.d.f. f(x) and the hazard rate function r(x) = f(x)/{1−F (x)}. What
is the significance of r(x) and how does its behaviour depend on the value of c? [4]

7. (i) Suppose that the independent random variables X ,Y are each exponentially
distributed with parameter λ, i.e. X has the p.d.f.

fX(x) =

{

λe−λx, x ≥ 0
0, otherwise,

with a similar expression for fY (y). Show that the random variables

U =
Y

X
, V = X + Y

are independent, and that the distribution of V is Gamma(2,λ). What is the distribution
of U? [8]
[Note: see Question 6(i) for the definition of the Gamma distribution.]

/continued...
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(ii) Let X(1), ..., X(n) be the order statistic random variables associated with random sam-
ples of size n from a distribution with p.d.f. f(x) and c.d.f. F (x),
−∞ < x < ∞.

(a) Show that the p.d.f. of the smallest observation, X(1), is

f(1)(x) = n{1 − F (x)}n−1f(x), −∞ < x < ∞.

Hence determine E(X(1)) and Var(X(1)) in the case of sampling from a
uniform distribution with

f(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise.

[7]

[Note:
∫ 1

0
xa−1(1 − x)b−1dx = B(a, b) =

Γ(a)Γ(b)

Γ(a + b)
, a, b > 0,

where the Gamma function is defined in Question 6(i). ]

(b) It may be shown that the joint p.d.f. of X(1), X(n) is

f(1),(n)(x, y) = n(n − 1){F (y)− F (x)}n−2f(x)f(y), −∞ < x < y < ∞.

By introducing a suitable transformation, show that, when sampling is from the
uniform distribution in (a), the sample range R has the p.d.f.

fR(r) = n(n − 1)rn−2(1 − r), 0 ≤ r ≤ 1. [5]

8. (i) (a) Define the moment generating function (MGF) MX(θ) of a continuous
random variable X in terms of its p.d.f. fX(x),−∞ < x < ∞, and indicate
concisely two ways in which moments of fX(x) about the origin may be derived
from MX(θ). Express the MGF of Y = aX + b in terms of MX . [4]

(b) If X is exponentially distributed with parameter λ (see Question 7(i)), show that

MX(θ) =
λ

λ − θ
, θ < λ,

and hence determine E(X) and Var(X). [5]

(ii) (a) If Z ∼ N(0, 1), show that

MZ(θ) = exp(1
2
θ2),

and deduce MX(θ), where X ∼ N(µ, σ2). [5]
(b) If X1, ..., Xn are independent random variables, and Xi ∼ N(µi, σ

2
i ),

i = 1, ..., n, use MGFs to prove that, if W =
∑n

i=1
aiXi, then

W ∼ N(
n
∑

i=1

aiµi,
n
∑

i=1

a2
i σ

2
i ) [3]

(iii) State the central limit theorem. [3]
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9. (i) In a Poisson process with rate λ, let N(t) be the number of events occurring in the
time interval (0, t] and Wr the time interval from t = 0 to the rth event.

(a) Write down an expression for P[N(t2)−N(t1) = n], where t1 < t2, commenting
briefly on how t1 and t2 enter the expression. [2]

(b) By using the fact that Wr ≤ w if and only if N(w) ≥ r, or otherwise, show that
Wr is Gamma distributed with parameters (r, λ), i.e. its p.d.f. is

fWr
(w) =

λrwr−1e−λw

(r − 1)!
, w ≥ 0. [5]

(ii) (a) State the assumptions concerning the transition probabilities pij(t) which charac-
terise a birth-and-death process {X(t), t ≥ 0} with birth rates
{αi : i = 0, 1, ...} and death rates {βi : i = 1, 2, ...}, and draw the
corresponding transition rate diagram.
It can be shown that, under these assumptions, the probabilities

pn(t) = P(X(t) = n)

satisfy the equations

dpn(t)

dt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n ≥ 0.

where, for convenience, α
−1 = β0 = 0 have been added. Assuming that {αn}

and {βn} are such as to ensure the existence of a steady-state distribution {πm :
m = 0, 1, . . .}, show that

αmπm = βm+1πm+1, m = 0, 1, . . .

and deduce that

π0 =

(

1 +
α0

β1
+

α0α1

β1β2
+ . . .

)

−1

. [9]

(b) Consider a single-server queueing system in which the service time is negative
exponential with mean µ−1 and customer arrivals form a Poisson process with rate
λ, except that any customer arriving when there are already N customers in the
system leaves without joining the queue. Show that the steady-state distribution
of the number of customers in the system is

πn = ρn(1 − ρ)(1 − ρN+1)−1, 0 ≤ n ≤ N,

where ρ = λ/µ. [4]


