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1. (i) State a set of fundamental axioms concerning the probability measure P in a
probability space (S,F , P). [3]
Given two events A, B ∈ F , deduce from the axioms that:

(a) P(A) = 1 − P(A); [2]
(b) P(A ∩ B) − P(A)P(B) = P(A ∪ B) − P(A)P(B).

(Hint: B = (A ∩ B) ∪ (A ∩ B).) [4]

(ii) Write down (without proof) an expression for P(A1 ∪ · · · ∪ An) in terms of the
probabilities of the n events A1, ..., An ∈ F and their intersections. [2]
A party is attended by n husband-wife pairs. For a certain game, the husbands stand
in a straight line; and the wives, in random order, stand in a parallel line, so that each
wife is paired with one of the husbands. Explaining each step carefully, obtain an
expression for the probability that no wife is paired with her own husband. Deduce a
convenient approximation to this probability when n is large. [9]

2. (i) Given a probability space (S,F , P) and an event B ∈ F with P(B) > 0, define the
conditional probability

Q(A) = P(A|B), A ∈ F ,

and show that (S,F , Q) is also a probability space. [4]
Write down (without proof) an expression for P(A1∩· · ·∩An) in terms of conditional
probabilities (of the individual events A1, . . . , An ∈ F ), which is valid provided the
events satisfy a certain condition (to be stated). [2]

(ii) Suppose that N dice are selected from a set of 3 fair dice in such a way that

P(N = 1) = P(N = 3) = 1
4
, P(N = 2) = 1

2
,

and are then thrown. If S denotes the sum of the scores obtained, find the probability
that

(a) S = 5, given that N = 2;

(b) N = 2, given that S = 5;

(c) S = 5, given that N is odd. [7]

(iii) In a series of independent games, a player has probabilities 1
3
, 5

12
, 1

4
of scoring 0, 1, 2

points respectively in any game. The series ends when the player scores 0 in a game,
and the scores in individual games are then added to give a total score. Let pn denote
the probability that this total score is exactly n points. Obtain a recurrence relation for
pn, and give the values of p0, p1. Show, by induction or otherwise, that

pn = 3
13

(

3
4

)n
+ 4

39

(

−1
3

)n
, n ≥ 0. [7]



page 3 of 9 110SOR201

3. (i) The discrete random variables X, Y are independent, and each has the geometric
distribution with parameter p, i.e.

P(X = k) = P(Y = k) = pqk−1, k = 1, 2, . . . ; p + q = 1.

(a) Determine the distribution of the random variable Z = X + Y . [3]
(b) Show that

P(X > n) = P(Y > n) = qn, n = 0, 1, . . .

and deduce that the distribution of the random variable U = min(X, Y )
is geometric with parameter p(2 − p). [5]

(ii) Let (X, Y ) be discrete random variables with joint probability function
{P(X = x, Y = y) : x = x1, x2, ...; y = y1, y2, ...}. Define E(X|Y = yj),
and prove that

E[E(X|Y )] = E(X). [5]

(iii) A fair die is rolled repeatedly.

(a) Introducing indicator random variables

Ii =
{

1 if face i turns up at least once,
0 otherwise,

i = 1, . . . , 6

show that the expected number of distinct faces turning up in the course of n rolls
is 6[1 −

(

5
6

)n
]. [4]

(b) Suppose that rolling is continued until either a five or a six turns up. Let X denote
the sum of the squares of the individual scores obtained. By conditioning on the
score Y obtained in the first roll, or otherwise, find E(X). [3]
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4. (i) Define the P generating function (PGF) GX(s) of a count random
variable X . If X is binomially distributed with parameters (n, p), show that

GX(s) = (q + ps)n (q = 1 − p),

and hence obtain E(X) and Var(X). Show also that, if X has the Poisson distribution

P(X = k) =
λk

k!
e−λ, k = 0, 1, ...; λ > 0,

then
GX(s) = eλ(s−1). [6]

(ii) Given a sequence X1, X2, ... of independent, identically distributed (i.i.d.) random
variables, each with PGF G(s), write down (without proof) expressions for the PGFs

of the random variables
n
∑

i=1
Xi (where n is known) and

N
∑

i=1
Xi (where N is a further

independent count random variable with PGF GN(s)).

