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1. (i) State a minimal set of axioms concerning the probability measure P in a
probability space (S,F , P). [3]
Deduce from the axioms that, if A, B ∈ F , then

(a) P(A) = 1 − P(A); [2]
(b) the probability that exactly one of the events occurs is

P(A) + P(B) − 2P(A ∩ B). [4]

(ii) If A1, ..., An ∈ F , use the axioms (together with the addition law for two events, which
can be derived from the axioms) to show by induction that

P(A1 ∪ · · · ∪ An) ≤
n
∑

i=1

P(Ai).

Write down (without proof) an exact expression for P(A1 ∪ · · · ∪ An) in terms of the
probabilities of the events A1, ..., An and their intersections. [5]

(iii) In a special promotion, a garage issues a token for every £10 worth of petrol purchased.
Each token bears one of 6 symbols, with equal likelihood, and any customer who
acquires a complete set of the 6 symbols wins a prize. Find the probability that a
customer who acquires 12 tokens on visits to the garage will win a prize. (Do not
reduce your answer.) [6]

2. (i) Given a probability space (S,F , P) and an event B ∈ F with P(B) > 0, define the
conditional probability P(A|B) for an event A ∈ F . If A1, ..., An ∈ F , prove that,
under a certain condition (to be carefully stated),

P(A1∩· · ·∩An) = P(An|A1∩· · ·∩An−1).P(An−1|A1∩· · ·∩An−2)...P(A2|A1)P(A1).

How does this simplify if the events A1, ..., An are independent? Show that in this case

P(A1 ∪ · · · ∪ An) = 1−
n

Π
i=1

P(Ai). [7]

(ii) Suppose that a fair die is thrown repeatedly.

(a) Find the probability that a six is thrown before an odd number is thrown. [3]
(b) Let un denote the probability that, in the first n throws, an odd number of sixes is

obtained. Derive an expression for un in terms of un−1, and show, by induction or
otherwise, that

un = 1
2

[

1 −
(

2
3

)n]

, n ≥ 0. [5]

(c) Let vn denote the probability that, during the first n throws, a run of even numbers
in 3 successive throws is not obtained . By conditioning on the first occurrence
of an odd number, derive the recurrence relation

vn = 1
2
vn−1 + 1

4
vn−2 + 1

8
vn−3, n ≥ 3,

and use it to compute v5. [5]
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3. (i) The numbers X and Y of male and female customers entering a certain store are
independent and Poisson distributed with means λ1 and λ2 respectively, i.e.

P(X = x) =
λx

1e
−λ1

x!
, x = 0, 1, ... ; P(Y = y) =

λy
2e

−λ2

y!
, y = 0, 1, ....

Any customer entering the store has a probability p of spending more than £10 on
purchases.

(a) Show that N , the total number of people entering the store, is Poisson
distributed with mean λ = λ1 + λ2. [4]

(b) Use the result
E(Z) = E(E(Z|N))

to show that Z, the number of customers spending more than £10, has mean λp.
[2]

(c) Show that the distribution of Z is Poisson. [4]

(ii) A bag contains N balls numbered 1 to N . Balls are drawn at random, one at a time,
without replacement.

(a) Let X be the largest number selected after n balls have been withdrawn (n ≤ N ).
Find the probability distribution of X . [2]

(b) A match Ai is said to occur if the ith ball drawn bears the number i. Let

Ii =
{

1, if Ai occurs
0, otherwise,

and let S denote the number of matches obtained by the time the bag is empty.
Obtain expressions for E(Ii) and Var(Ii), and show that

Cov(Ii, Ij) =
1

N2(N − 1)
, i 6= j.

Hence show that
E(S) = Var(S) = 1. [8]
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4. (i) Define the P generating function (PGF) GX(s) of a count random
variable X . If X has the geometric distribution

P(X = x) = pqx−1, x = 1, 2, ...; p + q = 1, (∗)

show that
GX(s) =

ps

1 − qs
, |qs| < 1. [4]

(ii) Consider a sequence of independent Bernoulli trials, each with probability of success
p, and let Z be the number of trials required for r successes to occur. Explain why

Z = X1 + X2 + · · · + Xr,

where X1, ..., Xr are independent random variables, each with the distribution (*) in
part (i). Obtain an expression for GZ(s); then use it to obtain E(Z) and to show that

P(Z = z) =

(

z − 1

r − 1

)

prqz−r, z = r, r + 1, ...

