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1. (i) (a) State a set of fundamental axioms concerning the probability measure P in a
probability space (S,F , P). Indicate (without proof) any redundancy in the stated
axioms. [4]

(b) Using the axioms, together with the addition law of probability for two events
(which can be derived from the axioms), show by induction that, for n events
A1, ..., An ∈ F ,

P(A1 ∪ · · · ∪ An) ≤
n
∑

i=1

P(Ai). [5]

(c) Write down (without proof) an exact expression for P(A1 ∪ · · · ∪ An) in terms of
the probabilities of the events A1, ..., An and their intersections. [2]

(ii) A janitor hangs n keys, numbered 1, ..., n, at random on n similarly numbered hooks,
one key to each hook. Explaining your reasoning carefully, obtain an expression for
the probability that no key is hung on a hook with the same number, and deduce a
good approximation to this probability when n is large. [9]

2. (i) (a) Given a probability space (S,F , P), explain what is meant by the
assertion that two events A, B ∈ F are independent. Show that, if A, B are
independent, then so too are the complementary events A, B. [4]

(b) For events A1, A2, ..., An ∈ F (n ≥ 3), explain the distinction between the
property of pairwise independence and that of mutual (or complete)
independence. [3]

(ii) State carefully, and prove, the law of total probability (or partition rule). [4]

(iii) A biased coin is such that the probability of getting a head in a single toss is p. Suppose
that the coin is tossed n times.

(a) Let un denote the probability that an even number of heads is obtained (0 being
regarded as an even number). Obtain a recurrence relation for un and show, by
induction or otherwise, that

un = 1
2
[1 + (1 − 2p)n], n ≥ 1. [5]

(b) Let vn denote the probability that two successive heads are not obtained, and
define the events

Ti: first tail obtained on the ith toss (i = 1, 2, ...).
By conditioning on the {Ti}, or otherwise, show that

vn = (1 − p)vn−1 + p(1 − p)vn−2, n ≥ 2,

and indicate how vn can be determined for given n and p. [4]
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3. (i) The discrete random variables X, Y are independent, and each has the geometric
distribution with parameter p, i.e.

P(X = k) = P(Y = k) = pqk−1, k = 1, 2, . . . ; p + q = 1.

(a) Determine the distribution of the random variable Z = X + Y . [4]
(b) Let V = max(X, Y ). By first considering P(V ≤ v), or otherwise, determine the

distribution P(V = v), v = 1, 2, ... [4]

(ii) (a) Let (X, Y ) be discrete random variables with joint probability function
{P(X = x, Y = y) : x = x1, x2, ...; y = y1, y2, ...}. Define E(X|Y = yj),
and prove that

E[E(X|Y )] = E(X). [5]

(b) Consider a sequence of independent Bernoulli trials, each with probability of
success p. Let

Xr = number of trials required to obtain r successes;

Y =
{

1 if the first trial yields a success
0 if the first trial yields a failure.

Explain why
E(Xr|Y = 0) = E(Xr) + 1, r ≥ 1,

and give a similar relation for E(Xr|Y = 1). Hence obtain a simple recurrence

relation for E(Xr) and deduce that E(Xr) =
r

p
. [4]

(iii) A supermarket issues N different types of prize coupons to customers: each coupon
issued is equally likely to be one of the N types. Suppose that a customer has collected
n coupons. Let

Xi =
{

1, if there is at least one type i coupon in the set
0, otherwise;

X = number of different types of coupon in the set.

Find E(Xi) and hence E(X). [3]
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4. (i) Define the P generating function (PGF) GX(s) of a count random
variable X . If GX(s) is known, indicate how E(X) and Var(X) can be found. If
Y = a + bX , express the PGF of Y in terms of GX . [5]

(ii) If X =
∑n

i=1 Xi, where the {Xi} are independent count random variables, state how
GX(s) is related to the PGFs G1(s), . . . , Gn(s) of X1, . . . , Xn.

