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1. (i) State three fundamental axioms concerning P in a probability space (S,F , P).
Given two events A, B ∈ F , show from the axioms that the probability that
exactly one of the events occurs is

P(A) + P(B) − 2P(A ∩ B). [6]

(ii) Express the probability P(A1 ∪ A2 ∪ · · · ∪ An) in terms of the probabilities of the
events A1, ..., An ∈ F and their intersections.

Each packet of a certain breakfast cereal contains one of a set of 5 distinct tokens,
and a given packet is equally likely to contain any token. Find the probability that a
consignment of 10 packets will contain at least one complete set of tokens (do not
simplify your answer). [10]

(iii) Prove by induction, or otherwise, that for n general events A1, ..., An ∈ F ,

P(A1 ∩ A2 ∩ · · · ∩ An) ≥
n

∑

i=1

P(Ai) − (n − 1). [4]

2. (i) Prove that if two events A, B ∈ F are independent, then A and B are independent.
[3]

(ii) A random number N of fair dice is thrown, where

P(N = n) = 2−n, n ≥ 1.

Let S denote the sum of the scores on the dice. Find the probability that

(a) N = 2, given S = 3; [4]
(b) S = 3, given N is odd. [5]

(iii) In a series of independent games, a player has probabilities 4
9
, 1

3
, 2

9
of scoring 0, 1, 2

points respectively in any game. The series ends when the player scores 0 in a
game, and the scores in individual games are then added to give a total score.

(a) By conditioning on the result of the first game, find the probability that the
total score is an odd number. [4]

(b) Let pn denote the probability that the total score is exactly n points. Obtain a
recurrence relation for pn, and give the values of p0, p1. [4]
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3. (i) Suppose that X and Y are independent count random variables. Express the
probability distribution of Z = X + Y in terms of the probability distributions
of X and Y . [2]

(a) If X and Y are Poisson distributed with parameters λ1 and λ2 respectively,i.e.

P(X = x) =
λ1

xe−λ1

x!
; P(Y = y) =

λ2
ye−λ2

y!
,

show that Z is also Poisson distributed. [3]
(b) If X and Y have the same distribution

P(X = k) = P(Y = k) = pqk, k = 0, 1, . . . ; p + q = 1,

show that the conditional distribution P(X = x | Z = n) is uniform. Also,
show that

P(X > n) = qn+1

and hence, or otherwise, determine P(X > Y ). [8]

(ii) Suppose that (X1, . . . , Xk) has the multinomial distribution

P(X1 = x1, . . . , Xk = xk) =
n!

x1! . . . xk!
px1

1 . . . pxk

k

where
∑k

i=1 xi = n,
∑k

i=1 pi = 1 and Xi denotes the number of times outcome i
occurs in a sequence of n independent trials. Let

Iri =

{

1, if the rth trial results in outcome i
0, otherwise.

How are Xi and I1i, . . . , Ini related? Determine E(Iri) and Cov(Iri, Irj), i 6= j and
deduce that

Cov(Xi, Xj) = −npipj, i 6= j. [7]
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4. (i) Define the probability generating function (PGF) GX(s) of a count random variable
X , and indicate how E(X) can be derived from it. If X is binomially distributed
with parameters (n, p), show that

GX(s) = (q + ps)n (q = 1 − p)

and deduce E(X). [5]

(ii) Given a sequence X1, X2, . . . of independent, identically distributed random vari-
ables, each with mean µ and PGF G(s), write down (without proof) expressions for
the PGFs of the random variables

∑n
i=1 Xi (where n is known) and

∑N
i=1 Xi (where

N is a further independent count random variable with PGF GN(s)).

Suppose that each Xi has the following distribution:

P(X = k) =







pq, k = 0, 2
p2 + q2, k = 1
0, otherwise

; p + q = 1.

Find the PGF of S =
∑n

i=1 Xi and deduce that S has the same distribution as
U + V , where U and V are independent binomially distributed random variables
with parameters (n, p) and (n, q) respectively. [6]

(iii) Let Xn denote the size of the nth generation in a branching process in which the
family sizes are independent and identically distributed random variables, each with
mean µ and PGF G(s), and suppose that X0 = 1.

(a) Explain why Gn(s), the PGF of Xn, satisfies the recurrence relation

Gn(s) = Gn−1(G(s)), n ≥ 1,

and deduce that
E(Xn) = µn, n ≥ 1. [6]

(b) It can be shown that
e ≡ lim

n→∞
P(Xn = 0)

is the smallest non-negative root of the equation e = G(e). Using the
properties of G, deduce that

e = 1 if and only if µ ≤ 1. [3]
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5. (i) In a population of constant size N , each individual is of type A or not. Let Xn = i
if i individuals are of type A at time n (n = 0, 1, 2, . . .). During each unit time
interval an individual is chosen at random from the population and replaced by a
new individual : the probability of the new individual being of type A is i/N when
there were i individuals of type A in the population at the beginning of the time
interval.

Explain why this system is a homogeneous Markov chain, and give its transition
probability matrix. Classify the states of the chain. [8]

(ii) A homogeneous Markov chain {Xn : n = 0, 1, . . .} has states {0, 1, 2} and
transition probability matrix

P =







0 1
2

1
2

3
4

0 1
4

1
4

1
4

1
2





 .

At time n = 0, the system is equally likely to be in state 0 or state 1.

