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1. (i) State a minimal set of axioms concerning the probability measure P in a
probability space (S,F , P). [3]
Deduce from the axioms that, if A, B ∈ F , then

(a) P(A) = 1 − P(A); [2]
(b) the probability that exactly one of the events occurs is

P(A) + P(B) − 2P(A ∩ B). [4]

(ii) State (without proof) the generalized addition law (or inclusion-exclusion
principle) for n events A1, A2, . . . , An ∈ F .

If the digits 1, 2, . . . , 6 are written in random order, show that the probability that no
digit is in its natural position is

[

1

2!
− 1

3!
+

1

4!
− 1

5!
+

1

6!

]

=
265

720
.

Deduce the number of permutations of the letters of the word RANDOM which have
no letter in its correct position. Then, by enumerating ‘favourable’ permutations, find
the probability that, when the letters of the word RANDOMIZE are written in random
order, exactly 3 letters are in their correct positions. [11]

2. (i) (a) Given a probability space (S,F , P), explain what is meant by the
assertion that two events A, B ∈ F are independent. Show that, if A, B are
independent, then so too are the complementary events A, B. [4]

(b) For events A1, A2, ..., An ∈ F (n ≥ 3), explain the distinction between the
property of pairwise independence and that of mutual (or complete)
independence. [3]

(ii) State carefully, and prove, the law of total probability (or partition rule). [4]

(iii) A biased coin is such that the probability of getting a head in a single toss is p. Suppose
that the coin is tossed n times.

(a) Let un denote the probability that an even number of heads is obtained (0 being
regarded as an even number). Obtain a recurrence relation for un and show, by
induction or otherwise, that

un = 1
2
[1 + (1 − 2p)n], n ≥ 1. [5]

(b) Let vn denote the probability that two successive heads are not obtained, and
define the events

Ti: first tail obtained on the ith toss (i = 1, 2, ...).
By conditioning on the {Ti}, or otherwise, show that

vn = (1 − p)vn−1 + p(1 − p)vn−2, n ≥ 2,

and indicate how vn can be determined for given n and p. [4]
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3. (i) The count random variables X and Y are independent and Poisson distributed with
parameters λ and µ respectively, i.e.

P(X = k) =
λke−λ

k!
, P(Y = k) =

µke−µ

k!
, k ≥ 0.

Show that Z = X + Y is Poisson distributed with parameter (λ + µ). Show also that
the conditional distribution of X , given that X + Y = n, is binomial, and determine
the parameters. [8]

(ii) (a) Let (X, Y ) be discrete random variables with joint probability function
{P (X = x; Y = y) : X = x1, x2, ...; Y = y1, y2, ...}. Define E(X|Y = yj)
and introduce the random variable E(X|Y ). Prove that

E[E(X|Y )] = E(X) [5]

(b) A prisoner is trapped in a dark cell containing three doors. Doors 1 and 2 lead to
tunnels which return the prisoner to the cell after a travel time of 14 hours and 10
hours respectively: door 3 leads to freedom after 12 hours. If it is assumed that the
prisoner will always select doors 1,2,3 with probabilities 0.5, 0.2, 0.3 respectively,
what is the expected time for the prisoner to reach freedom? [3]

(iii) Each wrapper on a certain chocolate bar is equally likely to bear one of 4 special
symbols. Introducing suitable indicator variables, show that the expected number of
distinct symbols on a set of n wrappers is 4

[

1 −
(

3
4

)n]

. [4]

4. (i) Define the P generating function (PGF) GX(s) of a count random
variable X . If X has the geometric distribution

P(X = x) = pqx−1, x = 1, 2, ...; p + q = 1, (∗)

show that
GX(s) =

ps

1 − qs
, |qs| < 1. [4]

(ii) Consider a sequence of independent Bernoulli trials, each with probability of success
p, and let Z be the number of trials required for r successes to occur. Explain why

Z = X1 + X2 + · · · + Xr,

where X1, ..., Xr are independent random variables, each with the distribution (*) in
part (i). Obtain an expression for GZ(s); then use it to obtain E(Z) and to show that

P(Z = z) =

(

z − 1

r − 1

)

prqz−r, z = r, r + 1, ...