[Hint:
1

(1 − a)r
=
∑∞

i=0

(

i+r−1
i

)

ai, |a| < 1. ] [7]

(iii) In a simple branching process, the family sizes are independent and identically
distributed random variables, each with mean µ and PGF G(s), Xn denotes the size of
the nth generation, and the initial population X0 is 1.

Explain why Gn(s), the PGF of Xn, satisfies the recurrence relation

Gn(s) = Gn−1(G(s)), n ≥ 1,

and deduce that
E(Xn) = µE(Xn−1) = µn.

Define the probability of ultimate extinction, e, and state (without proof) how e can be
derived from G(s). Determine e in the case where the family size distribution is

P(C = k) =











1
5
, k = 0

2
5
, k = 1, 2

0, otherwise.
[9]
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5. (i) Balls are randomly distributed, one at a time, among N cells. The system is in state k
at time n if exactly k cells are occupied after the nth ball has been distributed. Explain
why this system is a homogeneous Markov chain, and give its transition probability
matrix. [4]

(ii) A homogeneous Markov chain {Xn : n = 0, 1, . . .} has states {0, 1, 2} and
transition probability matrix

P =







0 1 0
1
4

1
2

1
4

2
3

0 1
3





 .

At time n = 0, the system is equally likely to be in state 0 or state 1.

(a) Find P(X0 = 1, X1 = 2, X2 = 0). [2]
(b) Find the absolute probability distribution at time n = 2. [3]
(c) Say why a unique limiting distribution π exists, and determine it. [6]

(iii) A finite Markov chain has a set A of absorbing states and a set T of transient states,
and its transition probability matrix is P = (pij). When starting from the transient
state i, let fik denote the probability that the system eventually enters the absorbing
state k, and µi the mean time for absorption to occur (in any k ∈ A).

Derive a set of linear equations satisfied by the {fik}. Write down (without derivation)
a set of linear equations for the {µi}. [5]
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6. (i) A continuous non-negative random variable X is distributed Gamma(α, λ), with p.d.f.

f(x) =
λαxα−1exp(−λx)

Γ(α)
, x ≥ 0; α, λ > 0,

(where the function

Γ(p) =
∫ ∞

0
tp−1e−tdt, p > 0

has the properties

Γ(p + 1) = pΓ(p) : Γ(1/2) =
√

π : Γ(n + 1) = n!, n integer ≥ 0).

(a) Describe how the shape of f(x) depends on the value of α (four cases can be
distinguished), and comment briefly on the modelling implications. [4]

(b) Obtain an expression for E(Xr) and derive expressions for the mean µ and
variance σ2: also determine the mode for the case where α > 1. Deduce µ and σ2

for the χ2 distribution with r degrees of freedom, which has p.d.f.

f(x) =
1

2r/2Γ(r/2)
x

1

2
r−1e−

1

2
x, x ≥ 0; r a positive integer. [7]

(ii) If X is a standard Cauchy random variable with p.d.f.

fX(x) =
1

π(1 + x2)
, −∞ < x < ∞,

show that Y = 1/X is also a standard Cauchy random variable. [3]

(iii) A continuous random variable X , defined over (−∞,∞), has c.d.f. FX(x) and p.d.f.
fX(x). If Y = X2, describe briefly two methods whereby the p.d.f. fY (y) may be
derived. Using either method, obtain an expression for fY (y) in terms of fX . Hence
show that, if X ∼ N(0, 1), i.e.

fX(x) =
1√
2π

e−x2/2, −∞ < x < ∞,

then Y ∼ χ2(1). [6]



page 7 of 9 110SOR201

7. (i) Let X and Y be independent continuous random variables, with p.d.f.s

fX(x) =
1

x2
; x ≥ 1 : fY (y) =

1

y2
, y ≥ 1,

and let U = XY, V = X/Y. Show that the joint p.d.f. of U, V is

fU,V (u, v) =
1

2u2v
,

1

u
≤ v ≤ u, u ≥ 1,

and derive the marginal p.d.f. of V . [7]

(ii) Let Z1, ..., Zn be independent N(0, 1) random variables, and let

Y = CZ,

where Y , Z are (n × 1) vectors with components (Y1, ..., Yn), (Z1, ..., Zn)
respectively, and C is an orthogonal (n × n) matrix, so that

n
∑

i=1

Y 2
i =

n
∑

i=1

Z2
i .