Suppose the number of car accidents in a year is Poisson distributed with parameter λ
and the probabilities of an accident involving 1, 2, 3, 4 cars are 0.38, 0.55, 0.05, 0.02
respectively. Obtain an expression for the PGF of X , the total number of cars involved
in accidents during a year, and derive from it the expected value of X . [7]

(iii) In a simple branching process, the family sizes are independent and identically
distributed random variables, each with mean µ and PGF G(s); Xn denotes the size of
the nth generation, and the initial population X0 is 1. Explain why Gn(s), the PGF of
Xn, satisfies the recurrence relation

Gn(s) = Gn−1(G(s)), n ≥ 1,

and deduce that
E(Xn) = µE(Xn−1) = µn.

State (without proof) how the probability of ultimate extinction

e = lim
n→∞

P(Xn = 0)

can be derived from G(s). Determine e in the case where the family size distribution
is binomial with parameters n = 2, p = 2

3
. [7]
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5. (i) If X0, X1, . . . is a sequence of random variables defined on a state space {0, 1, . . .},
explain what is meant by saying that {Xn : n = 0, 1, . . .} is a homogeneous Markov
chain with transition probability matrix P. If p

(r) denotes the row vector
(P(Xr = 0), P(Xr = 1), . . .), show that

p
(n) = p

(0)Pn
,

and explain the significance of p
(n)
ij , the (i, j) element of Pn. [6]

(ii) A homogeneous Markov chain {Xn : n = 0, 1, . . .} has states {0, 1, 2} and
transition probability matrix

P =







3
4

1
4

0
1
4

1
2

1
4

1
2

0 1
2





 .

At time n = 0, the system is equally likely to be in states 0, 1 or 2.

(a) Find P(X2 = 0). [2]
(b) Explain briefly why we can be sure that a limiting distribution π exists, and

determine it. [6]

(iii) A finite homogeneous Markov chain has a set T of transient states and a set A of
absorbing states, and its transition P matrix is P = (pij). When starting from state
i ∈ T , let fik denote the probability of eventual absorption in state k ∈ A and µi the
expected time to absorption in any absorbing state.

Write down (without proof) sets of linear equations for the {fik : i ∈ T} and the
{µi : i ∈ T}. For a chain with states {0, 1, 2, 3} and

P =











1
5

2
5

1
5

1
5

1
4

0 1
2

1
4

0 0 1 0
0 0 0 1











,

determine f02 and µ0. [6]



page 6 of 9 110SOR201

6. (i) The lifetime X of a certain device has c.d.f.

F (x) = 1 − e−λx2

, x ≥ 0, λ > 0.

Derive the p.d.f. of X , f(x), and determine its mean, variance and mode.

Also determine the hazard rate function r(x) = f(x)/[1 − F (x)], and briefly explain
its significance.

(Note: the function

Γ(p) =
∫

∞

0
tp−1e−tdt, p > 0,

has the properties

Γ(p + 1) = pΓ(p) : Γ(1/2) =
√

π : Γ(n + 1) = n!, n integer ≥ 0.) [10]

(ii) A continuous random variable X , defined over (−∞,∞), has c.d.f. FX(x) and p.d.f.
fX(x). If Y = X2, describe briefly two methods whereby the p.d.f. fY (y) may be
derived. [2]
Using either method,

(a) find fY (y) when

fX(x) =

{

1
9
(1 + x)2, −1 ≤ x ≤ 2

0, otherwise;
[4]

(b) show that, if X ∼ N(0, 1), i.e.

fX(x) =
1√
2π

e−x2/2, −∞ < x < ∞,

then Y ∼ χ2(1). What is the connection between N(0, 1) and χ2(r) for r ≥ 2?
(Note: the p.d.f. for the χ2(r) distribution is

fV (v) =
1

2r/2Γ(r/2)
vr/2−1e−v/2, 0 ≤ v < ∞, r a positive integer.) [4]
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7. (i) The continuous random variables X and Y are independent and Gamma
distributed with positive parameters (α, λ) and (β, λ) respectively, i.e.

fX(x) =







λα

Γ(α)
xα−1e−λx, x ≥ 0

0, otherwise,

(where the Gamma function is defined in Question 6(i)), with a similar expression for
fY (y). Show that the random variables

U = X + Y, V =
Y

X + Y

are independent, and that U is Gamma distributed with parameters (α + β, λ). What
is the distribution of V ? [8]

(ii) Let X(1), ..., X(n) be the order statistic random variables associated with
random samples of size n from a distribution with p.d.f. f(x) and c.d.f. F (x),
−∞ < x < ∞.