[Hint:
1

(1 − a)r
=
∑

∞

i=0

(

i+r−1
i

)

ai, |a| < 1. ] [7]

/continued...
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(iii) In a simple branching process, the family sizes are independent and identically
distributed random variables, each with mean µ and PGF G(s), Xn denotes the size of
the nth generation, and the initial population X0 is 1.

Explain why Gn(s), the PGF of Xn, satisfies the recurrence relation

Gn(s) = Gn−1(G(s)), n ≥ 1,

and deduce that
E(Xn) = µE(Xn−1) = µn.

Define the probability of ultimate extinction, e, and state (without proof) how e can be
derived from G(s). Determine e in the case where the family size distribution is

P(C = k) =











1
5
, k = 0

2
5
, k = 1, 2

0, otherwise.
[9]

5. (i) Given a sequence of random variables X0, X1, . . . defined on a state space {0, 1, . . .},
explain what is meant by the assertion that {Xn : n = 0, 1, . . .} is a homogeneous
Markov chain. Introduce the transition probability matrix P and prove that

p(n) = p(0)Pn
,

where p(r) denotes the row vector (P(Xr = 0), P(Xr = 1), . . .). [5]

(ii) A homogeneous Markov chain {Xn : n = 0, 1, . . .} has states {0, 1, 2} and
transition probability matrix

P =







0 1
2

1
2

1 0 0
1
4

1
4

1
2





 .

At time n = 0, the system is equally likely to be in any of the states 0,1,2.

(a) Find P(X0 = 0, X1 = 2, X2 = 1). [2]
(b) Find P(X2 = 1) and P(X2 = 2). [3]
(c) By appeal to Markov’s Theorem, explain why a limiting distribution

π exists, and determine it. [5]

(iii) Classify the states {0, 1, 2, 3, 4, 5} of a Markov chain with

P =





















0 1
2

1
2

0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1

4
0 1

2
1
8

1
8

1
2

0 0 0 1
4

1
4





















. [5]
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6. (i) A continuous non-negative random variable X is distributed Gamma(α, λ), with p.d.f.

f(x) =
λαxα−1exp(−λx)

Γ(α)
, x ≥ 0; α, λ > 0,

(where the function

Γ(p) =
∫

∞

0
tp−1e−tdt, p > 0

has the properties

Γ(p + 1) = pΓ(p) : Γ(1/2) =
√

π : Γ(n + 1) = n!, n integer ≥ 0).

(a) Describe how the shape of f(x) depends on the value of α (four cases can be
distinguished).

(b) Obtain an expression for E(Xr) and derive expressions for the mean µ, variance
σ2 and coefficient of skewness γ1 = E({X − µ}3)/σ3. Deduce µ, σ2 and γ1 for
the χ2 distribution with r degrees of freedom, which has p.d.f.

f(x) =
1

2r/2Γ(1
2
r)

x
1

2
r−1e−

1

2
x, x ≥ 0. [11]

(ii) Let Z ∼ N(0, 1), i.e.

fZ(z) =
1√
2π

e−z2/2, −∞ < z < ∞.

Show that V = Z2 has the χ2 distribution with 1 degree of freedom. [5]

(iii) The 2-parameter Weibull distribution has the c.d.f.

F (x) = 1 − exp
{

−
(

x

b

)c}

, x ≥ 0.

Determine the p.d.f. f(x) and the hazard rate function r(x) = f(x)/{1 − F (x)},
discussing briefly how the behaviour of r(x) depends on the value of the parameter c.

[4]
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7. (i) The random variables X ,Y are independent and have the same negative exponential
distribution:

fX(x) =

{

λe−λx, x ≥ 0
0, otherwise;

fY (y) =

{

λe−λy, y ≥ 0
0, otherwise.

(a) Show that the random variables U =
Y

X
, V = X + Y are independent.

(b) Show that V has the Gamma(2, λ) distribution (see Question 6(i) for the Gamma
p.d.f.).