Let X be the total score obtained in 3 rolls of a fair die. Show that

GX(s) =
s3(1 − s6)3

63(1 − s)3

and derive the value of P(X = 14). [6]

[Note: (1 − a)−r =
∑

∞

i=0

(

i+r−1
i

)

ai, |a| < 1. ]

(iii) Let Xn denote the size of the nth generation in a branching process in which the family
sizes are independent and identically distributed random variables, each with mean µ
and PGF G(s), and suppose that X0 = 1.

(a) Explain why Gn(s), the PGF of Xn, satisfies the recurrence relation

Gn(s) = Gn−1(G(s)), n ≥ 1,

and deduce that
E(Xn) = µn, n ≥ 1. [6]

(b) It can be shown that
e ≡ lim

n→∞

P(Xn = 0)

is the smallest non-negative root of the equation e = G(e). Using the
properties of G, deduce that

e = 1 if and only if µ ≤ 1. [3]
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5. (i) Given a sequence of random variables X0, X1, . . . defined on a state space {0, 1, . . .},
explain what is meant by the assertion that {Xn : n = 0, 1, . . .} is a homogeneous
Markov chain, and define the transition probability matrix P.

Show that
p

(n) = p
(0)Pn

,

where p
(r) denotes the row vector (P(Xr = 0), P(Xr = 1), . . .), and that

P(Xn = j|X0 = i) = p
(n)
ij ,

the (i, j) element of Pn. [6]

(ii) A homogeneous Markov chain {Xn : n = 0, 1, . . .} has states {0, 1, 2} and
transition probability matrix

P =







0 1
2

1
2

3
4

0 1
4

1
4

1
4

1
2





 .

At time n = 0, the system is equally likely to be in states 0, 1 or 2.

(a) Find P(X2 = 2). [3]
(b) Quote a theoretical result which confirms that a limiting distribution π exists in

this case, and determine π. [6]

(iii) An absorbing Markov chain has states {0, 1, 2, 3, 4} and transition P matrix

P =















1
2

0 1
4

0 1
4

0 1 0 0 0
1
3

1
3

0 1
3

0
0 0 0 1 0
1
4

0 1
4

1
4

1
4















.

Let fi1 denote the probability that the system eventually enters the absorbing state
1, given that it started in the transient state i. Write down (without proof) a set of
equations for {fi1}, and hence determine f01. [5]
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6. (i) Define the median of a continuous random variable X with p.d.f.
f(x), −∞ < x < ∞. If f(x) is symmetrical about x = a, i.e.

f(a + y) = f(a − y), y > 0,

show that the median is a. [4]

(ii) Suppose that Z ∼ N(0, 1), with p.d.f.

fZ(z) =
1√
2π

e−z2/2, −∞ < z < ∞,

and let V = Z2. Show that V ∼ χ2(1).

Determine E(V 2) and deduce the fourth moment about the mean of N(µ, σ2). [9]
[Note: the p.d.f. for the χ2(r) distribution is

fV (v) =
1

2r/2Γ(r/2)
vr/2−1e−v/2, 0 ≤ v < ∞, r a positive integer,

and
Γ(p) =

∫

∞

0
tp−1e−tdt, p > 0

has the properties

Γ(p + 1) = pΓ(p) : Γ(1/2) =
√

π. ]

(iii) If X ∼ beta(a, b), with p.d.f.

fX(x) =
1

B(a, b)
xa−1(1 − x)b−1, 0 ≤ x ≤ 1; a, b > 0,

obtain expressions for E(X) and Var(X), and show that Y = 1 − X is also beta
distributed. [7]

[Note: B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
. ]
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7. (i) The random variables X ,Y are independent and have the same negative exponential
distribution:

fX(x) =

{

λe−λx, x ≥ 0
0, otherwise;

fY (y) =

{

λe−λy, y ≥ 0
0, otherwise.

(a) Show that the random variables U =
Y

X
, V = X + Y are independent.

(b) Show that V has the Erlang(2, λ) distribution.
[Note: the p.d.f. for the Erlang(n, λ) distribution is

f(x) =
λnxn−1exp(−λx)

(n − 1)!
, x ≥ 0; λ > 0, n integer ≥ 1.]