(a) Show that the p.d.f. of the largest observation, X(n), is

f(n)(x) = n{F (x)}n−1f(x), −∞ < x < ∞.

Hence determine E(X(n)) and Var(X(n)) in the case of sampling from a
uniform distribution with

f(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise.

[7]

(b) It may be shown that the joint p.d.f. of X(1), X(n) is

f(1),(n)(x, y) = n(n − 1){F (y)− F (x)}n−2f(x)f(y), −∞ < x < y < ∞.

By introducing a suitable transformation, show that, when sampling is from the
uniform distribution in (a), the sample range R has the p.d.f.

fR(r) = n(n − 1)rn−2(1 − r), 0 ≤ r ≤ 1. [5]
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8. (i) Define the moment generating function (MGF) MX(θ) of a continuous random
variable X in terms of its p.d.f. fX(x),−∞ < x < ∞, and state how the MGF of
Y = a+ bX is related to MX . Indicate concisely two methods whereby moments of X
about the origin can be derived from MX(θ). How can these procedures be modified
so as to yield (directly) moments about the mean E(X)? [5]

(ii) If Z ∼ N(0, 1), show that
MZ(θ) = exp(1

2
θ2),

and hence obtain MX(θ), where X = µ + σZ. Use MX(θ) to verify that E(X) = µ
and Var(X) = σ2. [7]

(iii) Show that if the distribution of X is negative exponential with parameter λ, i.e.

fX(x) =

{

λe−λx, x ≥ 0
0, otherwise,

then

MX(θ) =
λ

λ − θ
, θ < λ.

If Xi (i = 1, . . . , n) are independent random variables, the distribution of each being
negative exponential with parameter λ, and

Sn =
n
∑

i=1

Xi,

what is the MGF of Sn? Show that

Zn =
Sn − n/λ√

n/λ

is asymptotically normally distributed with mean 0 and variance 1.

(Hint:

lim
n→∞

(

1 +
a

n
+ o(n)

)n

= ea for fixed a. ) [8]



page 9 of 9 110SOR201

9. (i) State the assumptions which characterize a counting process {N(t), t ≥ 0} as a
Poisson process with rate λ. Show from the assumptions that the probabilities

pn(t) = P[N(t) = n], n = 0, 1, . . .

satisfy the equations

dp0(t)

dt
= −λp0(t)

dpn(t)

dt
= λpn−1(t) − λpn(t), n = 1, 2, . . .

Indicate briefly how these equations can be solved and quote the resulting expression
for pn(t). Also state (without proof) the distribution of the inter-event times

Xn = Tn − Tn−1,

where
Tn = inf{t : N(t) = n}. [11]

(ii) It can be shown that, for a ‘birth and death’ process {X(t), t ≥ 0} with ‘birth’
rates {αi; i = 0, 1, . . .} and ‘death’ rates {βi; i = 1, 2, . . .}, the probabilities

pn(t) = P[X(t) = n], n = 0, 1, . . .

satisfy the equations

dpn(t)

dt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n = 0, 1, . . . ,

where α
−1 = β0 = 0. Show that, if a steady state distribution {πm; m = 0, 1, . . .}

exists, then
αmπm = βm+1πm+1, m = 0, 1, . . . ,

and deduce that

π0 =

(

1 +
α0

β1
+

α0α1

β1β2
+ · · ·

)

−1

. [5]

(iii) Consider a single-server queueing system in which the service time is negative
exponential with mean µ−1 and customer arrivals form a Poisson process with rate λ,
except that any customer arriving when there are already N customers in the
system leaves without joining the queue. Show that the steady-state distribution of
the number of customers in the system is

πn = ρn(1 − ρ)(1 − ρN+1)−1, 0 ≤ n ≤ N,

where ρ = λ/µ. [4]