(c) Find the distribution of U . [8]

(ii) Suppose that X and Y are independent continuous random variables with p.d.f.s fX(x)
and fY (y) respectively. By considering a suitable bivariate transformation, show that

the p.d.f. of U =
Y

X
can be expressed as

fU(u) =
∫

∞

−∞

fX(v)fY (uv)|v|dv.

If X and Y are both uniformly distributed on [0, 1], deduce that

fU(u) =















1

2
, 0 ≤ u ≤ 1

1

2u2
, 1 ≤ u < ∞.

[6]

(iii) Let X(1), X(2), ..., X(n) be the order statistic random variables associated with random
samples of size n from a distribution with p.d.f. f(x) and c.d.f. F (x),
−∞ < x < ∞. Show that the p.d.f. of X(n) is

f(n)(x) = n{F (x)}n−1f(x), −∞ < x < ∞.

Then indicate briefly how the argument you have used can be extended to yield the
p.d.f. of X(i)(i = 1, ..., n) and, as an illustration, show that

f(n−1)(x) = n(n − 1){F (x)}n−2{1 − F (x)}f(x), −∞ < x < ∞. [6]
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8. (i) (a) Define the moment generating function (MGF)MX(θ) of a continuous
random variable X in terms of its p.d.f. f(x),−∞ < x < ∞, and state how
the MGF may be used to obtain moments about the origin. Express the MGF of
Y = aX + b in terms of MX . [4]

(b) If X and Y are independent random variables, show that MX+Y (θ) can be ex-
pressd in terms of MX(θ) and MY (θ). [2]

(ii) (a) If Z ∼ N(0, 1), show that

MZ(θ) = exp(1
2
θ2).

If X ∼ N(µ, σ2), deduce MX(θ) and use it to verify that

E(X) = µ, Var(X) = σ2. [7]

(b) If X1, . . . , Xn are independent random variables, and

Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n,

use MGFs to prove that

W =
n
∑

i=1

aiXi ∼ N(
n
∑

i=1

aiµi,
n
∑

i=1

a2
i σ

2
i ).

Deduce the distribution of the sample mean X =
1

n

n
∑

i=1

Xi in the case where all

Xi ∼ N(µ, σ2). [4]

(iii) State the central limit theorem. [3]
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9. (i) Explain what is meant by the assertion that a counting process {N(t), t ≥ 0} has
independent and stationary (or time-homogeneous) increments.

State the conditions which characterise a Poisson process with rate λ. For such a
process, state (without proof) the probability distributions of

(a) N(u + t) − N(u) for u ≥ 0, t > 0;

(b) Xn = Tn −Tn−1 for n ≥ 1, where Tn is the time at which the nth event after time
t = 0 = T0 occurs;

(c) Tn − Tn−r for r ≥ 1, n ≥ r. [8]

(ii) In a birth and death process {X(t), t ≥ 0}, the transition probability functions
{pij(t)} are such that, for small δt,

pij(δt) =



















αiδt + o(δt), i ≥ 0, j = i + 1
βiδt + o(δt), i ≥ 1, j = i − 1
1 − (αi + βi)δt + o(δt), i ≥ 0, j = i
o(δt), otherwise,

where β0 ≡ 0. Show that the probabilities pn(t) ≡ P(X(t) = n) satisfy the equations

dpn(t)

dt
= −(αn + βn)pn(t) + αn−1pn−1(t) + βn+1pn+1(t), n ≥ 1

dp0(t)

dt
= −α0p0(t) + β1p1(t).

Assuming that {αn} and {βn} are such that a steady-state solution
{πm : m = 0, 1, ...} exists, show that

αmπm = βm+1πm+1, m ≥ 0,

and deduce that

π0 =

(

1 +
α0

β1
+

α0α1

β1β2
+ · · ·

)

−1

. [9]

(iii) Consider a single-server queue with discouragement, in which, if n is the number of
customers in the system, the arrival and service rates are respectively

λn =
λ

n + 1
, n ≥ 0

and
µn = µ, n ≥ 1.

Using the results in part (ii), show that the steady-state distribution is Poisson with
parameter λ/µ. [3]