(c) Find the distribution of U . [8]

(ii) Suppose that X and Y are independent continuous random variables with p.d.f.s fX(x)
and fY (y) respectively. By considering a suitable bivariate transformation, show that

the p.d.f. of U =
Y

X
can be expressed as

fU(u) =
∫

∞

−∞

fX(v)fY (uv)|v|dv.

If X and Y are both uniformly distributed on [0, 1], deduce that

fU(u) =















1

2
, 0 ≤ u ≤ 1

1

2u2
, 1 ≤ u < ∞.

[6]

(iii) Let X(1), X(2), ..., X(n) be the order statistic random variables associated with random
samples of size n from a distribution with p.d.f. f(x) and c.d.f. F (x),
−∞ < x < ∞. Show that the p.d.f. of X(n) is

f(n)(x) = n{F (x)}n−1f(x), −∞ < x < ∞.

Then indicate briefly how the argument you have used can be extended to yield the
p.d.f. of X(i)(i = 1, ..., n) and, as an illustration, show that

f(n−1)(x) = n(n − 1){F (x)}n−2{1 − F (x)}f(x), −∞ < x < ∞. [6]
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8. (i) Define the moment generating function (MGF)MX(θ) of a continuous random variable
X , and state how the MGF of Y = a + bX is related to MX . Indicate concisely two
methods whereby moments of X about the origin can be derived from MX(θ). How
can these procedures be modified to yield (directly) moments about the mean E(X)?

[5]

(ii) If Z ∼ N(0, 1), show that
MZ(θ) = exp(1

2
θ2),

and hence obtain MX(θ), where X = µ + σZ. Use MX(θ) to verify that E(X) = µ
and Var(X) = σ2. [7]

(iii) Show that if the distribution of X is negative exponential with parameter λ (see
Question 7(i) for definition), then

MX(θ) =
λ

λ − θ
, θ < λ.

Hence obtain the MGF of

Sn =
n
∑

i=1

Xi,

where Xi(i = 1, . . . , n) are independent random variables, each exponentially
distributed with parameter λ.

Show that

Zn =
Sn − n/λ√

n/λ

is asymptotically normally distributed with mean 0 and variance 1.

(Hint:

lim
n→∞

(

1 +
a

n
+ o(1/n)

)n

= ea for fixed a. ) [8]
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9. (i) State the assumptions which characterize a counting process {N(t), t ≥ 0} as a
Poisson process with rate λ.

Show from the assumptions that the probabilities

pn(t) = P[N(t) = n]

satisfy the equations

dpn(t)

dt
= λpn−1(t) − λpn(t), n ≥ 1

dp0(t)

dt
= −λp0(t).

Indicate briefly how these equations can be solved and quote the resulting
expression for pn(t). Also state (without proof) the distribution of the
inter-event times

Xn = Tn − Tn−1,

where
Tn = inf{t : N(t) = n}. [11]

(ii) (a) For a ‘birth and death’ process {X(t), t ≥ 0} with ‘birth’ rates
{αi; i = 0, 1, . . .} and ‘death’ rates {βi; i = 1, 2, . . .}, it can be shown that the
probabilities

pn(t) = P[X(t) = n], n = 0, 1, . . .

satisfy the equations

dpn(t)

dt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n = 0, 1, . . . ,

where α
−1 = β0 = 0. Show that, if a steady state distribution

{πm; m = 0, 1, . . .} exists, then

αmπm = βm+1πm+1, m = 0, 1, . . . ,

and deduce that

π0 =

(

1 +
α0

β1

+
α0α1

β1β2

+ · · ·
)

−1

. [5]

(b) Consider a single-server queueing system in which the service time is negative
exponential with mean µ−1 and customer arrivals form a Poisson process with rate
λ, except that any customer arriving when there are already N customers in the
system leaves without joining the queue. Show that the steady-state distribution
of the number of customers in the system is

πn =

(

λ

µ

)n (

1 − λ

µ

)







1 −
(

λ

µ

)N+1






−1

, 0 ≤ n ≤ N.

Indicate briefly how your discussion would be affected if the single server were
replaced by c similar servers working independently in parallel. [4]