Show that Y1, ..., Yn are independent N(0, 1) random variables. Then, by choosing the
first row of C to be ( 1√

n
, ..., 1√

n
), show that, for a random sample from N(0, 1), the

sample mean Z and the sample variance S2 are independent random variables. [8]

(iii) Let X(1), X(2), . . . , X(n) be the order statistic random variables associated with random
samples of size n from a distribution with p.d.f. f(x) and c.d.f. F (x), where
−∞ < x < ∞, and let f(i)(x) denote the p.d.f. of X(i). Outline one proof of the
expression

f(i)(x) =
n!

(i − 1)!(n − i)!
{F (x)}i−1{1 − F (x)}n−if(x), −∞ < x < ∞.

For a random sample of size 3 from the uniform distribution with

f(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise,

find the probability that the median X(2) is less than 1
3
. [5]
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8. (i) Define the moment generating function (MGF) MX(θ) of a continuous
random variable X in terms of its p.d.f. fX(x),−∞ < x < ∞. State how moments of
fX(x) about the origin can be derived from MX . [3]
If X ∼ χ2

r , i.e.

fX(x) =
1

2r/2Γ(r/2)
x

1

2
r−1e−

1

2
x, x ≥ 0; r a positive integer,

show that
MX(θ) = (1 − 2θ)−r/2, θ < 1/2, (∗∗)

and hence derive E(X) and Var(X).

[Note: see Question 6 for the definition and properties of Γ(p). You may require the
expansion

(1 − x)−q = 1 + qx +
q(q + 1)

2!
x2 + · · · ; |x| < 1, q > 0.] [6]

(ii) If X and Y are independent continuous random variables, show how MX+Y (θ) is
related to MX(θ) and MY (θ), and state the generalisation to n independent random
variables X1, ..., Xn. [3]
The random variables Z1, ..., Zn are independent and

Zi ∼ N(0, 1), i = 1, ..., n.

Show that
MZ2

i

(θ) = (1 − 2θ)−1/2, i = 1, ..., n; θ < 1/2.

If
Vn = Z2

1 + · · ·+ Z2
n,

obtain an expression for the MGF of Vn, and, using the result (**) in part (i), deduce
the distribution of Vn. [5]
By appeal to the central limit theorem, deduce a convenient approximation to the
distribution of Vn when n is large. [3]
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9. (i) Explain what is meant by the assertion that a counting process {N(t), t ≥ 0} has
independent and stationary (or time-homogeneous) increments.

State the conditions which characterise a Poisson process with rate λ. For such a
process, state (without proof) the probability distributions of

(a) N(u + t) − N(u) for u ≥ 0, t > 0;

(b) Xn = Tn −Tn−1 for n ≥ 1, where Tn is the time at which the nth event after time
t = 0 = T0 occurs;

(c) Tn − Tn−r for r ≥ 1, n ≥ r. [8]

(ii) In a birth and death process {X(t), t ≥ 0}, the transition probability functions
{pij(t)} are such that, for small δt,

pij(δt) =



















αiδt + o(δt), i ≥ 0, j = i + 1
βiδt + o(δt), i ≥ 1, j = i − 1
1 − (αi + βi)δt + o(δt), i ≥ 0, j = i
o(δt), otherwise,

where β0 ≡ 0. Show that the probabilities pn(t) ≡ P(X(t) = n) satisfy the equations

dpn(t)

dt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n ≥ 1

dp0(t)

dt
= −α0p0(t) + β1p1(t).

Assuming that {αn} and {βn} are such that a steady-state solution
{πm : m = 0, 1, ...} exists, show that

αmπm = βm+1πm+1, m ≥ 0,

and deduce that

π0 =

(

1 +
α0

β1
+

α0α1

β1β2
+ · · ·

)−1

. [9]

(iii) Consider a single-server queue with discouragement, in which, if n is the number of
customers in the system, the arrival and service rates are respectively

λn =
λ

n + 1
, n ≥ 0

and
µn = µ, n ≥ 1.

Using the results in part (ii), show that the steady-state distribution is Poisson with
parameter λ/µ. [3]