Quoting any standard results used, determine

(a) P(X2 = 1);

(b) limn→∞ P(Xn = 1). [9]

(iii) In a finite absorbing Markov chain with transition probability matrix P = (pij),
let T and A denote the sets of transient and absorbing states respectively, and fik

the probability of eventual absorption in state k ∈ A if starting from state i ∈ T .
Write down (and briefly justify) a set of linear equations satisfied by the absorption
probabilities {fik : i ∈ T}. [3]
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6. (i) The lifetime X of a certain device has c.d.f.

F (x) = 1 − e−λx2

, x ≥ 0, λ > 0.

Derive the p.d.f. of X , f(x), and determine its mean, variance and mode.

Also determine the hazard rate function r(x) = f(x)/[1−F (x)], and briefly explain
its significance.

(Hint: the function

Γ(p) =
∫ ∞

0
tp−1e−tdt, p > 0,

has the properties

Γ(p + 1) = pΓ(p) : Γ(1/2) =
√

π : Γ(n + 1) = n!, n integer ≥ 0.)

[10]

(ii) If the random variable X is uniformly distributed over [0, 1], i.e. its p.d.f. is

f(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise,

find the p.d.f. and c.d.f. of
Y = Xα,

where α may be positive or negative. Sketch the p.d.f. of Y when α = −1, 1
2
, 2.

[10]
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7. (i) Let X and Y be independent continuous random variables, each distributed
uniformly on [0, 1], and let

U = XY, V = X.

Show that the joint p.d.f. of U, V is

fU,V (u, v) =
{

1/v, 0 ≤ u ≤ v ≤ 1
0, otherwise,

and deduce the p.d.f. of U . [5]

(ii) Let Z1, ..., Zn be independent N(0, 1) random variables, and let

Y = CZ,

where Y , Z are (n × 1) vectors with components (Y1, ..., Yn), (Z1, ..., Zn)
respectively, and C is an orthogonal (n × n) matrix, so that

n
∑

i=1

Y 2
i =

n
∑

i=1

Z2
i .

Show that Y1, ..., Yn are independent N(0, 1) random variables. Then, by choosing
the first row of C to be ( 1√

n
, ..., 1√

n
), show that, for a random sample from N(0, 1),

the sample mean Z and the sample variance S2 are independent random variables.
State the distributions of Z and (n − 1)S2. [9]

(iii) Let X(n) denote the largest observation in a random sample of size n from a distri-
bution with p.d.f. f(x) and c.d.f. F (x), −∞ < x < ∞. By considering the c.d.f.
of X(n), or otherwise, obtain an expression for f(n)(x), the p.d.f. of X(n). For the
uniform distribution with

f(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise,

show that
Var(X(n)) =

n

(n + 1)2(n + 2)
. [6]
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8. (i) Define the moment generating function (MGF) MX(θ) of a continuous random
variable X , and explain why it is so called. Write down (without proof)

(a) the MGF of aX + b in terms of MX(θ);

(b) the MGF of the sum of n independent random variables X1, . . . , Xn in
terms of their individual MGFs. [5]

(ii) If Z ∼ N(0, 1) and X ∼ N(µ, σ2), show that

MZ(θ) = exp(1
2
θ2)

and deduce the MGF of X . [5]

(iii) If X is uniformly distributed on [0,1], i.e.

fX(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise,

show that
MX(θ) = (eθ − 1)/θ

and hence find the mean and variance of X . [4]

(iv) If Xi (i = 1, . . . , n) are independent random variables, each uniformly distributed
on [0,1], write down the MGF of

X =
1

n

n
∑

i=1

Xi

and show that, for large n,

logeMX(θ) = 1
2
θ + 1

24
θ2 · 1

n
+ o( 1

n
).

Hence find an approximation to the distribution of X when n is large.

(Hint: loge(1 + a) = a − 1
2
a2 + 1

3
a3 − · · · provided |a| < 1). [6]
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9. (i) State the conditions under which a counting process {N(t), t ≥ 0} is a Poisson
process with rate λ. Show that in a Poisson process the probabilities

pn(t) = P[N(t) = n], n = 0, 1, ...

satisfy the equations

dp0(t)

dt
= −λp0(t)

dpn(t)

dt
= λpn−1(t) − λpn(t), n = 1, 2, ...

and prove by induction, or otherwise, that

pn(t) =
(λt)ne−λt

n!
, n = 0, 1, ... [11]

(ii) (a) Consider a stationary Markov process {X(t), t ≥ 0} with transition proba-
bility functions {pij(t)}. What form does pij(δt) take for a birth-and-death
process with birth rates {αi : i = 0, 1, ...} and death rates {βi : i = 1, 2, ...}?
Draw the corresponding transition rate diagram. [3]

(b) For the birth-and-death process in (a), it can be shown that the probabilities

pn(t) = P(X(t) = n), n = 0, 1, ...

satisfy the equations

dpn(t)

dt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n = 0, 1, ...

where α−1 = β0 = 0. Deduce that if a steady-state distribution
{πm : m = 0, 1, . . .} exists, then

αmπm = βm+1πm+1, m = 0, 1, . . .

In a simple (M/M/1) queue, arrivals follow a Poisson process with rate λ and
the service time is negative exponential with mean µ−1, where λ < µ. Show
that

πn = (1 − ρ)ρn, n = 0, 1, ...,

where ρ = λ/µ. [6]


